.NET Numerical Applications with NMath

CenterSpace Software
**Introduction**

CenterSpace Software’s **NMath™** numerical library provides object-oriented components for mathematical, engineering, scientific, and financial applications on the .NET platform. **NMath** contains vector classes, matrix classes, complex number classes, random number generators, and other high-performance functions for object-oriented numerics.

For most computations, **NMath** uses the Intel® Math Kernel Library (MKL), which contains highly-optimized, extensively-threaded versions of the C and FORTRAN public domain computing packages known as the BLAS (Basic Linear Algebra Subroutines) and LAPACK (Linear Algebra PACKage). This gives **NMath** classes performance levels comparable to C, and often results in performance an order of magnitude faster than non-platform-optimized implementations.

**NMath** provides a modern, easy to use, object-oriented interface, including a very rich set of matrix and vector manipulation semantics. Fully compliant with the Microsoft Common Language Specification (CLS), all **NMath** routines are callable from any .NET language, including C#, Visual Basic.NET, and F#.

**NOTE**—Code samples in this document are shown in C#. Complete NMath code examples in both C# and Visual Basic.NET are available on the CenterSpace website:

http://www.centerspace.net/examples/NMath/

**NMath Premium**

For additional acceleration, the **Premium Edition** of **NMath** leverages the power of NVIDIA’s CUDA™ GPU architecture for accelerated performance.

CUDA is a parallel computing platform and programming model developed by NVIDIA. It enables dramatic increases in computing performance by harnessing the power of the graphics processing unit (GPU). GPU computing is a standard feature in all NVIDIA’s 8-Series and later GPUs. The entire NVIDIA Tesla line supports CUDA. For a full list of supported products, see:


**NMath Premium** automatically detects the presence of a CUDA-enabled GPU at runtime (64-bit only) and seamlessly redirects appropriate computations to it. The
library can be configured to specify which problems should be solved by the GPU, and which by the CPU. If a GPU is not present at runtime, or on 32-bit systems, the computation automatically falls back to the CPU without error.

**NMath Premium**’s Adaptive Bridge™ technology provides:

- Support for multiple GPUs
- Per-thread control for binding threads to GPUs
- Automatic performance tuning of individual CPU–GPU routing to insure optimal hardware usage

With the exception of some optional GPU configuration settings, the API is identical between **NMath** and **NMath Premium**. For more information on using **NMath Premium**, including performance benchmarks, see CenterSpace whitepaper **NMath Premium: GPU-Accelerated Math Libraries for .NET**.

### NMath Features

The features of **NMath** include:

- Single- and double-precision complex number classes.
- Full-featured vector and matrix classes for four datatypes: single- and double-precision floating point numbers, and single- and double-precision complex numbers.
- Flexible indexing using slices and ranges.
- Overloaded arithmetic operators with their conventional meanings for those .NET languages that support them, and equivalent named methods (**Add()**, **Subtract()**, and so on) for those that do not.
- Full-featured structured sparse matrix classes, including triangular, symmetric, Hermitian, banded, tridiagonal, symmetric banded, and Hermitian banded.
- Functions for converting between general matrices and structured sparse matrix types.
- Functions for transposing structured sparse matrices, computing inner products, and calculating matrix norms.
- Classes for factoring structured sparse matrices, including LU factorization for banded and tridiagonal matrices, Bunch-Kaufman factorization for symmetric and Hermitian matrices, and Cholesky decomposition for symmetric and Hermitian positive definite matrices. Once constructed,
matrix factorizations can be used to solve linear systems and compute determinants, inverses, and condition numbers.

- General sparse vector and matrix classes, and matrix factorizations.
- Orthogonal decomposition classes for general matrices, including QR decomposition and singular value decomposition (SVD).
- Advanced least squares factorization classes for general matrices, including Cholesky, QR, and SVD.
- LU factorization for general matrices, as well as functions for solving linear systems, computing determinants, inverses, and condition numbers.
- Classes for solving symmetric, Hermitian, and nonsymmetric eigenvalue problems.
- Extension of standard mathematical functions, such as \( \cos() \), \( \sqrt{} \), and \( \exp() \), to work with vectors, matrices, and complex number classes.
- Random number generation from various probability distributions.
- Fast Fourier Transforms (FFTs), and linear convolution and correlation.
- Discrete Wavelet Transforms (DWTs).
- Classes for encapsulating functions of one variable, with support for numerical integration (Romberg and Gauss-Kronrod methods), differentiation (Ridders' method), and algebraic manipulation of functions.
- Polynomial encapsulation, interpolation, and exact differentiation and integration.
- Classes for minimizing univariate functions using golden section search and Brent’s method.
- Classes for minimizing multivariate functions using the downhill simplex method, Powell’s direction set method, the conjugate gradient method, and the variable metric (or quasi-Newton) method.
- Simulated annealing.
- Classes for linear programming (LP), nonlinear programming (NLP), and quadratic programming (QP) using the Microsoft Solver Foundation.
- Least squares polynomial fitting.
- Nonlinear least squares minimization, curve fitting, and surface fitting.
- Classes for finding roots of univariate functions using the secant method, Ridders’ method, and the Newton-Raphson method.
- Numerical methods for double integration of functions of two variables.
- Nonlinear least squares minimization using the Trust-Region method, a variant of the Levenberg-Marquardt method.
- Curve and surface fitting by nonlinear least squares.
- Classes for solving stiff and non-stiff first order initial value differential equations.
- Special functions, such as factorial, binomial, the gamma function and related functions, Bessel functions, elliptic integrals, and many more.
- Visualization using the Microsoft Chart Controls for .NET.
- Fully persistable data classes using standard .NET mechanisms.
- Integration with ADO.NET.

Namespaces

NMath types are organized into three namespaces:

- **CenterSpace.NMath.Core**
  
  Basic vector and matrix classes, complex number classes, and random number generators.

- **CenterSpace.NMath.Matrix**
  
  Structured sparse matrix classes and factorizations, general sparse matrix classes and factorizations, general matrix decompositions, least squares solutions, and solutions to eigenvalue problems.

- **CenterSpace.NMath.Analysis**
  
  Function minimization, root-finding, and linear programming.

General Vectors and Matrices

NMath employs the *data-view* design pattern by distinguishing between data, and the different ways mathematical objects such as vectors and matrices view the data. For example, a contiguous array of numbers in memory might be viewed by one object as the elements of a vector, while another object might view the same data as the elements of a matrix, laid out row by row. At any given point in time,
many different objects might share a given block of data. The data-view pattern has definite advantages for both storage efficiency and performance. Combined with slicing, the data-view pattern also offers a very rich set of matrix and vector manipulation semantics.

**General Vector and Matrix Classes**

The classes that encapsulate general matrices and vectors in NMath are named `<Type>Matrix` and `<Type>Vector`, where `<Type>` is `Float`, `Double`, `FloatComplex`, or `DoubleComplex`. For example, the `FloatComplexVector` class represents a vector of single-precision complex numbers.

