Click or drag to resize

AnovaRegressionParameter Class

Class AnovaRegressionParameter provides information about a regression parameter used to perform an analysis of variance by class TwoWayAnova.
Inheritance Hierarchy

Namespace:  CenterSpace.NMath.Core
Assembly:  NMath (in NMath.dll) Version: 7.4
Syntax
[SerializableAttribute]
public class AnovaRegressionParameter : LinearRegressionParameter

The AnovaRegressionParameter type exposes the following members.

Constructors
  NameDescription
Protected methodAnovaRegressionParameter
Used by Clone method.
Public methodAnovaRegressionParameter(LinearRegression, Int32, Double)
Construct an ANOVA regression parameter object from the given linear regression and sum of squares.
Public methodAnovaRegressionParameter(Int32, Double, Double, Double, Int32, Double)
Construct an Anova regression paramater object with the given values.
Top
Properties
  NameDescription
Public propertyBeta
Gets the standardized beta coefficient.
(Inherited from LinearRegressionParameter.)
Public propertyParameterIndex
Gets the index of this parameter in the linear regresssion.
(Inherited from LinearRegressionParameter.)
Public propertyStandardError
Gets the standard error of this parameter.
(Inherited from LinearRegressionParameter.)
Public propertySumOfSquares
Gets the sum of squares due to this parameter.
Public propertyValue
Gets the value of this parameter.
(Inherited from LinearRegressionParameter.)
Top
Methods
  NameDescription
Public methodClone
Creates a deep copy of this AnovaRegressionParameter.
Public methodConfidenceInterval
Returns the 1 - alpha confidence interval for this parameter.
(Inherited from LinearRegressionParameter.)
Public methodSetParameterValues
Set the linear regression paramater values.
(Inherited from LinearRegressionParameter.)
Public methodSetRegression
Sets the regression object and the parameter index for this regression parameter.
(Inherited from LinearRegressionParameter.)
Public methodToString
Returns a formatted string representation of this parameter.
(Inherited from LinearRegressionParameter.)
Public methodTStatistic
Returns the t-statistic for the null hypothesis that this parameter is equal to the given test value.
(Inherited from LinearRegressionParameter.)
Public methodTStatisticCriticalValue
Gets the critical value of the t-statistic for the specified alpha level.
(Inherited from LinearRegressionParameter.)
Public methodTStatisticPValue
Returns the p-value for a t-test with the null hypothesis that this parameter is equal to the given test value versus the alternative hypothesis that it is not.
(Inherited from LinearRegressionParameter.)
Top
Fields
  NameDescription
Protected fieldbeta_
Beta field.
(Inherited from LinearRegressionParameter.)
Protected fielddegreesOfFreedom_
Degrees of freedom field.
(Inherited from LinearRegressionParameter.)
Protected fieldmodelVariance_
Model variance field.
(Inherited from LinearRegressionParameter.)
Protected fieldparameterValue_
Parameter value field.
(Inherited from LinearRegressionParameter.)
Protected fieldparameterVariance_
Parameter variance field.
(Inherited from LinearRegressionParameter.)
Protected fieldparamIndex_
Parameter index field.
(Inherited from LinearRegressionParameter.)
Protected fieldsumOfSquares_
Sum of squares.
Top
Remarks
Instances of class AnovaRegressionParameter are returned by properties and member functions on class TwoWayAnova. They cannot be constructed independently.
AnovaRegressionParameter derives from LinearRegressionParameter, which provides properties for computing the t statistic, p-value for the t statistic, and confidence intervals for individual regression parameters.
AnovaRegressionParameter is the base class for AnovaRegressionFactorParam and AnovaRegressionInteractionParam.
See Also