DoubleSymBandMatrix Class 
Namespace: CenterSpace.NMath.Core
The DoubleSymBandMatrix type exposes the following members.
Name  Description  

DoubleSymBandMatrix(DoubleBandMatrix) 
Constructs a DoubleSymBandMatrix instance from a square banded matrix.
 
DoubleSymBandMatrix(DoubleTriDiagMatrix) 
Constructs a DoubleSymBandMatrix instance from a square tridiagonal matrix.
 
DoubleSymBandMatrix(Int32, Int32) 
Constructs a DoubleSymBandMatrix instance with the specified number of rows, columns,
and half bandwidth.
 
DoubleSymBandMatrix(DoubleMatrix, Int32) 
Constructs a DoubleSymBandMatrix instance by extracting the symmetric part of
a band of entries from a square matrix.
 
DoubleSymBandMatrix(DoubleVector, Int32, Int32) 
Constructs a DoubleSymBandMatrix instance with the specified dimensions and
half bandwidth using the data in the passed vector.

Name  Description  

Bandwidth 
Gets the bandwidth of the matrix.
 
Cols 
Gets the number of columns in the matrix.
 
DataVector 
Gets the data vector referenced by this matrix.
 
HalfBandwidth 
Gets the half bandwidth of the matrix.
 
Item 
Gets and sets the value at the specified position.
 
Order 
Gets the order of the matrix (the number of rows and columns).
 
Rows 
Gets the number of rows in the matrix.

Name  Description  

Add(Double, DoubleSymBandMatrix) 
Adds a scalar to the nonzero elements of a banded matrix.
 
Add(DoubleSymBandMatrix, DoubleSymBandMatrix) 
Adds two banded matrices.
 
Add(DoubleSymBandMatrix, Double) 
Adds a scalar to the nonzero elements of a banded matrix.
 
Clone 
Creates a deep copy of this matrix.
 
DeepenThisCopy 
Guarantees that there is only one reference to the underlying
data and that this data is in contiguous storage.
 
Diagonal 
Returns a vector view of the main diagonal of this matrix.
 
Diagonal(Int32) 
Returns a vector view of a diagonal of this matrix.
 
Divide(Double, DoubleSymBandMatrix) 
Divides a scalar by the nonzero elements of a banded matrix.
 
Divide(DoubleSymBandMatrix, DoubleSymBandMatrix) 
Divides a banded matrix by another.
 
Divide(DoubleSymBandMatrix, Double) 
Divides the nonzero elements of a banded matrix by a scalar.
 
Equals 
Tests for equality of this matrix and another matrix.
Two matrices are equal if they have the same dimensions, upper bandwidth
and all values are equal.
(Overrides ObjectEquals(Object).)  
GetHashCode 
Returns an integer hash code for this matrix.
(Overrides ObjectGetHashCode.)  
LeadingSubmatrix 
Returns the k by k upper left corner of the matrix.
 
Multiply(Double, DoubleSymBandMatrix) 
Multiplies the nonzero elements of a banded matrix by a scalar.
 
Multiply(DoubleSymBandMatrix, DoubleSymBandMatrix) 
Multiplies two banded matrices.
 
Multiply(DoubleSymBandMatrix, Double) 
Multiplies the nonzero elements of a banded matrix and a scalar.
 
Negate 
Negation operator.
 
Resize(Int32) 
Changes the dimensions of this matrix to those specified, adding
zeros or truncating as necessary.
 
Resize(Int32, Int32) 
Changes the dimensions and half bandwidth of this matrix to those specified,
adding zeros or truncating as necessary.
 
ShallowCopy 
Creates a shallow copy of this matrix.
 
Subtract(Double, DoubleSymBandMatrix) 
Subtracts the nonzero elements of a banded matrix from a scalar.
 
Subtract(DoubleSymBandMatrix, DoubleSymBandMatrix) 
Subtracts two banded matrices.
 
Subtract(DoubleSymBandMatrix, Double) 
Subtracts a scalar from the nonzero elements of a banded matrix.
 
ToCommaSeparated 
Returns a formatted string representation of this matrix using commas
and newlines.
 
ToCommaSeparated(String) 
Returns a formatted string representation of this matrix using commas
and newlines. Numbers are formatted using the specified format string.
 
ToGeneralMatrix 
Converts this symmetric banded matrix to a general matrix.
 
ToString 
Returns a formatted string representation of this matrix.
(Overrides ObjectToString.)  
ToString(String) 
Returns a formatted string representation of this matrix. Numbers are displayed
using the specified format.
 
ToTabDelimited 
Returns a formatted string representation of this matrix using tabs
and newlines.
 
ToTabDelimited(String) 
Returns a formatted string representation of this matrix using tabs
and newlines. Numbers are formatted using the specified format string.
 
Transpose 
Returns this matrix.

Name  Description  

Addition(Double, DoubleSymBandMatrix) 
Adds a scalar to the nonzero elements of a banded matrix.
 
Addition(DoubleSymBandMatrix, DoubleSymBandMatrix) 
Adds two symmetric banded matrices.
 
Addition(DoubleSymBandMatrix, Double) 
Adds a scalar to the nonzero elements of a banded matrix.
 
Division(Double, DoubleSymBandMatrix) 
Divides a scalar by the nonzero elements of a symmetric banded matrix.
 
Division(DoubleSymBandMatrix, DoubleSymBandMatrix) 
Divides a symmetric banded matrix by another.
 
Division(DoubleSymBandMatrix, Double) 
Divides the nonzero elements of a symmetric banded matrix by a scalar.
 
Equality 
Tests for equality of two symmetric banded matrices. Two matrices are equal if they
have the same dimensions, and half bandwidth, and all values are equal.
 
(FloatSymBandMatrix to DoubleSymBandMatrix) 
Implicitly converts a FloatSymBandMatrix instance into a DoubleSymBandMatrix
instance.
 
Inequality 
Tests for equality of two symmetric banded matrices. Two matrices are equal if they
have the same dimensions, and half bandwidths, and all values are equal.
 
Multiply(Double, DoubleSymBandMatrix) 
Multiplies the nonzero elements of a symmetric banded matrix by a scalar.
 
Multiply(DoubleSymBandMatrix, DoubleSymBandMatrix) 
Multiplies two symmetric banded matrices.
 
Multiply(DoubleSymBandMatrix, Double) 
Multiplies the nonzero elements of a symmetric banded matrix and a scalar.
 
Subtraction(Double, DoubleSymBandMatrix) 
Subtracts the nonzero elements of a symmetric banded matrix from a scalar.
 
Subtraction(DoubleSymBandMatrix, DoubleSymBandMatrix) 
Subtracts two symmetric banded matrices.
 
Subtraction(DoubleSymBandMatrix, Double) 
Subtracts a scalar from the nonzero elements of a symmetric banded matrix.
 
UnaryNegation 
Negation operator.
 
UnaryPlus 
Unary + operator. Just returns the input matrix.

 a11 a12 a13 0 0 0 0 0 0   a12 a22 a23 a24 0 0 0 0 0   a13 a23 a33 a34 a35 0 0 0 0  A =  0 a24 a34 a44 a45 a46 0 0 0   0 0 a35 a45 a55 a56 a57 0 0   0 0 0 a46 a56 a66 a67 a68 0   0 0 0 0 a57 a67 a77 a78 a79   0 0 0 0 0 a68 a78 a88 a89   0 0 0 0 0 0 a79 a89 a99 
v = [x x a11 x a12 a22 a13 a23 a33 a24 a34 a44 a35 a45 a55 a46 a56 a66 a57 a67 a77 a68 a78 a88 a79 a89 a99 ]