The matrix and vector classes each contain a reference to the data block they are viewing, along with the parameter values necessary to define their view. For example, an instance of a vector class contains a reference to a block of data, the number of elements referenced, and a *stride*, or step increment, between elements of the block of data. Similarly, a matrix object contains a reference to a block of data, the number of rows and columns, the distance between successive row elements, and the distance between successive column elements.

All of this is transparent to you. The provided indexers perform the necessary indirection. For example, `v[i]` always returns the *i*th element of vector *v*’s view of the data, and `A[i,j]` always returns the element in the *i*th row and *j*th column of matrix *A*’s view of the data.

**Ranges and Slices**

The most common way of obtaining a different view of a specific block of data is by using **Slice** and **Range** indexing objects. These classes provide a way to specify a subset on non-negative integers with constant spacing. (For those of you familiar with MATLAB, this is essentially the colon operator.) An integer subset can then be used as an indexing object into matrices and vectors.

The difference between a **Slice** and a **Range** is only in how the integer subset is specified. For a **Slice**, a beginning integer is specified, along with the number of integers and a stride. For example, to create a slice specifying the integers `{ 2, 4, 6, 8, 10 }`, specify a start of 2, 5 total elements, and a stride of 2.

A **Range** defines an integer subset by specifying a first and last integer, inclusive, along with a stride. Thus, to create a range object defining the set of integers above, specify a starting point of 2, a stopping point of 10, and a stride of 2.
Here’s an example using **Slice** objects to create a new view of a vector’s data:

```csharp
// Create a vector of length 10 containing the integers 1-10:
var v = new DoubleVector(10, 1, 1);

// Construct a new vector, u, that views the first three elements
// of v
var first3 = new Slice(0, 3);
DoubleVector u = v[first3];
```

Notice that the **DoubleVector** indexer is overloaded to accept **Slice** objects, and return a new view of the indexed data.

**DoubleVector** `u` behaves exactly like a vector constructed with 3 elements whose values are 1, 2, 3. That is:

```csharp
u[0] == 1; // true
u[1] == 2; // true
u[2] == 3; // true
u[3]; // Index out of bounds exception!
```

The difference between `u` and a newly constructed vector becomes clear when a value in `u` is changed. This changes the corresponding value in `v`, since they both reference the same data.

```csharp
u[2] = 99;
```

```csharp
v[2] == 99; // true!
```

This feature can come in handy at times. Suppose, for instance, that you want to increment every element along the main diagonal of a matrix. Here is what the code would look like:

```csharp
var A = new DoubleMatrix(5, 8);
A.Diagonal()++;
```

Here the **Diagonal()** method on the matrix class uses slices beneath the covers to construct a vector that views the subset of the data that composes the main diagonal of the matrix.

If, after constructing a different view of an object’s data, you want your own private view of the data that you can modify without affecting any other objects, you can invoke the **DeepenThisCopy()** method:

```csharp
var A = new DoubleMatrix(8, 8);
var topLeft = new Range(0, 3);

// Construct a matrix that views the top left
// corner of A.
DoubleMatrix AtopLeft = A[ topLeft, topLeft ];
```
The data-view pattern combined with slicing offers a very rich set of matrix and vector manipulation semantics.

**Accessing the Underlying Data**

For applications that need to interface with native or legacy code, the NMath vector and matrix classes can be used to obtain a pointer to the underlying data. Each of these classes has a property called `DataBlock` that returns the `<Type>DataBlock` object being viewed. As mentioned above, each `<Type>DataBlock` class contains an array and an offset that allows you to extract a pointer to the beginning of the data. For example:

```csharp
var v = new DoubleVector( 12, 0, 1 );
var dataBlock = v.DataBlock;
unsafe
{
    double *ptr = &(dataBlock.Data[dataBlock.Offset]);

    // Do with *ptr something here
}
```

Exercise caution when using raw data pointers.

**Applying Functions**

NMath provides convenience methods for applying unary and binary functions to elements of a vector or matrix object. Each of these methods takes a function delegate. The `Apply()` method returns a new object whose contents are the result of applying the given function to each element of the matrix or vector. The `Transform()` method modifies a matrix or vector object by applying the given function to each of its elements. Thus, assuming `MyFunc` is a function that takes a `double` and returns a `double`:

```csharp
var v = new DoubleVector( 10, 0, -1 );

// Construct a delegate for MyFunc
var MyFuncDelegate = new Func<double, double>( MyFunc );

// Construct a new vector whose values are the result of applying
// MyFunc to the values in vector v. v remains unchanged.
DoubleVector w = v.Apply( MyFuncDelegate );
```
// Transform the contents of v.
v.Transform( MyFuncDelegate );

v == w; // true!

**NMath** provides delegates for many commonly used math functions in the **NMathFunctions** class.

## Matrix Decompositions

**NMath** includes decomposition classes for constructing and manipulating QR and singular value decompositions of the general matrix types in **NMath**. A **QR decomposition** is a representation of a matrix \( A \) of the form:

\[
AP = QR
\]

where \( P \) is a permutation matrix, \( Q \) is orthogonal, and \( R \) is upper trapezoidal (or upper triangular if \( A \) has more rows than columns and full rank). A **singular value decomposition** (SVD) is a representation of a matrix \( A \) of the form:

\[
A = USV^*
\]

where \( U \) and \( V \) are orthogonal, \( S \) is diagonal, and \( V^* \) denotes the transpose of a real matrix \( V \) or the conjugate transpose of a complex matrix \( V \). The entries along the diagonal of \( S \) are the **singular values**. The columns of \( U \) are the **left singular vectors**, and the columns of \( V \) are the **right singular vectors**.

Instances of the decomposition classes are constructed from general matrices of the appropriate datatype. For example, this code creates a **FloatQRDecomp** from a **FloatMatrix**:

```csharp
var A =
    new FloatMatrix( "5x3 [ 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 ]" );
var qr = new FloatQRDecomp( A );
```

**NMath** also provides decomposition **server** classes that construct instances of the decomposition classes, allowing you greater control over how decomposition is performed. For example, class **DoubleQRDecomp** computes the QR decomposition of a **DoubleMatrix**. By default, this decomposition class performs **pivoting**—that is, it may move columns in the input matrix to increase the robustness of the calculation. For control over how pivoting is performed, or to turn off pivoting altogether, the associated decomposition server class, **DoubleQRDecompServer**, may be used to create instances of **DoubleQRDecomp** with non-default decomposition parameters.

