![]() | Special |
The SpecialFunctions type exposes the following members.
Name | Description | |
---|---|---|
![]() | SpecialFunctions | Initializes a new instance of the SpecialFunctions class |
Name | Description | |
---|---|---|
![]() ![]() | Airy |
The Airy and Bairy functions are the two solutions of the differential equation C# y''(x) = xy |
![]() ![]() | BesselI0 | Modified Bessel function of the first kind, order zero. |
![]() ![]() | BesselI1 | Modified Bessel function of the first kind, first order. |
![]() ![]() | BesselIv |
Modified Bessel function of the first kind, non-integer order. Zero is
returned if C# x < 0 |
![]() ![]() | BesselJ0 | Bessel function of the first kind, order zero. |
![]() ![]() | BesselJ1 | Bessel function of the first kind, first order. |
![]() ![]() | BesselJn | Bessel function of the first kind, arbitrary integer order. |
![]() ![]() | BesselJv |
Bessel function of first kind, non-integer order. Zero is
returned if C# x < 0 |
![]() ![]() | BesselK0 | Modified Bessel function of the second kind, order zero. |
![]() ![]() | BesselK1 | Modified Bessel function of the second kind, order one. |
![]() ![]() | BesselKn | Modified Bessel function of the second kind, arbitrary integer order. |
![]() ![]() | BesselY0 | Bessel function of the second kind, order zero. |
![]() ![]() | BesselY1 | Bessel function of the second kind, order one. |
![]() ![]() | BesselYn | Bessel function of the second kind of integer order. |
![]() ![]() | BesselYv | Bessel function of the second kind, non-integer order.. |
![]() ![]() | Beta | The beta function, beta(a, b) = Gamma(a) * Gamma(b) / Gamma(a+b). If either a or b = 0, -1, -2, ... then Double.NaN is returned. |
![]() ![]() | Binomial | Binomial coefficient (n choose k); The number of ways of picking k unordered outcomes from n possibilities. |
![]() ![]() | BinomialLn | Natural log of the binomial coefficient (n choose k); the number of ways of picking k unordered outcomes from n possibilities. |
![]() ![]() | Cn | Computes jacobian elliptic function Cn() for real, pure imaginary, or complex arguments. |
![]() ![]() | Digamma | The digamma or psi function, defined as Gamma'(z)/Gamma(z). A Double.NaN is return for all non-positive integers x = { 0, -1, -2, ... }. |
![]() ![]() | Ei | Exponential integral. |
![]() ![]() | EllipJ | The real valued Jacobi elliptic functions cn(), sn(), and dn(). |
![]() ![]() | EllipticE(Double) | The complete elliptic integral, E(m), of the second kind. |
![]() ![]() | EllipticE(Double, Double) | The incomplete elliptic integral of the second kind. |
![]() ![]() | EllipticF | The incomplete elliptic integral of the first kind. |
![]() ![]() | EllipticK | The complete elliptic integral, K(m), of the first kind. |
![]() ![]() | Factorial | Factorial. The number of ways that n objects can be permuted. |
![]() ![]() | FactorialLn |
Natural log factorial of n, C# ln( n! ) |
![]() ![]() | Gamma |
The gamma function. Returns C# Double.NaN |
![]() ![]() | GammaLn | THe natural log of the gamma function. A Double.NaN is return for all x = { 0, -1, -2, ... }. and for all other negative values the real part is returned. |
![]() ![]() | GammaReciprocal | The reciprocal of the gamma function. For arguments larger than +34.84425627277176174 the reciprocal of Double.MaxValue is returned. |
![]() ![]() | HarmonicNumber(Double) | The harmonic number, Hn, which is a truncation of the harmonic series. |
![]() ![]() | HarmonicNumber(Int32) | The harmonic number, Hn, is a truncated sum of the harmonic series. |
![]() ![]() | Hypergeometric1F1 | The confluent hypergeometric series of the first kind. |
![]() ![]() | Hypergeometric2F1 | The Gauss or generalized hypergeometric function. |
![]() ![]() | IncompleteBeta | The incomplete beta function, with x defined over the domain of [0, 1]. |
![]() ![]() | IncompleteGamma | The incomplete gamma integral. Both arguments must be positive. |
![]() ![]() | IncompleteGammaComplement | The complemented incomplete gamma integral. Both arguments must be positive. |
![]() ![]() | NoncentralTDistributionCDF | The CDF at x of the noncentral t-distribution |
![]() ![]() | PolyLogarithm | The polylogarithm, Li_n(x). Li_n(x) reduces to the Riemann zeta function for x = 1. |
![]() ![]() | Sn | Computes jacobian elliptic function Sn() for real, pure imaginary, or complex arguments. |
![]() ![]() | Zeta | The Riemann zeta function. |
Name | Description | |
---|---|---|
![]() ![]() | EulerGamma | The Euler-Mascheroni constant, approximately equal to 0.5772156649... |