
NMath
User’s Guide

Version 7.2
  



NMATH USER’S GUIDE

© 2021 Copyright CenterSpace Software, LLC. All Rights Reserved.

The correct bibliographic reference for this document is:
NMath User’s Guide, Version 7.2, CenterSpace Software, Corvallis, OR.
 
Printed in the United States.
Printing Date: January, 2021

CENTERSPACE SOFTWARE

Address: 622 NW 32nd St., Corvallis, OR 97330 USA
Phone: (541) 896-1301
Web: http://www.centerspace.net

Technical Support: support@centerspace.net



CONTENTS

Part I  - Introduction

Chapter 1.  Overview .................................................................................................................1

1.1 Product Components................................................................................1

1.2 Software Requirements ..........................................................................2

1.3 NMath Assemblies .......................................................................................2

Microsoft Solver Foundation 3

1.4 NMath License Key .....................................................................................3

Evaluation License 3
Product License 3

1.5 NMath Configuration ................................................................................4

Logging 5
License Key 5
Native Location 6
MKL Threading Control 6
MKL Conditional Numerical Reproducibility (CNR) 6

1.6 Building and Deploying NMath Applications........................7

License Key 7
C++ Runtime 8

1.7 Web Applications .........................................................................................8

Referencing NMath 8
Kernel Assemblies and Native DLLs 9
NMath Configuration 9

1.8 Very Large Objects ...................................................................................10

Very Large Objects with ASP.NET 11

1.9 Documentation .............................................................................................12

This Manual 12

1.10 Technical Support ......................................................................................13
      iii



Part II  - NMath Core

Chapter 2.  NMath Core.....................................................................................................17

Chapter 3.  Complex Number Types ............................................................19

3.1 Creating Complex Numbers ............................................................19

Creating Complex Numbers from Numeric Values 19
Creating Complex Numbers from Strings 20
Implicit Conversion 21

3.2 Value Operations on Complex Numbers .............................21

3.3 Logical Operations on Complex Numbers..........................22

3.4 Arithmetic Operations on Complex Numbers................22

3.5 Functions of Complex Numbers ...................................................23

Conjugate, Norm, and Argument 23
Trigonometric Functions 24
Transcendental Functions 25
Absolute Value and Square Root 25

Chapter 4.  Viewing Data ..................................................................................................27

4.1 DataBlock Classes ......................................................................................27

Class Names 27
Data Block Properties 28
Accessing the Underlying Data 28

4.2 Slices and Ranges ........................................................................................29

Creating Slices and Ranges 29
Creating Abstract Subsets 30
Modifying Ranges and Slices 31

Chapter 5.  Vector Classes ..............................................................................................33

5.1 Class Names ....................................................................................................33

5.2 Creating Vectors .........................................................................................33

Creating Vectors from Numeric Values 34
iv   NMath User’s Guide



Creating Vectors from Strings 35
Implicit Conversion 38
Copying Vectors 38
New Vector Views 39

5.3 Value Operations on Vectors...........................................................40

Accessing and Modifying Vector Values 41
Clearing and Resizing a Vector 41
Appending to a Vector 42

5.4 Logical Operations on Vectors .......................................................43

5.5 Arithmetic Operations on Vectors .............................................43

5.6 Functions of Vectors ................................................................................45

Rounding Functions 45
Sums, Differences, and Products 46
Min/Max Functions 47
Statistical Functions 47
Trigonometric Functions 48
Transcendental Functions 48
Absolute Value and Square Root 49
Sorting Functions 49
Complex Vector Functions 50

5.7 Generic Functions ......................................................................................50

5.8 Vector Enumeration ................................................................................51

Chapter 6.  Matrix Classes ..............................................................................................53

6.1 Class Names ....................................................................................................53

6.2 Creating Matrices .......................................................................................53

Creating Matrices from Numeric Values 54
Creating Matrices from Strings 56
Implicit Conversion 59
Copying Matrices 59
Matrix Views 60

6.3 Value Operations on Matrices.........................................................60

Accessing and Modifying Matrix Values 61
Clearing and Resizing a Matrix 62

6.4 Logical Operations on Matrices .....................................................63
      v



6.5 Arithmetic Operations on Matrices...........................................63

6.6 Vector Views...................................................................................................65

Row and Column Views 66
Diagonal Views 66
Arbitrary Slices 66

6.7 Functions of Matrices ..............................................................................67

Matrix Transposition 67
Matrix Norms 67
Matrix Products 68
Matrix Inverse and Pseudoinverse 69
Rounding Functions 70
Sums and Differences 71
Min/Max Functions 72
Statistical Functions 72
Trigonometric Functions 73
Transcendental Functions 73
Absolute Value and Square Root 74
Sorting Functions 74
Complex Matrix Functions 75