For example, this code creates a **DoubleQRDecomp** without pivoting:

```csharp
var qrs = new DoubleComplexQRDecompServer();
qrs.Pivoting = false;
```
int rows = 10, cols = 3;
var A = new DoubleComplexMatrix( rows, cols,
    new RandGenUniform( -1, 1 ) );
DoubleComplexQRDcomp qr = qrs.GetDecomp( A );

**Structured Sparse Matrix Classes**

**NMath** provides a wide variety of structured sparse matrix types. A *sparse matrix* is a matrix with only a small number of nonzero elements. A *structured sparse matrix* is one in which the zero elements (or elements contributing no new information) are distributed according to some pattern. By exploiting this pattern, structured sparse matrices can be manipulated more efficiently than general matrices, since all of the elements do not need to be stored.

**NMath** includes classes for representing:

- **Triangular Matrices**

  A *lower triangular* matrix is a square matrix with all elements above the main diagonal equal to zero. An *upper triangular* matrix is a square matrix with all elements below the main diagonal equal to zero. For efficiency, only the lower or upper triangle, respectively, is stored. Triangular matrices often arise at an intermediate stage in solving systems of equations and inverting matrices.

- **Symmetric and Hermitian Matrices**

  A *symmetric* matrix is a square matrix that satisfies $A = A^T$ where $A^T$ denotes the transpose of $A$. That is, $a_{ij} = a_{ji}$ for all $i,j$. In a *Hermitian* matrix, $a_{ij} = \overline{a_{ji}}$ for all $i,j$, where $\overline{z}$ denotes the complex conjugate. A symmetric matrix is thus a special case of a Hermitian matrix where all the elements are real. For efficiency, only the upper triangle is stored. Symmetric and Hermitian matrices are often used to represent quadratic forms.

- **Banded Matrices**

  A *banded* matrix is a matrix that has all its non-zero entries near the diagonal. Entries farther above the diagonal than the *upper bandwidth*, or farther below the diagonal than the *lower bandwidth*, are defined to be zero. For efficiency, zero elements outside the bandwidth are not stored.

- **Symmetric Banded and Hermitian Banded Matrices**

  A *symmetric banded* matrix is a symmetric matrix that has all its non-zero entries near the diagonal. Entries farther away from the diagonal than the
half bandwidth are defined to be zero. Hermitian banded matrices are a generalization of symmetric banded matrices for complex types.

- **Tridiagonal Matrices**

  A tridiagonal matrix is a matrix which has all its non-zero entries on the main diagonal, the superdiagonal, and the subdiagonal. For efficiency, zero elements outside the main diagonal, superdiagonal, and subdiagonal are not stored. Tridiagonal matrices often occur in one-dimensional problems and at an intermediate stage in the process of finding eigenvalues.

For example, this code creates a tridiagonal matrix of single precision complex numbers using the `FloatComplexTriDiagMatrix` class:

```csharp
int rows = 8; cols = 8;
var A = new FloatComplexTriDiagMatrix( rows, cols );

You can quickly set values on the main diagonal, superdiagonal, and subdiagonal of a tridiagonal matrix using the `Diagonal()` method:

```csharp
A.Diagonal( -1 ).Set( Slice.All, 1 );
A.Diagonal( 0 ).Set( Slice.All, 2 );
A.Diagonal( 1 ).Set( Slice.All, 3 );

Console.WriteLine( "A = {0}", A.ToString() );
```

// A = 8x8 [ (2,0) (3,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
// (1,0) (2,0) (3,0) (0,0) (0,0) (0,0) (0,0) (0,0)
// (0,0) (1,0) (2,0) (3,0) (0,0) (0,0) (0,0) (0,0)
// (0,0) (0,0) (1,0) (2,0) (3,0) (0,0) (0,0) (0,0)
// (0,0) (0,0) (0,0) (1,0) (2,0) (3,0) (0,0) (0,0)
// (0,0) (0,0) (0,0) (0,0) (1,0) (2,0) (3,0) (0,0)
// (0,0) (0,0) (0,0) (0,0) (0,0) (1,0) (2,0) (3,0)
// (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (1,0) (2,0)]
```

The indexer works just like it does for general matrices:

```csharp
FloatComplex c = A[7,0];
```

You can also set the values of elements on the main, super- and sub-diagonals of a tridiagonal matrix using the indexer:

```csharp
A[2,1] = new FloatComplex( 2, -1 );
```

However, attempting to set an element that would destroy the tridiagonal structure of the matrix raises a `NonModifiableElementException`:

```csharp
try
{
    A[7,0] = new FloatComplex( 1, 1 );
}
```
Structured Sparse Matrix Factorizations

**NMath** provides classes for computing and storing factorizations of structured sparse matrices, including:

- **LU factorization** for banded and tridiagonal matrices
- **Bunch-Kaufman factorization** for symmetric and Hermitian matrices
- **Cholesky factorization** for symmetric and Hermitian positive definite matrices

**NOTE**—NMath provides two factorization classes for symmetric and Hermitian types: one for indefinite matrices, and one for positive definite (PD) matrices.

Once a factorization is constructed, it can be reused to solve for different right-hand sides, and to compute inverses, determinants, and condition numbers. Similar static methods are also provided on class **MatrixFunctions**.

For instance, this code solves for one right-hand side:

```csharp
var genMat = new DoubleMatrix(
    "5x5 [ 1.0000 0.5000 0.2500 0.1250 0.0625
    0.5000 1.0000 0.5000 0.2500 0.1250
    0.2500 0.5000 1.0000 0.5000 0.2500
    0.1250 0.2500 0.5000 1.0000 0.5000
    0.0625 0.1250 0.2500 0.5000 1.0000 ] ");
var A = new DoubleSymmetricMatrix( genMat );
var F = new DoubleSymPDFact( A );
var v = new DoubleVector( A.Order, new RandGenUniform(-1,1) );
DoubleVector x = F.Solve( v );
```

The returned vector $x$ is the solution to the linear system $Ax = v$. To do the same thing without explicitly constructing a factorization object, you could do this:

```csharp
DoubleVector x = MatrixFunctions.Solve( A, v, true );
```

The optional third, boolean parameter indicates that $A$ is positive definite.

Similarly, you can use the **Solve()** method to solve for multiple right-hand sides. This code solves for 10 right-hand sides:

```csharp
int rows = 8, cols = 8;
var data =
    new DoubleComplexVector( cols*3, new RandGenUniform(-1, 1) );
```
```csharp
var A = new DoubleComplexTriDiagMatrix( data, rows, cols );
var F = new DoubleComplexTriDiagFact( A );

var B =
    new DoubleComplexMatrix( A.Rows, 10, new RandGenUniform(-1,1) );
DoubleComplexMatrix X = F.Solve( B );

The returned matrix \( X \) is the solution to the linear system \( AX = B \). That is, the right-hand sides are the columns of \( B \), and the solutions are the columns of \( X \). Matrix \( B \) must have the same number of rows as the factored matrix \( A \).

You can also use a factorization to compute inverses using the `Inverse()` method, and determinants using the `Determinant()` method. For example:

