← All NMath Code Examples
using System;
using System.IO;
using CenterSpace.NMath.Core;
namespace CenterSpace.NMath.Examples.CSharp
{
/// <summary>
/// A .NET example in C# showing smoothing using the Savitzky-Golay moving filter.
/// </summary>
class MovingWindowFilterExample
{
static void Main( string[] args )
{
int signalLength = 2000;
Console.WriteLine();
DoubleVector signal = NoisySignal( signalLength );
double noisySignalVariance = NMathFunctions.Variance( signal );
Console.WriteLine( "Noisy signal variance = " + noisySignalVariance );
// Set up a moving average filter with an asymmetric window. A moving window
// filter replaces each input data point with a linear combination of
// its surrounding points. A filter is thus described by the number of
// of points to the left and right of the input point and the coefficients
// of the linear combination.
// This filter will replace each input data point with the average of
// its value with the 4 values to the left, and the 5 values to the right.
// Thus the coefficients to use are all equal to one over the number of points
// in the window, 10 in this case.
int numberLeft = 4;
int numberRight = 5;
DoubleVector filterCoefficients = MovingWindowFilter.MovingAverageCoefficients( numberLeft, numberRight );
var movingAverageFilter = new MovingWindowFilter( numberLeft, numberRight, filterCoefficients );
// Filter the signal. Note that we must specify a boundary option. When
// replacing the first input value, we dont have any points to the left, similarly, when
// replacing the last input value, we dont have any point to the right. The "PadWithZeros"
// boundary option prepends "numberLeft" zeros and appends "numberRight" zeros to the
// input vector to deal with this.
DoubleVector filteredSignal = movingAverageFilter.Filter( signal, MovingWindowFilter.BoundaryOption.PadWithZeros );
double filteredSignalVariance = NMathFunctions.Variance( filteredSignal );
Console.WriteLine( "Moving Average: filtered signal variance = " + filteredSignalVariance );
// Set up a Savitzky-Golay filter. This is a smoothing filter that replaces input values with
// the value of a polynomial of specified degree fit through the input value and its
// surrounding points. A least squares algorithm is used to determine the fitting polynomial.
int degree = 4;
filterCoefficients = MovingWindowFilter.SavitzkyGolayCoefficients( numberLeft, numberRight, degree );
MovingWindowFilter savitzkyGolayFilter = new MovingWindowFilter( numberLeft, numberRight, filterCoefficients );
// Filter the signal. Here we use a different boundary option: "DoNotFilterBoundaryPoints".
// This option will not filter or replace the first "numberLeft" or last "numberRight"
// values of the input signal.
filteredSignal = savitzkyGolayFilter.Filter( signal, MovingWindowFilter.BoundaryOption.DoNotFilterBoundaryPoints );
filteredSignalVariance = NMathFunctions.Variance( filteredSignal );
Console.WriteLine( "Savitzky-Golay: filtered signal variance = " + filteredSignalVariance );
Console.WriteLine();
// If you are filtering lots of signals with the same length, it is more
// economic to use the "Filter" method which allows you to specify
// the vector to place the output filtered signal in. This avoids having
// to allocate potentially large vectors on every call to "Filter".
int numSignals = 10;
DoubleMatrix noisySignals = NoisySignals( signalLength, numSignals );
var y = new DoubleVector( signal.Length );
for ( int i = 0; i < numSignals; i++ )
{
DoubleVector s = noisySignals.Col( i );
Console.WriteLine( string.Format( "Noisy signal {0} variance = {1}", i, NMathFunctions.Variance( s ) ) );
savitzkyGolayFilter.Filter( s, MovingWindowFilter.BoundaryOption.PadWithZeros, ref y );
Console.WriteLine( string.Format( "Savitzky-Golay filtered signal {0} variance = {1}", i, NMathFunctions.Variance( y ) ) );
Console.WriteLine();
}
Console.WriteLine();
Console.WriteLine( "Press Enter Key" );
Console.Read();
}
static DoubleVector NoisySignal( int length )
{
var rng = new RandGenNormal();
var signal = new DoubleVector( length );
for ( int i = 0; i < length; i++ )
{
signal[i] = Math.Cos( .2 * i ) + rng.Next();
}
return signal;
}
static DoubleMatrix NoisySignals( int rows, int columns )
{
var rng = new RandGenNormal();
var signals = new DoubleMatrix( rows, columns );
for ( int i = 0; i < rows; i++ )
{
for ( int j = 0; j < columns; j++ )
{
signals[i, j] = Math.Cos( .2 * i * j ) + rng.Next();
}
}
return signals;
}
}
}
← All NMath Code Examples