Click or drag to resize

ParameterizedMultivariableFunction Class

Abstract class representing multi-variable a parameterized function.
Inheritance Hierarchy
SystemObject
  CenterSpace.NMath.CoreParameterizedMultivariableFunction
    CenterSpace.NMath.CoreMultipleCurveFitFunction

Namespace:  CenterSpace.NMath.Core
Assembly:  NMath (in NMath.dll) Version: 7.3
Syntax
[SerializableAttribute]
public abstract class ParameterizedMultivariableFunction : ICloneable

The ParameterizedMultivariableFunction type exposes the following members.

Constructors
  NameDescription
Protected methodParameterizedMultivariableFunction
Behaviour of constructed object is undefined.
Public methodParameterizedMultivariableFunction(Int32, Int32, Int32)
Constructs a ParameterizedMultivariableFunction with the given number of parameters, x (domain) and y (range) dimensions.
Public methodParameterizedMultivariableFunction(Int32, Int32, Int32, Double)
Constructs a ParameterizedMultivariableFunction with the given number of parameters, x (domain), y (range) dimensions, and central difference delta.
Top
Properties
  NameDescription
Public propertyCentralDifferenceDelta
The delta used in the central difference algorithm for computing the Jacobian with respect to the parameters
Public propertyNumberOfParameters
Gets and sets the number of parameters.
Public propertyXdimension
Gets and sets the dimension of the function domain. Vector arguments to the function must have length equal to this value.
Public propertyYDimension
Gets and sets the dimension of the function range. Vectors returned by this function will have this length.
Top
Methods
Remarks
A parameterized multi-variable function defines a vector-valued function of a vector for each set of parameters. For example:
f0(x: a, b) = a*cos(b*x[0]) + b*sin(a*x[1]) f1(x: a, b) = a*cos(b*x[1]) + b*sin(a*x[0])
is a parameterized function mapping R2 into R2. For each set of values, a and b, it defines a vector-valued function of a vector x. For example if a = 1 and b = 2 then
f0(x) = cos(2*x[0]) + 2*sin(x[1]) f1(x) = cos(2*x[1]) + 2*sin(x[0]).
See Also