```csharp
int rows = 8, cols = 8;
var Lehmer = new FloatComplexMatrix( rows, cols );
for ( int i = 0; i < rows; ++i )
{
    for ( int j = 0; j < cols; ++j )
    {
        if ( j >= i )
        {
            Lehmer[i,j] = (float)(i+1)/(float)(j+1);
        }
    }
}
var A = new FloatHermitianMatrix( Lehmer );

var F = new FloatHermitianPDFact( A );
FloatHermitianMatrix AInv = F.Inverse();
FloatComplex det = F.Determinant();
```

A `ConditionNumber()` method computes an estimate of the condition number in the one-norm.

**General Sparse Vectors and Matrices**

**NMath** provides classes for storing *general* sparse vector and matrix data. By storing only the non-zero values, the storage savings are significant. Unlike the *structured* sparse matrices described above, where the zero elements are distributed according to some pattern, general sparse matrices make no assumptions about the sparsity structure of the matrix. General sparse matrix data is stored in compressed row storage format (CSR).
For example, this code constructs a `DoubleCsrSparseMatrix` from an `IDictionary` of values, where row-column pairs are the keys and the non-zero entries are the values:

```csharp
var values = new Dictionary<IntPair, double>();
values.Add( new IntPair( 0, 0 ), 1 );
values.Add( new IntPair( 0, 2 ), 2 );
values.Add( new IntPair( 1, 2 ), 3 );
values.Add( new IntPair( 2, 1 ), 4 );

int cols = 3;
var sA = new DoubleCsrSparseMatrix( values, cols );
```

`NMath` also provides classes for computing and storing factorizations of general sparse matrices. Instances of the factorization classes calculate solutions to the equation $Ax = B$ where $A$ is a sparse matrix and $B$ is a single vector, or multiple vectors. Once a factorization is constructed, it can be reused to solve for different right-hand sides. This code creates a symmetric sparse matrix from the given data, factors the matrix, then solves for one right-hand side:

```csharp
var sA = new DoubleSymCsrSparseMatrix( sparseData );
var fact = new DoubleSparseSymFact( sA );
if ( fact.ErrorStatus == DoubleSparseSymFact.Error.NoError )
{
    var b = new DoubleVector( 8, 1 );
    DoubleVector x = fact.Solve( b );
}
```

### Eigenvalue Problems

`NMath` includes classes for solving symmetric, Hermitian, and nonsymmetric eigenvalue problems. For example, class `DoubleSymEigDecomp` computes the eigenvalues and eigenvectors of a `DoubleSymmetricMatrix`:

```csharp
var decomp = new DoubleSymEigDecomp( A );
Console.WriteLine( "Eigenvalues = " + decomp.EigenValues );
Console.WriteLine( "Left eigenvectors = " + decomp.LeftEigenVectors );
Console.WriteLine( "Right eigenvectors = " + decomp.RightEigenVectors );
```

By default, eigenvalue classes compute both eigenvalues and eigenvectors.
**NMath** also provides eigenvalue *server* classes that construct instances of the eigenvalue classes, allowing you greater control over how the eigenvalue decomposition is performed. Server classes can be configured to compute eigenvalues only, or both eigenvalues and eigenvectors. In addition, the server can be configured to compute only the eigenvalues in a given range.

```csharp
var eigServer = new FloatEigDecompServer();
eigServer.ComputeLeftVectors = false;
eigServer.ComputeRightVectors = false;
server.ComputeEigenValueRange( 0, 3 );

FloatEigDecomp decomp = eigServer.Factor( A );
```

A tolerance for the convergence of the algorithm may also be specified.

---

**Random Number Generators**

**NMath** provides random number generators that generate random deviates from a variety probability distributions, including the beta, binomial, exponential, gamma, geometric, log-normal, normal, Pareto, Poisson, triangular, uniform, and Weibull distributions.

All **NMath** generators inherit from the abstract base class **RandomNumberGenerator**, providing a common interface. All **NMath** generators provide a `Next()` method that returns a random deviate.

For instance, this code prints out 100 random deviates from a normal distribution with mean of -12.9 and variance of 2.066:

```csharp
double mean = -12.9;
double variance = 2.066;
var gen = new RandGenNormal( mean, variance );

for (int i=0; i<100, i++)
{
    Console.WriteLine( gen.Next() );
}
```

As a convenience, **NMath** vector and matrix classes provide constructor overloads that initialize all elements with random values. For example:

```csharp
var gen = new RandGenUniform( 0, 100 );
var v = new DoubleVector( 10, gen );
var A = new DoubleComplexMatrix( 25, 25, gen );
```

All **NMath** random number generators, regardless of the distribution, require an underlying uniform random number generator that returns random deviates in
the range zero to one. Each generator first generates a random uniform deviate in the range zero to one, then from this deviate derives a random number from the appropriate probability distribution.

By default, all generators use the NMath class RandGenMTwist as the underlying uniform generator. RandGenMTwist implements the Mersenne Twister algorithm, developed by Makoto Matsumoto and Takuji Nishimura in 1996-1997. This algorithm is faster and more efficient, and has a far longer period and far higher order of equidistribution, than other existing generators.

### Fourier Transforms, Convolution and Correlation

NMath provides classes for performing Fast Fourier Transforms (FFTs) on real and complex 1D and 2D data, and for performing linear convolution and correlation on real and complex 1D data.

For example, the following code creates some random signal data, then performs an FFT in place:

```csharp
int dataLength = 1024;
var data = new DoubleVector( dataLength, new RandGenUniform() );
var fft = new DoubleForward1DFFT( dataLength );

this creates a complex conjugate symmetric packed result. You can ask the FFT instance for the correct reader, to unpacked the result:

```csharp
DoubleSymmetricSignalReader reader = fft.GetSignalReader( data );
```

This code performs a convolution on the signal data:

```csharp
var kernel = new DoubleVector( ".2 .2 .2 .2 .2" );
var conv = new Double1DConvolution( kernel, dataLength );
DoubleVector result = conv.Convolve( data );
```

### Wavelets

NMath provides classes for performing discrete wavelet transforms (DWTs) using most common wavelet families, including Harr, Daubechies, Symlet, Best Localized, and Coiflet. Custom wavelets can also be created. DWT classes support both single step forward and reverse DWTs, and multilevel signal deconstruction
and reconstruction. Details thresholding at any level and threshold calculations are also supported.

For instance, this code constructs a Daubechies wavelet of length 4, builds a DWT object using the wavelet and some signal data, decomposes the signal to level 5, thresholds all detail levels, and rebuilds the filtered signal:

```csharp
var wavelet = new DoubleWavelet( Wavelet.Wavelets.D4 );
var dwt = new DoubleDWT( data, wavelet );
dwt.Decompose( 5 );

double lambdaU = dwt.ComputeThreshold(
    DoubleDWT.ThresholdMethod.Universal, 1 );
dwt.ThresholdAllLevels( DoubleDWT.ThresholdPolicy.Soft,
    new double[] { lambdaU, lambdaU, lambdaU, lambdaU, lambdaU } );
double[] reconstructedData = dwt.Reconstruct();
```

**Signal Processing**

**NMath** provides classes for processing 1D signal data, including filtering using **MovingWindowFilter** or **SavitzkyGolayFilter**, and peak finding using **PeakFinderSavitzkyGolay**.

