| DoubleTriDiagMatrix Class |
Class DoubleTriDiagMatrix represents a tridiagonal matrix of double-precision
floating point values. A tridiagonal matrix is a matrix which has all its non-zero
entries on the main diagonal, the super diagonal, and the subdiagonal.
Inheritance Hierarchy Namespace: CenterSpace.NMath.CoreAssembly: NMath (in NMath.dll) Version: 7.4
Syntax [SerializableAttribute]
public class DoubleTriDiagMatrix : ICloneable
<SerializableAttribute>
Public Class DoubleTriDiagMatrix
Implements ICloneable
[SerializableAttribute]
public ref class DoubleTriDiagMatrix : ICloneable
[<SerializableAttribute>]
type DoubleTriDiagMatrix =
class
interface ICloneable
end
The DoubleTriDiagMatrix type exposes the following members.
Constructors Properties | Name | Description |
---|
| Cols |
Gets the number of columns in the matrix.
|
| DataVector |
Gets the data vector referenced by this matrix.
|
| Item |
Gets and sets the value at the specified position.
|
| Rows |
Gets the number of rows in the matrix.
|
TopMethods | Name | Description |
---|
| Add(Double, DoubleTriDiagMatrix) |
Adds a scalar to the non-zero elements of a tridiagonal matrix.
|
| Add(DoubleTriDiagMatrix, DoubleTriDiagMatrix) |
Adds two tridiagonal matrices.
|
| Add(DoubleTriDiagMatrix, Double) |
Adds a scalar to the non-zero elements of a tridiagonal matrix.
|
| Clone |
Creates a deep copy of this matrix.
|
| DeepenThisCopy |
Guarantees that there is only one reference to the underlying
data and that this data is in contiguous storage.
|
| Diagonal |
Returns a vector view of the main diagonal of this matrix.
|
| Diagonal(Int32) |
Returns a vector view of a diagonal of this matrix.
|
| Divide(Double, DoubleTriDiagMatrix) |
Divides a scalar by the non-zero elements of a tridiagonal matrix.
|
| Divide(DoubleTriDiagMatrix, DoubleTriDiagMatrix) |
Divides a tridiagonal matrix by another.
|
| Divide(DoubleTriDiagMatrix, Double) |
Divides the non-zero elements of a tridiagonal matrix by a scalar.
|
| Equals |
Tests for equality of this matrix and another matrix.
Two matrices are equal if they have the same dimensions
and all values are equal.
(Overrides ObjectEquals(Object)) |
| GetHashCode |
Returns an integer hash code for this matrix.
(Overrides ObjectGetHashCode) |
| LeadingSubmatrix |
Returns the k by k upper left corner of the matrix. The
matrix and the submatrix share the same data.
|
| Multiply(Double, DoubleTriDiagMatrix) |
Multiplies the non-zero elements of a tridiagonal matrix by a scalar.
|
| Multiply(DoubleTriDiagMatrix, DoubleTriDiagMatrix) |
Multiplies two tridiagonal matrices.
|
| Multiply(DoubleTriDiagMatrix, Double) |
Multiplies the non-zero elements of a tridiagonal matrix and a scalar.
|
| Negate |
Negation operator.
|
| Resize |
Changes the dimensions of this matrix to those specified, adding
zeros or truncating as necessary.
|
| ShallowCopy |
Creates a shallow copy of this matrix.
|
| Subtract(Double, DoubleTriDiagMatrix) |
Subtracts the non-zero elements of a tridiagonal matrix from a scalar.
|
| Subtract(DoubleTriDiagMatrix, DoubleTriDiagMatrix) |
Subtracts two tridiagonal matrices.
|
| Subtract(DoubleTriDiagMatrix, Double) |
Subtracts a scalar from the non-zero elements of a tridiagonal matrix.
|
| ToCommaSeparated |
Returns a formatted string representation of this matrix using commas
and newlines.
|
| ToCommaSeparated(String) |
Returns a formatted string representation of this matrix using commas
and newlines. Numbers are formatted using the specified format string.
|
| ToGeneralMatrix |
Converts this tridiagonal matrix to a general matrix.
|
| ToString |
Returns a formatted string representation of this matrix.
