Marginal |
public class MarginalEffects<ParameterCalc> where ParameterCalc : new(), ILogisticRegressionCalc
The MarginalEffectsParameterCalc type exposes the following members.
Name | Description | |
---|---|---|
MarginalEffectsParameterCalc(LogisticRegressionParameterCalc) | Constructs a MarginalEffects object from the given logistic regression. It is assumed that all variables are continuous - e.g. not categorical or binary. | |
MarginalEffectsParameterCalc(LogisticRegressionParameterCalc, ListListInt32) | Constructs a MarginalEffects object from the given logistic regression which contains continuous and categorical variables. | |
MarginalEffectsParameterCalc(LogisticRegressionParameterCalc, ListInt32) | Constructs a MarginalEffects object from the given logistic regression which contains continuous and dichotomous variables. | |
MarginalEffectsParameterCalc(LogisticRegressionParameterCalc, ListListInt32, ListInt32) | Constructs a MarginalEffects object from the given logistic regression which contains continuous, dichotomous, and categorical variables. |
Name | Description | |
---|---|---|
CategoricalVarIndices | Gets the categorical parameter indices. The ith element of of the returned list contains the indices of the design variables for the ith categorical variable. CategoricalVarIndices[i][j] = the index of the jth design variable of the ith predictor. | |
Regression | Gets the logistic regression object. |
Name | Description | |
---|---|---|
AllEffects | Computes the marginal effect for each predictor at each observation of the logistic regression | |
AverageMarginalEffects | The marginal effect for a particular predictor is computed at an observation. To obtain the Average Marginal Effect (AME) for a given predictor we compute the marginal effect for each observation in the logistic regression model that self was constructed with. Then the AME for that parameter is the average of these values. | |
AverageMarginalEffects(DoubleVector) | Computes the Average Marginal Effects using the given logistic model parameters. | |
EffectsAtTheMean | Take vector of the means of the observation in the logistic regression and return the parameter marginal effects at this value. | |
MarginalEffectsAt | Compute the marginal effect of the model parameters at a particular observation. |