For example, **MovingWindowFilter** replaces data points \( f(i) \) with a linear combination, \( g(i) \), of the data points immediately to the left and right of \( f(i) \), based on a given set of coefficients, \( c \), to use in the linear combination. Static class methods are provided for generating coefficients to implement a moving average filter and a Savitzky-Golay smoothing filter.

The following code constructs a noisy cosine signal, and then filters the data using a Savitzky-Golay filter that replaces each input data point with the value of a fourth degree polynomial fit through the input value and it's surrounding points:

```csharp
var rng = new RandGenNormal();
var noisySignal = new DoubleVector( length );
for ( int i = 0; i < length; i++ )
{
}

int numberLeft = 3;
int numberRight = 3;
int degree = 4;
filterCoefficients =
    MovingWindowFilter.SavitzkyGolayCoefficients( numberLeft, numberRight, degree );
```
Solutions of Linear Systems

**NMath** provides classes for computing and storing the LU factorization for a matrix, as well as several static functions for solving linear systems, computing determinants, inverses, and condition numbers. Once an LU factorization is constructed, it can be reused to solve for different right hand sides, to compute inverses, to compute condition numbers, and so on.

```csharp
var A = new DoubleComplexMatrix( 5, 5, 1, 1 );
var lu = new DoubleComplexLUFact( A );

// Solve for one right-hand side.
var b = new DoubleVector( 5 );
DoubleVector x = lu.Solve( b );
double conditionNumber = lu.ConditionNumber();

// Solve for several right-hand sides.
var B = new DoubleComplexMatrix( 5, 5, 5, 2 );
DoubleMatrix X;
if ( lu.IsGood )
{
    X = lu.Solve( B );
}

// One shot solution.
try
{
    X = NMathFunctions.Solve( A, B );
}
catch ( NMathException )
{
    // Can be one of SingularMatrixException,
    // MatrixNotSquareException, or MismatchedSizeException
}
```
Least Squares Solutions

NMath includes least squares classes for solving the overdetermined linear system:

\[ Ax = y \]

In a linear model, a quantity \( y \) depends on one or more independent variables \( a_1, a_2, \ldots, a_n \) such that \( y = x_0 + x_1a_1 + \ldots + x_na_n \). A common goal of a least squares problem is to solve for the best values of \( x_0, x_1, \ldots, x_n \). The least squares solution is the value of \( x \) that minimizes the residual vector \( ||Ax - y|| \).

Classes are provided that compute solutions using various methods: Cholesky factorization, QR decomposition, and singular value decomposition. The interface is virtually identical for all least squares classes.

- **Least Squares Using Cholesky Factorization**
  The Cholesky least squares classes solve least square problems by using the Cholesky factorization to solve the normal equations. The normal equations for the least squares problem \( Ax = y \) are:

  \[ A^*Ax = A^*y \]

  where \( A^* \) denotes the transpose of a real matrix \( A \) or the conjugate transpose of a complex matrix \( A \). If \( A \) has full rank, then \( A^*A \) is symmetric/Hermitian positive definite—the converse is also true—and the Cholesky factorization may be used to solve the normal equations. This method will fail if the matrix \( A \) is rank deficient.

  Finding least squares solutions using the normal equations is often the best method when speed is the only consideration.

- **Least Squares Using QR Decomposition**
  The QR decomposition least squares classes solve least squares problems by using a QR decomposition to find the minimal norm solution to the linear system \( Ax = y \). That is, they find the vector \( x \) that minimizes the 2-norm of the residual vector \( Ax - y \). Matrix \( A \) must have more rows than columns, and be of full rank.

  Finding least squares solutions via QR decomposition is the “standard” method for least squares problems, and is recommended for general use.

- **Least Squares Using SVD**
  If the matrix \( A \) is close to rank-deficient, the QR decomposition method described above has less than ideal stability properties. In such cases, a method based on singular value decomposition is a better choice.
Instances of the least squares classes are constructed from general matrices of the appropriate datatype. For example, this code creates a `FloatCholeskyLeastSq` from a `FloatMatrix`:

```csharp
var A = new FloatMatrix( "4x2[ 1 0 1 0 0 0 ]" );
var lsq = new FloatCholeskyLeastSq( A );
```

Once a least squares object has been constructed from a matrix, it may be used to solve least squares problems. All least squares classes provide a `Solve()` method that accepts a vector `y`, and computes the solution to the least squares problem `Ax = y`. For example:

```csharp
int rows = 6, cols = 3;
var rng = new RandGenUniform( -2, 2 );

DoubleMatrix A = GenerateData( rows, cols, rng );
var lsq = new DoubleCholeskyLeastSq( A );

var y = new DoubleVector( rows, rng );
if ( lsq.IsSuccess )
{
    DoubleVector x = lsq.Solve( y );
}
```

Method `ResidualVector()` returns the residual vector `Ax - y`; `ResidualNormSqr()` computes the 2-norm squared of the residual vector. Finally, an existing least squares object can factor other matrices using the `Factor()` method.

### Encapsulating Univariate Functions

In **NMath**, class `OneVariableFunction` encapsulates an arbitrary function, and works with other numerical classes to approximate integrals and derivatives. For example, suppose you wish to encapsulate this function:

```csharp
public double MyFunction( double x )
{
    return Math.Sin( x ) + Math.Pow( x, 3 ) / Math.PI;
}
```

This code creates a delegate for the `MyFunction()` method, then constructs a `OneVariableFunction` encapsulating the delegate:

```csharp
var d = new Func<double, double>( MyFunction );
var f = new OneVariableFunction( d );
```
The `Evaluate()` method on `OneVariableFunction` evaluates a function at a given x-value or vector of x-values. Thus, if $f$ is a `OneVariableFunction`, this code evaluates $f$ at 100 points between 0 and 1:

```csharp
var x = new DoubleVector( 100, 0, 1.0/100 );
DoubleVector y = f.Evaluate( x );
```

NMath provides overloaded arithmetic operators for functions with their conventional meanings for those .NET languages that support them, and equivalent named methods for those that do not. For example, if $f$ and $g$ are `OneVariableFunction` objects:

```csharp
OneVariableFunction sum = f + g;
double y = sum.Evaluate( Math.PI );
```

## Numerical Integration and Differentiation

Numerical integration, also called quadrature, computes an approximation of the integral of a function over some interval. NMath provides two of the most widely used, general purpose families of methods: Romberg integration, and Gauss-Kronrod integration.

