![]() | SpecialFunctions Class |
Namespace: CenterSpace.NMath.Core
The SpecialFunctions type exposes the following members.
Name | Description | |
---|---|---|
![]() | SpecialFunctions | Initializes a new instance of the SpecialFunctions class |
Name | Description | |
---|---|---|
![]() ![]() | Airy |
The Airy and Bairy functions are the two solutions of the differential equation y''(x) = xy |
![]() ![]() | BesselI0 |
Modified Bessel function of the first kind, order zero.
|
![]() ![]() | BesselI1 |
Modified Bessel function of the first kind, first order.
|
![]() ![]() | BesselIv |
Modified Bessel function of the first kind, non-integer order. Zero is
returned if x < 0 |
![]() ![]() | BesselJ0 |
Bessel function of the first kind, order zero.
|
![]() ![]() | BesselJ1 |
Bessel function of the first kind, first order.
|
![]() ![]() | BesselJn |
Bessel function of the first kind, arbitrary integer order.
|
![]() ![]() | BesselJv |
Bessel function of first kind, non-integer order. Zero is
returned if x < 0 |
![]() ![]() | BesselK0 |
Modified Bessel function of the second kind, order zero.
|
![]() ![]() | BesselK1 |
Modified Bessel function of the second kind, order one.
|
![]() ![]() | BesselKn |
Modified Bessel function of the second kind, arbitrary integer order.
|
![]() ![]() | BesselY0 |
Bessel function of the second kind, order zero.
|
![]() ![]() | BesselY1 |
Bessel function of the second kind, order one.
|
![]() ![]() | BesselYn |
Bessel function of the second kind of integer order.
|
![]() ![]() | BesselYv |
Bessel function of the second kind, non-integer order..
|
![]() ![]() | Beta |
The beta function, beta(a, b) = Gamma(a) * Gamma(b) / Gamma(a+b). If
either a or b = 0, -1, -2, ... then Double.NaN is returned.
|
![]() ![]() | Binomial |
Binomial coefficient (n choose k); The number of ways of
picking k unordered outcomes from n possibilities.
|
![]() ![]() | BinomialLn |
Natural log of the binomial coefficient (n choose k);
the number of ways of picking k unordered outcomes from
n possibilities.
|
![]() ![]() | Cn |
Computes jacobian elliptic function Cn() for real, pure imaginary, or complex arguments.
|
![]() ![]() | Digamma |
The digamma or psi function, defined as Gamma'(z)/Gamma(z). A Double.NaN is return for all non-positive integers x = { 0, -1, -2, ... }.
|
![]() ![]() | Ei |
Exponential integral.
|
![]() ![]() | EllipJ |
The real valued Jacobi elliptic functions cn(), sn(), and dn().
|
![]() ![]() | EllipticE(Double) |
The complete elliptic integral, E(m), of the second kind.
|
![]() ![]() | EllipticE(Double, Double) |
The incomplete elliptic integral of the second kind.
|
![]() ![]() | EllipticF |
The incomplete elliptic integral of the first kind.
|
![]() ![]() | EllipticK |
The complete elliptic integral, K(m), of the first kind.
|
![]() ![]() | Factorial |
Factorial. The number of ways that n objects can be permuted.
|
![]() ![]() | FactorialLn |
Natural log factorial of n, ln( n! ) |
![]() ![]() | Gamma |
The gamma function. Returns Double.NaN |
![]() ![]() | GammaLn |
THe natural log of the gamma function. A Double.NaN is return for all x = { 0, -1, -2, ... }.
and for all other negative values the real part is returned.
|
![]() ![]() | GammaReciprocal |
The reciprocal of the gamma function. For arguments larger than +34.84425627277176174 the
reciprocal of Double.MaxValue is returned.
|
![]() ![]() | HarmonicNumber(Double) |
The harmonic number, Hn, which is a truncation of the harmonic series.
|
![]() ![]() | HarmonicNumber(Int32) |
The harmonic number, Hn, is a truncated sum of the harmonic series.
|
![]() ![]() | Hypergeometric1F1 |
The confluent hypergeometric series of the first kind.
|
![]() ![]() | Hypergeometric2F1 |
The Gauss or generalized hypergeometric function.
|
![]() ![]() | IncompleteBeta |
The incomplete beta function, with x defined over the domain of [0, 1].
|
![]() ![]() | IncompleteGamma |
The incomplete gamma integral. Both arguments must be positive.
|
![]() ![]() | IncompleteGammaComplement |
The complemented incomplete gamma integral. Both arguments must be positive.
|
![]() ![]() | NoncentralTDistributionCDF |
The CDF at x of the noncentral t-distribution
|
![]() ![]() | PolyLogarithm |
The polylogarithm, Li_n(x). Li_n(x) reduces to the Riemann zeta function for x = 1.
|
![]() ![]() | Sn |
Computes jacobian elliptic function Sn() for real, pure imaginary, or complex arguments.
|
![]() ![]() | Zeta |
The Riemann zeta function.
|
Name | Description | |
---|---|---|
![]() ![]() | EulerGamma |
The Euler-Mascheroni constant, approximately equal to 0.5772156649...
|