Click or drag to resize

NoncentralTDistribution Class

Class NoncentralTDistribution represents a generalized Student's t-distribution with the specified degrees of freedom and noncentrality parameter.
Inheritance Hierarchy

Namespace:  CenterSpace.NMath.Core
Assembly:  NMath (in NMath.dll) Version: 7.3
Syntax
[SerializableAttribute]
public class NoncentralTDistribution : ProbabilityDistribution

The NoncentralTDistribution type exposes the following members.

Constructors
  NameDescription
Public methodNoncentralTDistribution
Constructs a noncentral TDistribution instance with the given degrees of freedom and non-zero noncentrality.
Top
Properties
  NameDescription
Public propertyDegreesOfFreedom
Gets and sets the degrees of freedom for the distribution.
Public propertyDelta
Gets and Sets the noncentrality parameter for the distribution.
Public propertyMean
Gets the mean of the distribution.
Public propertyVariance
Gets the variance of the distribution.
Top
Methods
  NameDescription
Public methodCDF
Returns the cumulative density function evaluated at the given value.
(Overrides ProbabilityDistributionCDF(Double).)
Public methodClone
Creates a deep copy of this NoncentralTDistribution.
(Overrides ProbabilityDistributionClone.)
Public methodInverseCDF
Returns the inverse cumulative density function evaluated at the given value.
(Overrides ProbabilityDistributionInverseCDF(Double).)
Protected methodInverseCdfUsingBracket
Uses a bracketing method to evaluate the inverse of cumulative distribution functions.
(Inherited from ProbabilityDistribution.)
Protected methodInverseDiscreteCdfUsingBracket
Uses a bracketing method to evaluate the inverse of cumulative distribution functions for discrete distributions.
(Inherited from ProbabilityDistribution.)
Public methodPDF
Returns the probability density function evaluated at a given value.
(Overrides ProbabilityDistributionPDF(Double).)
Public methodToString
Returns a formatted string representation of this distribution.
(Overrides ProbabilityDistributionToString.)
Top
Remarks
As the noncentrality parameter approaches 0, the noncentral t-distribution approaches the central, Student's, t-distribution.
See Also