The `Integrate()` method on `OneVariableFunction` computes the integral of a function over a given interval. For example, if $f$ is `OneVariableFunction`, this code integrates $f$ over the interval -1 to 1:

```csharp
double integral = f.Integrate( -1, 1 );
```

By default, `OneVariableFunction` objects use `RombergIntegrator` objects to compute integrals, but this may be changed using the `Integrator` property. For instance:

```csharp
f.Integrator = new GaussKronrodIntegrator();
double integral = f.Integrate( 0, Math.PI );
```

The automatic `GaussKronrodIntegrator` class uses Gauss-Kronrod rules with increasing number of points. Approximation ends when the estimated error is less than a specified tolerance, or when the maximum number of points is reached.

Similarly, the `Differentiate()` method on `OneVariableFunction` computes the derivative of a function at a given x-value. For example, if $f$ is `OneVariableFunction`, this code estimates the derivative at 0:

```csharp
double d = f.Differentiate( 0 );
```

`OneVariableFunction` objects use `RiddersDifferentiator` objects, which compute the derivative of a given function by Ridders’ method of polynomial extrapolation, and implements. Extrapolations of higher and higher order are produced. Iteration
Encapsulating Univariate Functions

stops when either the estimated error is less than a specified error tolerance, the error estimate is significantly worse than the previous order, or the maximum order is reached.

Minimizing Univariate Functions

**NMath** includes classes for minimizing univariate functions using golden section search and Brent’s method.

Minima of univariate functions must be *bracketed* before they can be isolated. A bracket is a triplet of points, \( x_{\text{lower}} < x_{\text{interior}} < x_{\text{upper}} \) such that \( f(x_{\text{interior}}) < f(x_{\text{lower}}) \) and \( f(x_{\text{interior}}) < f(x_{\text{upper}}) \). These conditions ensure that there is some local minimum in the interval \((x_{\text{lower}}, x_{\text{upper}})\). If you know in advance that a local minimum falls within a given interval, you can simply call the **NMath** minimization routines using that interval. Before beginning minimization, the routine will search for an interior point that satisfies the bracketing condition. Otherwise, construct a **Bracket** object.

For example, the function:

\[
y = (x - 1)^4
\]

has a minimum at 1.0. To compute the minimum, first encapsulate the function:

```csharp
public static double MyFunction(double x)
{
    return Math.Pow(x - 1, 4);
}
```

```csharp
var f = new OneVariableFunction(
    new NMathFunctions.DoubleUnaryFunction( MyFunction ) );
```

This code constructs a **Bracket** starting from \((0,10)\), then finds a minimum of \(f\) using *Brent’s Method*:

```csharp
double tol = 1e-9;
int maxIter = 25;
var minimizer = new BrentMinimizer(tol, maxIter);
var bracket = new Bracket(f, 0, 10);
double min = minimizer.Minimize(bracket);
```

**NMath** also includes class **DBrentMinimizer** which minimizes a univariate function using Brent’s method in combination with evaluations of the first derivative. The sign of the derivative at the central point of the bracketing triplet is used to decide which region should be chosen for the next test point. For instance, the function:

\[
y = (x - 5)^2
\]
has a minimum at 5.0.

To compute the minimum, first encapsulate the function and its derivative:

```csharp
public static double MyFunction( double x )
{
    return ( ( x - 5 ) * ( x - 5 ) );
}

public static double MyFunctionPrime( double x )
{
    return ( 2 * x ) - 10;
}

var f = new OneVariableFunction(
    new NMathFunctions.DoubleUnaryFunction( MyFunction ) );
var df = new OneVariableFunction(
    new NMathFunctions.DoubleUnaryFunction( MyFunctionPrime ) );

This code constructs a Bracket starting from (1,2), then computes the minimum:

```csharp
var minimizer = new DBrentMinimizer();
var bracket = new Bracket( f, 1, 2 );
double min = minimizer.Minimize( bracket, df );
```

### Root Finding

**NMath** also provides classes that find roots of univariate functions using the secant method, Ridders’ method, and the Newton-Raphson method. For instance, this polynomial has a root at 1:

\[
 f(x) = -2x^3 + 9x^2 - 5x - 2
\]

This code finds the root in the interval (0, 3):

```csharp
var p =
    new Polynomial( new DoubleVector( -2.0, -5.0, 9.0, -2.0 ) );
var finder = new NewtonRaphsonRootFinder();
double lower = 0;
double upper = 3;
double root = finder.Find( p, p.Derivative(), lower, upper );
```

### Encapsulating Polynomials

Class **Polynomial** extends **OneVariableFunction**. Rather than encapsulating an arbitrary function delegate, **Polynomial** represents a polynomial by its coefficients,
arranged in ascending order. A **Polynomial** instance can be constructed in two ways. If you know the exact form of the polynomial, simply pass in the vector of coefficients:

```csharp
var coef = new DoubleVector( "1 0 2" ); // 2x^2 + 1
var p = new Polynomial( coef );
```

Alternatively, you can interpolate a polynomial through a set of points. If the number of points is \( n \), then the constructed polynomial will have degree \( n - 1 \) and pass through the interpolation points.

Class **Polynomial** inherits the `Integrate()` method from **OneVariableFunction**, which computes the integral of the current function over a given interval. **Polynomial** also extends the interface to include an `AntiDerivative()` method that returns a new polynomial encapsulating the antiderivative (indefinite integral) of the current polynomial. For example:

```csharp
var p = new Polynomial( new DoubleVector( "5 3 0 2" ) );
Polynomial i = p.AntiDerivative();
```

The constant of integration is assumed to be zero.

Each **Polynomial** object has a **PolynomialIntegrator** associated with it. Because the antiderivative of a polynomial can be easily constructed, **PolynomialIntegrator** simply constructs the antiderivative and evaluates it at the lower and upper bounds. This gives the exact integral.

Class **Polynomial** inherits both `Differentiate()` and `Derivative()` methods from **OneVariableFunction**. `Differentiate()` returns the derivative of the current function at a given \( x \)-value. `Derivative()` is overridden to return a new polynomial that is the first derivative of the current polynomial. Thus:

```csharp
var coeff = new DoubleVector( "1 -2 3" );
var p = new Polynomial( coeff );
Polynomial der = p.Differentiate(); // der.Coeff = "-2 6"
```

This gives the exact derivative.

## Fitting Polynomials

**NMath** provides class **PolynomialLeastSquares**, which performs a least squares fit of a **Polynomial** to a set of points. For example, if \( x \) and \( y \) are paired vectors of known \( x \)- and \( y \)-values, this code fits a cubic:

```csharp
int degree = 3;
var fit = new PolynomialLeastSquares( degree, x, y );
```
Encapsulating Multivariate Functions

In NMath, class `MultiVariableFunction` encapsulates an arbitrary function of one or more variables, and works with other NMath classes to approximate integrals and minima. A `MultiVariableFunction` is constructed from a `Func<DoubleVector, double>`, a delegate that takes a single `DoubleVector` parameter and returns a `double`. For example, suppose you wish to encapsulate this function:

```csharp
class MyFunction
{
    public double MyFunction(DoubleVector v)
    {
        return (NMathFunctions.Sum(v * v));
    }
}
```

First, create a delegate for the `MyFunction()` method:

```csharp
var d = new Func<DoubleVector, double>(MyFunction);
```

Then construct a `MultiVariableFunction` encapsulating the delegate:

```csharp
var f = new MultiVariableFunction(d);
```

Integrating Multivariable Functions

NMath provides class `TwoVariableIntegrator`, which computes the integral of a function of two variables. Class `TwoVariableIntegrator` computes the double integral by breaking up the problem into repeated one-dimensional integrals. For example, to compute the double integral:

\[
\int_0^1 \int_0^1 \frac{dx \, dy}{1 - x^2 y^2}
\]

First write the function:

```csharp
private double F(DoubleVector v)
{
    return 1.0 / (1.0 - (v[0] * v[0] * v[1] * v[1]));
}
```

Then encapsulate the function as a `MultiVariableFunction`:

```csharp
var function = new MultiVariableFunction(
    new NMathFunctions.DoubleVectorDoubleFunction(F));
```

Finally, compute the integral:
var integrator = new TwoVariableIntegrator();
double xLower = 0;
double xUpper = 1;
double yLower = 0;
double yUpper = 1;
double integral =
  integrator.Integrate( function, xLower, xUpper, yLower, yUpper );

Minimizing Multivariate Functions

NMath provides classes for minimizing multivariate functions using the downhill simplex method, Powell’s direction set method, the conjugate gradient method, and the variable metric (or quasi-Newton) method.

For instance, if $f$ is an encapsulated multivariate function of three variables, this code minimizes the function using the downhill simplex method, starting at the origin:

```csharp
var minimizer = new DownhillSimplexMinimizer();
var start = new DoubleVector( 0.0, 0.0, 0.0 );
DoubleVector min = minimizer.Minimize( f, start );
```

Similarly, given the following function and partial derivatives:

```csharp
protected static double MyFunction( DoubleVector v )
{
  return ( ( v[0] - 5.0 ) * ( v[0] - 5.0 ) ) +
    ( ( v[1] + 3.0 ) * ( v[1] + 3.0 ) );
}

protected static double MyFunctionDx( DoubleVector v )
{
  return ( 2 * v[0] ) - 10;
}

protected static double MyFunctionDy( DoubleVector v )
{
  return ( 2 * v[1] ) + 6;
}
```

This code computes the minimum using a ConjugateGradientMinimizer, starting at the origin:

```csharp
var function = new MultiVariableFunction(
  new NMathFunctions.DoubleVectorDoubleFunction( MyFunction ) );

var partialx = new MultiVariableFunction(
  new NMathFunctions.DoubleVectorDoubleFunction( MyFunctionDx ) );
```
var partialy = new MultiVariableFunction(
    new NMathFunctions.DoubleVectorDoubleFunction( MyFunctionDy ) );
var df = new MultiVariableFunction[] { partialx, partialy }

var minimizer = new ConjugateGradientMinimizer();
var start = new DoubleVector( 2, 0 );
DoubleVector min = minimizer.Minimize( f, df, start );

Simulated Annealing

In NMath, class AnnealingMinimizer minimizes a multivariable function using the simulated annealing method. Simulated annealing is based on an analogy from materials science. To produce a solid in a low energy state, such as a perfect crystal, a material is often first heated to a high temperature, then gradually cooled.

In the computational analogy of this method, a function is iteratively minimized with an added random temperature term. The temperature is gradually decreased according to an annealing schedule, as more optimizations are applied, increasing the likelihood of avoiding entrapment in local minima, and of finding the global minimum of the function.

For example, the annealing schedule shown in Table 1 has four steps.

**Table 1 – A sample annealing schedule**

<table>
<thead>
<tr>
<th>Step</th>
<th>Temperature</th>
<th>Iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>75</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

In this case, the temperature decays linearly from 100 to 0, and the same number of iterations are performed at each step. Class *LinearAnnealingSchedule* encapsulates the linear decay of a starting temperature to zero. Each step has a specified number of iterations. For example, this code creates the annealing schedule shown in Table 1:

```csharp
int steps = 4;
int iterationsPerStep = 20
double startTemp = 100.0;

var schedule = new LinearAnnealingSchedule( steps, iterationsPerStep, startTemp );
```
NOTE—For more control over the temperature decay, you can use class CustomAnnealingSchedule.

Instances of **AnnealingMinimizer** are constructed from an annealing schedule. For instance:

```csharp
var schedule = new LinearAnnealingSchedule( 5, 25, 100.0 );
var minimizer = new AnnealingMinimizer( schedule );

Once constructed, an **AnnealingMinimizer** provides a `Minimize()` method that takes a **MultiVariableFunction** to minimize, and a starting point. For instance, if \( f \) is an encapsulated multivariable function of five variables, this code minimizes the function using the downhill simplex method, starting at \((0.2, 0.2, -0.2, 0.0, 0.0)\):

```csharp
var minimizer = new AnnealingMinimizer( schedule );
var start = new DoubleVector( 0.2, 0.2, -0.2, 0.0, 0.0 );
DoubleVector min = minimizer.Minimize( f, start );
```

Class **AnnealingMinimizer** can also be configured to keep a history of the annealing process. When history is turned on, the results of each step are recorded in an **AnnealingHistory** object. This data may be useful when adjusting the schedule for optimal performance. For example, this code prints out the complete history after a minimization:

```csharp
var minimizer = new AnnealingMinimizer( schedule );
minimizer.KeepHistory = true;
DoubleVector min = minimizer.Minimize( f, startingPoint );
AnnealingHistory history = minimizer.AnnealingHistory;
Console.WriteLine( history );
```

---

**Linear, Nonlinear, and Quadratic Programming**

**NMath** provides classes for linear programming (LP), non-linear programming (NLP), and quadratic programming (QP) using the Microsoft Solver Foundation.

For example, class **InteriorPointQPSolver** solves QP problems using an interior point algorithm.

```csharp
var solver = new InteriorPointQPSolver();

Parameters are specified using an instance of **InteriorPointQPSolverParams**.