6.8 Generic Functions ......................................................................................75

Applying Elementwise Functions 76
Applying Columnwise Functions 76

6.9 Matrix Enumeration .................................................................................77

Chapter 7.  Solutions of Linear Systems .................................................79

7.1 Class Names ....................................................................................................79

7.2 Creating LU Factorizations ...............................................................80

7.3 Using LU Factorizations .......................................................................81

Component Matrices 81
Solving for Right-Hand Sides 81
Computing Inverses, Determinants, and Condition Numbers 82

7.4 Static Methods ..............................................................................................84

Chapter 8.  Least Squares ................................................................................................87

8.1 Class Names ....................................................................................................87
vi   NMath User’s Guide



8.2 Creating Least Squares Solutions ................................................88

8.3 Using Least Squares Solutions ........................................................89

8.4 Nonnegative Least Squares Solutions ......................................90

Chapter 9.  Random Number Generators ...........................................91

9.1 Scalar Random Number Generators ........................................91

Underlying Uniform Generators 92
Generating Random Numbers 93
Random Seeds 95

9.2 Vectorized Random Number Generators ............................96

Generating Random Numbers 98
Successive Random Numbers 99
Independent Streams 100
Quasirandom Numbers 102

Chapter 10.  Fourier Transforms, Convolution and 
Correlation ............................................................................................................................................. 103

10.1 Fast Fourier Transforms ................................................................... 103

FFT Classes 103
Creating FFT Instances 104
Scale Factors 104
Computing FFTs 105
Unpacking Real Results 106
Inverting Real Results 107
Strided Signals 108

10.2 Convolution and Correlation ........................................................ 110

Convolution and Correlation Classes 110
Creating Convolution and Correlation Instances 111
Convolution and Correlation Properties 111
Computing Convolutions and Correlations 112
Windowing Options 112

Chapter 11.  Discrete Wavelet Transforms ..................................... 115

11.1 Creating Wavelets .................................................................................. 115
      vii



11.2 Computing Discrete Wavelet Transforms ........................116

Single Step DWT 117
Multilevel DWT 118
Accessing the Coefficients 118
Threshold Calculations 119
Thresholding 119

Chapter 12.  Histograms ..................................................................................................121

12.1 Creating Histograms .............................................................................121

12.2 Adding Data to Histograms ............................................................122

12.3 Value Operations of Histograms ................................................123

12.4 Displaying Histograms .........................................................................124

Chapter 13.  Calculus.............................................................................................................125

13.1 Encapsulating Functions .....................................................................125

Creating a Function of One Variable 125
Properties of Functions 126
Evaluating Functions 126
Algebraic Manipulation of Functions 127

13.2 Numerical Integration .........................................................................128

Computing Integrals 129
Romberg Integration 130
Gauss-Kronrod Integration 132

13.3 Differentiation .............................................................................................135

13.4 Polynomials ....................................................................................................137

Creating Polynomials 137
Properties of Polynomials 138
Evaluating Polynomials 138
Algebraic Manipulation of Polynomials 139
Integration 140
Differentiation 140

13.5 Function Interpolation .........................................................................141

Linear Spline Interpolation 142
Cubic Spline Interpolation 142
Smooth Splines 143
viii   NMath User’s Guide



Creating Your Own Interpolation Classes 143

Chapter 14.  Signal Processing .............................................................................. 145

14.1 Moving Window Filtering ................................................................. 145

Creating Moving Window Filter Objects 145
Moving Window Filter Properties 148
Filtering Data 148

14.2 Savitzky-Golay Filtering ..................................................................... 149

Creating Savitzky-Golay Filter Objects 149
Savitzky-Golay Filter Properties 150
Filtering Data 150

14.3 Savitzky-Golay Peak Finding.......................................................... 151

Creating Savitzky-Golay Peak Finders 151
Savitzky-Golay Peak Finder Results 152
Advanced Savitzky-Golay Peak Finder Properties 153

14.4 Rule-Based Peak Finding ................................................................... 153

Creating Rule-Based Peak Finders 153
Adding Rules 154
Rule-Based Peak Finder Results 154

Chapter 15.  Special Functions ............................................................................. 157

15.1 Special Functions...................................................................................... 157

Part III  - Matrix Analysis

Chapter 16.  Matrix Functions ............................................................................... 163

Chapter 17.  Structured Sparse Matrix Types............................. 165

17.1 Lower Triangular Matrices.............................................................. 165

17.2 Upper Triangular Matrices.............................................................. 166

17.3 Symmetric Matrices .............................................................................. 167
      ix



17.4 Hermitian Matrices.................................................................................168

17.5 Banded Matrices ........................................................................................168

17.6 Tridiagonal Matrices ..............................................................................170

17.7 Symmetric Banded Matrices ..........................................................171

17.8 Hermitian Banded Matrices ............................................................172

Chapter 18.  Using The Structured Sparse Matrix 
Classes .............................................................................................................................................................173

