 | BairstowRootFinderFindUniqueRoots(Double, Int32, Double) Method |
Finds the unique roots of a polynomial
P(x) = a[0] + a[1]*x + a[2]*x^2 + ... + a[n]*x^n
using repeated application of Bairstow's method.
Namespace: CenterSpace.NMath.CoreAssembly: NMath (in NMath.dll) Version: 7.4
Syntaxpublic static ICollection<DoubleComplex> FindUniqueRoots(
double[] a,
int maxIterations = 100,
double tolerance = 1E-12
)
Public Shared Function FindUniqueRoots (
a As Double(),
Optional maxIterations As Integer = 100,
Optional tolerance As Double = 1E-12
) As ICollection(Of DoubleComplex)
public:
static ICollection<DoubleComplex>^ FindUniqueRoots(
array<double>^ a,
int maxIterations = 100,
double tolerance = 1E-12
)
static member FindUniqueRoots :
a : float[] *
?maxIterations : int *
?tolerance : float
(* Defaults:
let _maxIterations = defaultArg maxIterations 100
let _tolerance = defaultArg tolerance 1E-12
*)
-> ICollection<DoubleComplex>
Parameters
- a Double
- The coefficients of the polynomial to solve.
The constant term is at index 0 and the leading coefficient
is at index . The leading coefficient cannot
be zero.
- maxIterations Int32 (Optional)
- Maximum number of iterations to perform during an application
of Bairstow's method.
- tolerance Double (Optional)
- Iteration in Bairstow's method terminates
if falls below this value.
Return Value
ICollectionDoubleComplexThe set of unique roots.
See Also