Click or drag to resize

DoubleParameterizedFunction Class

Abstract class representing a parameterized function.
Inheritance Hierarchy
SystemObject
  CenterSpace.NMath.CoreDoubleParameterizedFunction
    More...

Namespace:  CenterSpace.NMath.Core
Assembly:  NMath (in NMath.dll) Version: 7.4
Syntax
[SerializableAttribute]
public abstract class DoubleParameterizedFunction : ICloneable

The DoubleParameterizedFunction type exposes the following members.

Constructors
  NameDescription
Public methodDoubleParameterizedFunction
Constructs a DoubleParameterizedFunction object.
Public methodDoubleParameterizedFunction(Double)
Constructs a DoubleParameterizedFunction object with the given delta to use in the centeral difference method for approximating the gradient with respect to the parameters.
Public methodDoubleParameterizedFunction(DoubleParameterizedFunction)
Copy constructor. Creates a copy of another DoubleParameterizedFunction.
Top
Properties
  NameDescription
Public propertyCentralDifferenceDelta
Gets and sets the delta used in the centeral difference method for approximating the gradient with respect to the parameters.
Top
Methods
  NameDescription
Public methodClone
Returns a deep copy of the base. Deriving classes must override this method.
Public methodEvaluate(DoubleVector, Double)
Evaluates the parameterized function for the given parameter values at the given point.
Public methodEvaluate(DoubleVector, DoubleVector, DoubleVector)
Evaluates the parameterized function for the given parameter values at the given set of points.
Public methodGradientWithRespectToParams
Method for calculating the gradient with respect to the parameters while keeping x fixed at the specified value.
Top
Remarks
A parameterized function defines a funtion for each set of parameters. For example:
f(x: a, b) = a*cos(b*x) + b*sin(a*x)
is a parameterized function. For each set of values, a and b, it defines a function of x. For example if a = 1 and b = 2 then
f(x) = cos(2*x) + 2*sin(x).
Parameterized function are used by curve fitting routines and solve the following problem -
Suppose I have a set of points (xi, yi), i = 1...n, and I want to determine the values of a and b in the above parameterized function f(x: a, b) so that the resulting function f(x) best fits the data points.
See Also
Inheritance Hierarchy