18.1 Creating Matrices .....................................................................................173

Creating Default Matrices 173
Creating Sparse Matrices from General Matrices 175
Creating Sparse Matrices from Other Sparse Matrices 176
Creating Sparse Matrices from a Data Vector 177
Implicit Conversion 178
Copying Matrices 178

18.2 Value Operations on Matrices ......................................................179

Accessing and Modifying Matrix Values 180
Resizing a Matrix 181

18.3 Logical Operations on Matrices...................................................182

18.4 Arithmetic Operations on Matrices.........................................182

18.5 Vector Views.................................................................................................183

18.6 Functions of Matrices ............................................................................184

Matrix Transposition 184
Matrix Inner Products 184
Matrix Norms 185
Trigonometric and Transcendental Functions 187
Absolute Value 187
Complex Matrix Functions 188

18.7 Generic Functions ....................................................................................188

Chapter 19.  General Sparse Vectors and Matrices ...........191

19.1 Sparse Vectors ............................................................................................191
x   NMath User’s Guide



Storage Format 191
Creating Sparse Vectors 192
Accessing and Modifying Sparse Vector Values 193
Operations on Sparse Vectors 193
Sparse Vector Functions 194
Creating Dense Vectors from Sparse Vectors 194

19.2 Sparse Matrices ......................................................................................... 195

Storage Format 195
Creating Sparse Matrices 196
Accessing and Modifying Sparse Matrix Values 198
Operations on Sparse Matrices 199
Sparse Matrix Functions 199
Creating Dense Matrices from Sparse Matrices 200

19.3 Sparse Matrix Factorizations ........................................................ 200

Factorization Classes 200
Creating Factorizations 201
Using Factorizations 202

Chapter 20.  Structured Sparse Matrix Factorizations203

20.1 Factorization Classes............................................................................ 203

20.2 Creating Factorizations ..................................................................... 204

20.3 Using Factorizations ............................................................................. 206

Solving for Right-Hand Sides 206
Computing Inverses, Determinants, and Condition Numbers 208

Chapter 21.  Least Squares Solutions ....................................................... 211

21.1 Ordinary Least Squares Methods .............................................. 211

Least Squares Using Cholesky Factorization 211
Least Squares Using QR Decomposition 212
Least Squares Using SVD 212

21.2 Creating Ordinary Least Squares Objects ........................ 212

21.3 Using Ordinary Least Squares Objects ................................ 214

Testing for Goodness 214
Solving Least Squares Problems 214
Retrieving Information About the Original Matrix 215
      xi



21.4 Weighted Least Squares ....................................................................215

21.5 Iteratively Reweighted Least Squares....................................218

Convergence Functions 219
Weighting Functions 221

Chapter 22.  Decompositions ..................................................................................223

22.1 QR Decompositions ...............................................................................223

Creating QR Decompositions 223
Using QR Decompositions 225
Reusing QR Decompositions 227

22.2 Singular Value Decompositions ...................................................228

Creating Singular Value Decompositions 228
Using Singular Value Decompositions 229
Reusing Singular Value Decompositions 231

Chapter 23.  EigenValue Problems .................................................................233

23.1 Eigenvalue Classnames ........................................................................233

23.2 Using the Eigenvalue Classes .........................................................234

Constructing Eigenvalue Objects 234
Testing for Goodness 235
Retrieving Eigenvalues and Eigenvectors 235
Retrieving Information About the Original Matrix 236
Reusing Eigenvalue Decompositions 236

23.3 Using the Eigenvalue Server Classes.......................................237

Constructing Eigenvalue Servers 237
Configuring Eigenvalue Servers 237
Creating Eigenvalue Objects from a Server 239
xii   NMath User’s Guide



Part IV  - Analysis

Chapter 24.  The Analysis Namespace ................................................... 243

Chapter 25.  Encapsulating Multivariate Functions ........... 245

25.1 Creating Multivariate Functions................................................. 245

25.2 Evaluating Multivariate Functions ............................................ 246

25.3 Algebraic Manipulation of Multivariate Functions ..... 246

Chapter 26.  Minimizing Univariate Functions.......................... 249

26.1 Bracketing a Minimum........................................................................ 249

26.2 Minimizing Functions Without Calculating the 
Derivative250

26.3 Minimizing Derivable Functions ................................................. 252

Chapter 27.  Minimizing Multivariate Functions .................... 255

27.1 Minimizing Functions Without Calculating the 
Derivative255

27.2 Minimizing Derivable Functions ................................................. 257

Chapter 28.  Simulated Annealing.................................................................. 261

