|  | DoubleParameterizedDelegateGradientWithRespectToParams Method | 
            Method for calculating the gradient with respect to the parameters while keeping x
            fixed at the specified value.
            
Namespace: CenterSpace.NMath.CoreAssembly: NMath (in NMath.dll) Version: 7.4
 Syntax
Syntaxpublic override void GradientWithRespectToParams(
	DoubleVector parameters,
	double x,
	ref DoubleVector grad
)
Public Overrides Sub GradientWithRespectToParams ( 
	parameters As DoubleVector,
	x As Double,
	ByRef grad As DoubleVector
)
public:
virtual void GradientWithRespectToParams(
	DoubleVector^ parameters, 
	double x, 
	DoubleVector^% grad
) override
abstract GradientWithRespectToParams : 
        parameters : DoubleVector * 
        x : float * 
        grad : DoubleVector byref -> unit 
override GradientWithRespectToParams : 
        parameters : DoubleVector * 
        x : float * 
        grad : DoubleVector byref -> unit Parameters
- parameters  DoubleVector
- The gradient with respect to the parameters will be evaluated
            at this point.
- x  Double
- The point to fix x to.
- grad  DoubleVector
- On entry a vector of the correct size (same as the number of parameters). On
            exit contains the values of the gradient.
 Exceptions
Exceptions| Exception | Condition | 
|---|
| InvalidArgumentException | Thrown if the length of the input gradient vector
            is not equal to the length of the vector of parameter values. | 
 Remarks
Remarks For example, if
            f(x: a, b) = a*cos(b*x) + b*sin(a*x)
            is a function parameterized on a and b, then for a fixed value of x we can think
            of f as being a function of a and b. We can then take the partial derivatives of f
            with respect to a and b to form the gradient with respect to the parameters:
            grad(a,b) = { fa(a,b), fb(a,b) } = { cos(b*x) + b*x*cos(a*x), -x*a*sin(b*x) + sin(a*x) }.
            
 See Also
See Also