namespace CenterSpace.NMath.Examples.FSharp open System open CenterSpace.NMath.Core module MultiVariableCurveFittingExample = /// <summary> /// The MultiVariableFunctionFitter<T> Needs a parameterized function /// and a set of data points. One way to specify the parameterized function, /// and optionally its gradient with respect to the parameters, is to /// implement an instance of the abstract class DoubleParameterizedFunctional. /// You must overwrite the Evaluate() method which computes and returns the /// parameterized function value at a specified set of parameters and /// point. It is optional to overwrite the GradientWithRespectToParams() method. /// If you do not overwrite it a numerical approximation using fintite differences /// will be used to approximate the gradient if it is needed. /// /// Here the parameterized function we are defining is a real valued function /// of two variables, x0 and x1, and three parameters, p0, p1, and p2, defined /// by the formula: /// /// p0*x1*x0^2 + p1*sin(x0) + p2*x1^3 /// /// </summary> /// <summary> /// Creates an instance of our parameterized function. We must /// initialize the base class with the dimension of our functions /// domain. Since our function is a function of two variables /// we initialize the base class with 2. /// </summary> type ParameterizedFunction() = inherit DoubleParameterizedFunctional(2) /// <summary> /// Override the abstract evaluate function. /// </summary> /// <param name="parameters">The parameter values.</param> /// <param name="x">The point to evaluate at.</param> /// <returns>The value of the parameterized function at the given /// point and parameters.</returns> override u.Evaluate( parameters : DoubleVector, x : DoubleVector) : double = parameters.[0] * x.[1] * Math.Pow( x.[0], 2.0 ) + parameters.[1] * Math.Sin( x.[0] ) + parameters.[2] * Math.Pow( x.[1], 3.0 ) /// <summary> /// Since the gradient of our function is rather easy to derive, we will /// override the GradientWithRespectToParams() function. Remember, this is /// the vector of partials with respect to the parameters, NOT the variables. /// </summary> /// <param name="parameters">Evaluate the gradient at these parameter values.</param> /// <param name="x">Evaluate the gradient at this point.</param> /// <param name="grad">Place the value of the gradient in this vector.</param> /// <remarks>Note how this function does not return the gradient as a new /// vector, but places the gradient value in a vector supplied by the /// calling routine. This is for optimization purposes. The curve fitter uses /// a optimization algorithm that will most likely be iterative, and thus may /// need to evaluate the gradient many times. Having the vector /// passed in to the routine allows the calling code to allocate space for the /// gradient once and reuse it on successive calls, thus avoiding the potential /// of allocating a large number of small objects on the managed heap.</remarks> member u.GradientWithRespectToParams( parameters : DoubleVector, x : DoubleVector, grad : DoubleVector ) = grad.[0] = x.[0] * x.[0] * x.[1], grad.[1] = Math.Sin( x.[0] ), grad.[2] = Math.Pow( x.[1], 3.0 ) /// <summary> /// A .NET example in C# showing how to fit a generalized multivariable function to a set /// of points. /// </summary> /// <remarks> /// Uses the trust-region algorithm. /// </remarks> // Class MultiVariableFunctionFitter fits a parameterized multivariable function to a // set of points. In the space of the function parameters, begining at a specified // starting point, the Fit() method finds a minimum (possibly local) in the sum of // the squared residuals with respect to the data. Fit() uses a nonlinear least // squares minimizer specified as a generic. // For example, here is dataset from the Matlab docs, which fits a function // z = f(x, y) to three-dimensional data describing a surface // http://www.mathworks.com/support/solutions/data/1-17YMU.html?solution=1-17YMU // Since the domain of the function has two dimensions, we use a two-column matrix to // hold the x,y data. let mutable xyValues = new DoubleMatrix(10, 2) xyValues.[Slice.All, 0] <- new DoubleVector("3.6 7.7 9.3 4.1 8.6 2.8 1.3 7.9 10.0 5.4") xyValues.[Slice.All, 1] <- new DoubleVector("16.5 150.6 263.1 24.7 208.5 9.9 2.7 163.9 325.0 54.3") let mutable zValues = new DoubleVector("95.09 23.11 60.63 48.59 89.12 76.97 45.68 1.84 82.17 44.47") // Published starting guess in the space of the function parameters. let start = new DoubleVector("10 10 10") // Construct a curve fitting object for our function, then perform the fit. We will use the // TrustRegionMinimizer implementation of the non-linear least squares minimizer to find the optimal // set of parameters. // let f = new ParameterizedFunction() let fitter = new MultiVariableFunctionFitter<TrustRegionMinimizer>( new ParameterizedFunction() ) let mutable solution = fitter.Fit(xyValues, zValues, start) // Display the results printfn "Fit #1" printfn "Matlab solution: 0.0074 -19.9749 -0.0000" printfn "NMath solution: %s" (solution.ToString()) printfn "NMath residual: %A" fitter.Minimizer.FinalResidual printfn "" // The parameterized function used by the fitter may also be specified using a delegate. // here we define a delegate for the same function // p0*x1*x0^2 + p1*sin(x0) + p2*x1^3 let xDimension = 2 // The dimension of the domain of f. let myFunc = new Func<DoubleVector,DoubleVector,double>(fun p x -> p.[0] * x.[1] * Math.Pow( x.[0], 2.0 ) + p.[1] * Math.Sin( x.[0] ) + p.[2] * Math.Pow( x.[1], 3.0 )) // The delegate for the parameterized function may be used directly in MultiVariableFunctionFitter // constructors, or may be wrapped by the DoubleVectorParameterizedDelegate, which implements // DoubleParameterizedFunctional. Here we do the latter. // Note that we do not supply the gradient with respect // to parameters here. The gradient will be computed using a finite difference algorithm if // needed. fitter.Function <- new DoubleVectorParameterizedDelegate( myFunc, xDimension ) // Perform the fit and display the results solution <- fitter.Fit(xyValues, zValues, start) printfn "Fit #1 (Repeated without user specified Partial Derivatives)" printfn "NMath solution: %s" (solution.ToString()) printfn "NMath residual: %A" fitter.Minimizer.FinalResidual printfn "" // Now lets perform the fit again using some random data. First we generate // 50 random x,y points in range (0,10). xyValues <- new DoubleMatrix(50, 2, new RandGenUniform(0.0, 10.0)) // The target solution. let target = new DoubleVector("1 2 3") // When caculating the z values, we add some noise, so the points // dont lie exactly on the target surface. zValues <- new DoubleVector(50, new RandGenUniform(-1.0, 1.0)) for i = 0 to zValues.Length - 1 do zValues.[i] <- myFunc.Invoke(target, xyValues.Row(i)) // Perform the fit and display the results solution <- fitter.Fit(xyValues, zValues, start) printfn "Fit #2" printfn "Target solution: %s" (target.ToString()) printfn "Actual solution: %s" (solution.ToString()) printfn "Residual: %A" fitter.Minimizer.FinalResidual printfn "" printfn "Press Enter Key" Console.Read() |> ignore← All NMath Code Examples