Imports System Imports CenterSpace.NMath.Core Namespace CenterSpace.NMath.Examples.VisualBasic Module MultiVariableCurveFittingExample The MultiVariableFunctionFitter<T> Needs a parameterized function and a set of data points. One way to specify the parameterized function, and optionally its gradient with respect to the parameters, is to implement an instance of the abstract class DoubleParameterizedFunctional. You must overwrite the Evaluate() method which computes and returns the parameterized function value at a specified set of parameters and point. It is optional to overwrite the GradientWithRespectToParams() method. If you do not overwrite it a numerical approximation using finite differences will be used to approximate the gradient if it is needed. Here the parameterized function we are defining is a real valued function of two variables, x0 and x1, and three parameters, p0, p1, and p2, defined by the formula: p0*x1*x0^2 + p1*sin(x0) + p2*x1^3 Private Class ParameterizedFunction Inherits DoubleParameterizedFunctional Creates an instance of our parameterized function. We must initialize the base class with the dimension of our functions domain. Since our function is a function of two variables we initialize the base class with 2. Public Sub New() MyBase.New(2) End Sub Override the abstract evaluate function. <param name="parameters">The parameter values.</param> <param name="x">The point to evaluate at.</param> <returns>The value of the parameterized function at the given point and parameters.</returns> Public Overrides Function Evaluate(ByVal Parameters As DoubleVector, ByVal X As DoubleVector) As Double Return Parameters(0) * X(1) * Math.Pow(X(0), 2.0) + Parameters(1) * Math.Sin(X(0)) + Parameters(2) * Math.Pow(X(1), 3.0) End Function Since the gradient of our function is rather easy to derive, we will override the GradientWithRespectToParams() function. Remember, this is the vector of partials with respect to the parameters, NOT the variables. <param name="parameters">Evaluate the gradient at these parameter values.</param> <param name="x">Evaluate the gradient at this point.</param> <param name="grad">Place the value of the gradient in this vector.</param> <remarks>Note how this function does not return the gradient as a new vector, but places the gradient value in a vector supplied by the calling routine. This is for optimization purposes. The curve fitter uses a optimization algorithm that will most likely be iterative, and thus may need to evaluate the gradient many times. Having the vector passed in to the routine allows the calling code to allocate space for the gradient once and reuse it on successive calls, thus avoiding the potential of allocating a large number of small objects on the managed heap.</remarks> Public Overrides Sub GradientWithRespectToParams(ByVal Parameters As DoubleVector, ByVal X As DoubleVector, ByRef Grad As DoubleVector) Grad(0) = X(0) * X(0) * X(1) Grad(1) = Math.Sin(X(0)) Grad(2) = Math.Pow(X(1), 3) End Sub End Class A .NET example in Visual Basic showing how to fit a generalized multivariable function to a set of points. Uses the trust-region algorithm. Sub Main() Class MultiVariableFunctionFitter fits a parameterized multivariable function to a set of points. In the space of the function parameters, beginning at a specified starting point, the Fit() method finds a minimum (possibly local) in the sum of the squared residuals with respect to the data. Fit() uses a nonlinear least squares minimizer specified as a generic. For example, here is dataset from the Matlab docs, which fits a function z = f(x, y) to three-dimensional data describing a surface http:www.mathworks.com/support/solutions/data/1-17YMU.html?solution=1-17YMU Since the domain of the function has two dimensions, we use a two-column matrix to hold the x,y data. Dim XYValues As New DoubleMatrix(10, 2) XYValues(Slice.All, 0) = New DoubleVector("3.6 7.7 9.3 4.1 8.6 2.8 1.3 7.9 10.0 5.4") XYValues(Slice.All, 1) = New DoubleVector("16.5 150.6 263.1 24.7 208.5 9.9 2.7 163.9 325.0 54.3") Dim ZValues As New DoubleVector("95.09 23.11 60.63 48.59 89.12 76.97 45.68 1.84 82.17 44.47") Published starting guess in the space of the function parameters. Dim Start As New DoubleVector("10 10 10") Construct a curve fitting object for our function, then perform the fit. We will use the TrustRegionMinimizer implementation of the non-linear least squares minimizer to find the optimal set of parameters. Dim F As New ParameterizedFunction() Dim Fitter As New MultiVariableFunctionFitter(Of TrustRegionMinimizer)(F) Dim Solution As DoubleVector = Fitter.Fit(XYValues, ZValues, Start) Console.WriteLine() Display the results Console.WriteLine("Fit #1") Console.WriteLine("Matlab solution: " & New DoubleVector("0.0074 -19.9749 -0.0000").ToString()) Console.WriteLine("NMath solution: " & Solution.ToString()) Console.WriteLine("NMath residual: " & Fitter.Minimizer.FinalResidual) Console.WriteLine() The parameterized function used by the fitter may also be specified using a delegate. here we define a delegate for the same function p0*x1*x0^2 + p1*sin(x0) + p2*x1^3 Dim XDimension As Integer = 2 The dimension of the domain of f. Dim FDelegate As Func(Of DoubleVector, DoubleVector, Double) = AddressOf Foo The delegate for the parameterized function may be used directly in MultiVariableFunctionFitter constructors, or may be wrapped by the DoubleVectorParameterizedDelegate, which implements DoubleParameterizedFunctional. Here we do the latter. Note that we do not supply the gradient with respect to parameters here. The gradient will be computed using a finite difference algorithm if needed. Fitter.Function = New DoubleVectorParameterizedDelegate(FDelegate, XDimension) Perform the fit and display the results Solution = Fitter.Fit(XYValues, ZValues, Start) Console.WriteLine("Fit #1 (Repeated without user specified Partial Derivatives)") Console.WriteLine("NMath solution: " & Solution.ToString()) Console.WriteLine("NMath residual: " & Fitter.Minimizer.FinalResidual) Console.WriteLine() Now lets perform the fit again using some random data. First we generate 50 random x,y points in range (0,10). XYValues = New DoubleMatrix(50, 2, New RandGenUniform(0, 10)) The target solution. Dim Target As New DoubleVector("1 2 3") When calculating the z values, we add some noise, so the points dont lie exactly on the target surface. ZValues = New DoubleVector(50) Dim Rnd As New RandGenUniform(-1, 1) Dim I As Integer For I = 0 To ZValues.Length - 1 ZValues(I) = FDelegate(Target, XYValues.Row(I)) + Rnd.Next() Next Perform the fit and display the results Solution = Fitter.Fit(XYValues, ZValues, Start) Console.WriteLine("Fit #2") Console.WriteLine("Target solution: " & Target.ToString()) Console.WriteLine("Actual solution: " & Solution.ToString()) Console.WriteLine("Residual: " & Fitter.Minimizer.FinalResidual) Console.WriteLine() Console.WriteLine() Console.WriteLine("Press Enter Key") Console.Read() End Sub Private Function Foo(ByVal P As DoubleVector, ByVal X As DoubleVector) As Double Return P(0) * X(1) * Math.Pow(X(0), 2.0) + P(1) * Math.Sin(X(0)) + P(2) * Math.Pow(X(1), 3.0) End Function End Module End Namespace← All NMath Code Examples