```csharp
var solverParams = new InteriorPointQPSolverParams
{
    KktForm = InteriorPointQPSolverParams.KktFormOption.Blended,
    Tolerance = 1e-6,
```
MaxDenseColumnRatio = 0.9,
PresolveLevel =
    InteriorPointQPSolverParams.PresolveLevelOption.Full,
SymbolicOrdering = InteriorPointQPSolverParams.SymbolicOrderingOption.ApproximateMinDegree
);

This code performs the actual solve and prints out the results:

solver.Solve( problem, solverParams );

Console.WriteLine( "Solver Parameters:" );
Console.WriteLine( solverParams.ToString() );
Console.WriteLine( "\nResult = " + solver.Result );
Console.WriteLine( "Optimal x = " + solver.OptimalX );
Console.WriteLine( "Optimal Function value = " +
    solver.OptimalObjectiveFunctionValue );

Console.WriteLine( "iterations = " + solver.IterationCount );

### Nonlinear Least Squares

**NMath** provides classes for solving nonlinear least squares problems:

- **TrustRegionMinimizer** solves both constrained and unconstrained nonlinear least squares problems using the Trust Region method.

- **LevenbergMarquardtMinimizer** solves nonlinear least squares problems using the Levenberg-Marquardt method.

- **OneVariableFunctionFitter** fits generalized one variable functions to data, by finding a minimum in the curve parameter space in the sum of the squared residuals with respect to a set of data points.

- **MultiVariableFunctionFitter** fits generalized multivariable functions to data, by finding a minimum in the surface parameter space in the sum of the squared residuals with respect to a set of data points.

For example, this code fits a predefined four parameter logistic function (4PL) to a set of points:

```csharp
NMathFunctions.GeneralizedDoubleUnaryFunction f =
    AnalysisFunctions.FourParameterLogistic;

var fitter = new OneVariableFunctionFitter( f );

var x = new DoubleVector( 0.00, 0.00, 0.00, 0.00, 0.00,
    0.00, 0.94, 0.94, 0.94, 1.88,
    ... );
```
1.88, 1.88, 3.75, 3.75, 3.75, 7.50, 7.50, 7.50, 15.00, 15.00, 15.00, 30.00, 30.00, 30.00);

var y = new DoubleVector( 7.58, 8.00, 8.32, 7.25, 7.37, 7.96, 8.35, 6.91, 7.75, 6.87, 6.45, 5.92, 1.92, 2.88, 4.23, 1.18, 0.85, 1.05, 0.68, 0.52, 0.82, 0.25, 0.22, 0.44 );

var start = new DoubleVector( "0.1 0.1 0.1 0.1" );

DoubleVector solution = fitter.Fit( x, y, start );

A selection of common generalized functions is provided as a convenience. Of course, you can also define your own functions to fit.

**Differential Equations**

**NMath** provides classes for solving stiff and non-stiff first order initial value differential equations. An *ordinary differential equation* (ODE) contains one or more derivatives of a dependent variable $y$ with respect to a single independent variable. A *first-order* ODE contains only the first derivative of $y$. Since there are generally many functions that satisfy an ODE, an *initial value* is necessary to constrain the solution—that is, $y$ is equal to $y_0$ at a given initial $x_0$.

Class **FirstOrderInitialValueProblem** encapsulates a first order initial value differential equation.

```csharp
Func<double, double, double> f =
    delegate( double x, double y )
    {
        return x * x;
    };

double x0 = 0.0;
double y0 = 1.0;

var prob = new FirstOrderInitialValueProblem( f, x0, y0 );
```

For example, class **RungeKuttaSolver** solves first order initial value differential equations by the Runge-Kutta method. Instances of **RungeKuttaSolver** are constructed from the number of tabulated points and a nonzero value *delta*. From the number of points and the delta, the set $\{x_i\}$ is determined as $x_i = x_0 + i\Delta$ for $i=0,1,..., n$. 

int n = 2000;
double delta = .001;
var solver = new RungeKuttaSolver( n, delta );
TabulatedFunction f = null;
solver.Solve( prob, ref f );

Special Functions

**NMath** provides class **SpecialFunctions** for functions such factorial, binomial, the gamma function and related functions, Bessel functions, elliptic integrals, and many more. These functions cover many of the most commonly needed functions in physics and engineering. For example:

```csharp
    // Compute the Jacobi function Sn() with a complex argument.
    var cmplx = new DoubleComplex( 0.1, 3.3 )
    DoubleComplex sn = SpecialFunctions.Sn( cmplx, .3 );

    // Compute the elliptic integral, K(m)
    double ei = SpecialFunctions.EllipticK( 0.432 );
```

Visualization

**NMath** can be easily combined with the free Microsoft Chart Controls for .NET to create a complete data analysis and visualization solution. The Microsoft Chart Controls for .NET are available as a separate download for .NET 3.5. Beginning in .NET 4.0, the Chart controls are part of the .NET Framework.

**NMath** provides convenience methods for plotting **NMath** types using the Microsoft Chart Controls. For example, this code plots a polynomial by interpolating over the specified range:

```csharp
    var poly = new Polynomial( new DoubleVector( 4, 2, 5, -2, 3 ) );
    double xmin = -1;
    double xmax = 1;
    int numInterpolatedValues = 100;
    NMathChart.Show( poly, xmin, xmax, numInterpolatedValues );
```
ADO.NET Integration

NMath provides convenience methods for creating ADO.NET objects from vectors and matrices, and for creating vectors and matrices from database objects. Real-value NMath vector and matrix classes provide ToDataTable() methods for creating ADO.NET DataTable objects. Complex number vector and matrix classes provide paired methods ToRealDataTable() and ToImagDataTable() for creating DataTable objects containing the real and imaginary parts, respectively. For example, this code creates a data table named MyMatrixTable containing the values in a DoubleMatrix:

```csharp
var A = new DoubleMatrix( 8, 5, 3.1415 );
var table = A.ToDataTable( "MyMatrixTable" );
```
You can also construct **NMath** vector and matrix classes from standard ADO.NET database objects. Real-value vector and matrix class constructors accept **DataTable**, **DataRow**, **DataRowCollection**, and **DataView** objects, typically obtained from a database query.

## Serialization

**NMath** data classes are fully persistable using standard .NET mechanisms. All matrix, vector, and LU decomposition classes implement the **ISerializable** interface to control their own serialization and deserialization. Common Language Runtime (CLR) serialization **Formatter** classes call the provided **GetObjectData()** methods at serialization time to populate **SerializationInfo** objects with all the data required to represent **NMath** objects.

For instance, this code serializes two **FloatComplexMatrix** objects to a file in binary format:

```csharp
var A =
    new FloatComplexMatrix( "2x2[ (5,9.8) (-6,.9) (7,-8) (8,8) ]" );
var B = new FloatComplexMatrix( 4, 4, .1F, .1F );

FileStream binStream = File.Create( "myData.dat" );
var binFormatter = new BinaryFormatter();

binFormatter.Serialize( binStream, A );
binFormatter.Serialize( binStream, B );

binStream.Close();
```

This code restores the objects from the file:

```csharp
binStream = File.OpenRead( "myData.dat" );

var A2 =
    (FloatComplexMatrix)binFormatter.Deserialize( binStream );
var B2 =
    (FloatComplexMatrix)binFormatter.Deserialize( binStream );

binStream.Close();
File.Delete( "myData.dat" );
```
Conclusions

**NMath** provides the basic building blocks for numerical applications on the .NET platform. By providing elegant object-oriented interfaces to highly-optimized linear algebra subroutine libraries, and offering performance levels comparable to C or Fortran, **NMath** makes numerical computing on the .NET platform a reality.