(Overrides ObjectToString) |
| ToString(String) |
Returns a formatted string representation of this matrix. Numbers are displayed
using the specified format.
ToCommaSeparated ToCommaSeparated(String) ToTabDelimited ToTabDelimited(String) |
| ToTabDelimited |
Returns a formatted string representation of this matrix using tabs
and newlines.
|
| ToTabDelimited(String) |
Returns a formatted string representation of this matrix using tabs
and newlines. Numbers are formatted using the specified format string.
|
| Transpose |
Returns the transpose of this matrix.
|
TopOperators | Name | Description |
---|
| Addition(Double, DoubleTriDiagMatrix) |
Adds a scalar to the non-zero elements of a tridiagonal matrix.
|
| Addition(DoubleTriDiagMatrix, DoubleTriDiagMatrix) |
Adds two tridiagonal matrices.
|
| Addition(DoubleTriDiagMatrix, Double) |
Adds a scalar to the non-zero elements of a tridiagonal matrix.
|
| Division(Double, DoubleTriDiagMatrix) |
Divides a scalar by the non-zero elements of a tridiagonal matrix.
|
| Division(DoubleTriDiagMatrix, DoubleTriDiagMatrix) |
Divides a tridiagonal matrix by another.
|
| Division(DoubleTriDiagMatrix, Double) |
Divides the non-zero elements of a tridiagonal matrix by a scalar.
|
| Equality(DoubleTriDiagMatrix, DoubleTriDiagMatrix) |
Tests for equality of two tridiagonal matrices. Two matrices are equal if they
have the same dimensions, and all values are equal.
|
| (FloatTriDiagMatrix to DoubleTriDiagMatrix) |
Implicitly converts a FloatTriDiagMatrix instance into a DoubleTriDiagMatrix
instance.
|
| Inequality(DoubleTriDiagMatrix, DoubleTriDiagMatrix) |
Tests for equality of two tridiagonal matrices. Two matrices are equal if they
have the same dimensions, and all values are equal.
|
| Multiply(Double, DoubleTriDiagMatrix) |
Multiplies the non-zero elements of a tridiagonal matrix by a scalar.
|
| Multiply(DoubleTriDiagMatrix, DoubleTriDiagMatrix) |
Multiplies two tridiagonal matrices.
|
| Multiply(DoubleTriDiagMatrix, Double) |
Multiplies the non-zero elements of a tridiagonal matrix and a scalar.
|
| Subtraction(Double, DoubleTriDiagMatrix) |
Subtracts the non-zero elements of a tridiagonal matrix from a scalar.
|
| Subtraction(DoubleTriDiagMatrix, DoubleTriDiagMatrix) |
Subtracts two tridiagonal matrices.
|
| Subtraction(DoubleTriDiagMatrix, Double) |
Subtracts a scalar from the non-zero elements of a tridiagonal matrix.
|
| UnaryNegation(DoubleTriDiagMatrix) |
Negation operator.
|
| UnaryPlus(DoubleTriDiagMatrix) |
Unary + operator. Just returns the input matrix.
|
TopRemarks
The element in the ith row, jth column is defined to be zero
whenever
j - i > 1. or
i - j > 1.
The matrix is stored in a vector column by column. Zero elements are not
stored. There are some blank entries in the data vector so the each column
takes up the same number of elements, 3, in the vector. For example, the
following 8 by 8 matrix,
| a11 a12 0 0 0 0 0 0 |
| a21 a22 a23 0 0 0 0 0 |
| 0 a32 a33 a34 0 0 0 0 |
A = | 0 0 a43 a44 a45 0 0 0 |
| 0 0 0 a54 a55 a56 0 0 |
| 0 0 0 0 a65 a66 a67 0 |
| 0 0 0 0 0 a76 a77 a78 |
| 0 0 0 0 0 0 a87 a88 |
is stored in a data vector
v as
v = [x a11 a21
a12 a22 a32
a23 a33 a43
a34 a44 a54
a45 a55 a65
a56 a66 a67
a67 a77 a87
a78 a88 x ]
where
x denotes an unused location.
See Also