|  | ArnoldiEigenvalueSolverSolve(DoubleSymCsrSparseMatrix, DoubleSymCsrSparseMatrix, ArnoldiEigenvalueOptions) Method | 
            Solve the generalized symmetric eigenvalue problem
            Ax = Mx(lambda) using Arnoldi iteration,
            Where A is symmetric and M is symmetric positive semi-definite.
            
Namespace: CenterSpace.NMath.CoreAssembly: NMath (in NMath.dll) Version: 7.4
 Syntax
Syntaxpublic static ArnoldiEigenvalueSolution Solve(
	DoubleSymCsrSparseMatrix A,
	DoubleSymCsrSparseMatrix M,
	ArnoldiEigenvalueOptions options
)
Public Shared Function Solve ( 
	A As DoubleSymCsrSparseMatrix,
	M As DoubleSymCsrSparseMatrix,
	options As ArnoldiEigenvalueOptions
) As ArnoldiEigenvalueSolution
public:
static ArnoldiEigenvalueSolution^ Solve(
	DoubleSymCsrSparseMatrix^ A, 
	DoubleSymCsrSparseMatrix^ M, 
	ArnoldiEigenvalueOptions^ options
)
static member Solve : 
        A : DoubleSymCsrSparseMatrix * 
        M : DoubleSymCsrSparseMatrix * 
        options : ArnoldiEigenvalueOptions -> ArnoldiEigenvalueSolution Parameters
- A  DoubleSymCsrSparseMatrix
- Sparse symmetric matrix.
- M  DoubleSymCsrSparseMatrix
- Sparse symmetric positive semi-definite matrix.
- options  ArnoldiEigenvalueOptions
- The number of eigenvalues to find.
Return Value
ArnoldiEigenvalueSolutionResult enumeration.
 See Also
See Also