28.1 Temperature ............................................................................................... 261

28.2 Annealing Schedules ............................................................................. 261

Linear Annealing Schedules 262
Custom Annealing Schedules 263

28.3 Minimizing Functions by Simulated Annealing ............. 264

28.4 Annealing History.................................................................................... 265
      xiii



Chapter 29.  Linear Programming ..................................................................269

29.1 Encapsulating LP Problems .............................................................269

Adding Bounds and Constraints 270

29.2 Solving LP Problems..............................................................................271

Chapter 30.  Nonlinear and Quadratic Programming ...273

30.1 Objective and Constraint Function Classes ......................273

Objective Function Classes 273
Constraint Function Classes 275

30.2 Nonlinear Programming ....................................................................276

Encapsulating the Problem 276
Adding Bounds and Constraints 278
Solving the Problem 280

30.3 Quadratic Programming....................................................................283

Encapsulating the Problem 284
Adding Bounds and Constraints 284
Solving the Problem 285

30.4 Constrained Least Squares ..............................................................288

Encapsulating the Problem 288
Adding Bounds and Constraints 288
Solving the Problem 289

Chapter 31.  Fitting Polynomials ........................................................................293

31.1 Creating PolynomialLeastSquares ............................................293

31.2 Properties of PolynomialLeastSquares .................................294

Chapter 32.  Nonlinear Least Squares......................................................295

32.1 Nonlinear Least Squares Interfaces .........................................295

Minimization 296
Minimization Results 298
Implementations 298

32.2 Trust-Region Minimization ..............................................................299
xiv   NMath User’s Guide



Constructing a TrustRegionMinimizer 299
Minimization 299
Linear Bound Constraints 301
Minimization Results 302

32.3 Levenberg-Marquardt Minimization....................................... 303

Constructing a LevenbergMarquardtMinimizer 304
Minimization 304
Minimization Results 305

32.4 Nonlinear Least Squares Curve Fitting................................ 305

Generalized One Variable Functions 305
Encapsulating One Variable Functions 306
Predefined Functions 309
Constructing a OneVariableFunctionFitter 309
Fitting Data 311
Fit Results 312

32.5 Nonlinear Least Squares Surface Fitting ............................ 313

Generalized Multivariable Functions 313
Encapsulating Generalized Multivariable Functions 314
Constructing a MultiVariableFunctionFitter 315
Fitting Data 316
Fit Results 318

Chapter 33.  Finding Roots of Univariate Functions ........ 321

33.1 Finding Function Roots Without Calculating the 
Derivative321

33.2 Finding Function Roots of Derivable Functions............ 323

Chapter 34.  Integrating Multivariable Functions ................. 325

34.1 Creating TwoVariableIntegrators ............................................ 325

34.2 Integrating Functions of Two Variables............................... 326

Chapter 35.  Differential Equations............................................................... 329

35.1 Encapsulating Differential Equations...................................... 329

35.2 Solving Differential Equations ...................................................... 330
      xv



Constructing RungeKuttaSolver Instances 330
Solving First Order Initial Value Problems 331

35.3 Dormand–Prince Method..................................................................332

35.4 Stiff Equations..............................................................................................335

Part V  - Statistics

Chapter 6.  Statistics Introduction...................................................................... 1

36.1 Product Features .......................................................................................... 1

36.2 Namespaces....................................................................................................... 2

Chapter 37.  Data Frames ................................................................................................. 3

37.1 Column Types.................................................................................................. 4

Creating Columns 4
Adding and Removing Data 6
Accessing Column Data 7
Column Properties 7
Reordering Column Data 8
Missing Values 8
Transforming Column Data 10
Exporting Column Data 12

37.2 Creating DataFrames .............................................................................12

Creating Empty DataFrames 12
Creating DataFrames from Arrays of Columns 13
Creating DataFrames from Matrices 14
Creating DataFrames from ADO.NET Objects 14
Creating DataFrames from Strings 15

37.3 Adding and Removing Columns ....................................................16

37.4 Adding and Removing Rows .............................................................18

Modifying Row Keys 20

37.5 Properties of DataFrames ..................................................................21

37.6 Accessing DataFrames...........................................................................22
xvi   NMath User’s Guide



Accessing Elements 22
Accessing Columns 22
Accessing Rows 23

37.7 Subsets..................................................................................................................25

Creating Subsets 25
Properties of Subsets 26
Accessing Elements 26
Logical Operations on Subsets 27
Arithmetic Operations on Subsets 27
Manipulating Subsets 28
Groupings 30
Random Samples 30

37.8 Accessing Sub-Frames............................................................................30

37.9 Reordering DataFrames .......................................................................32

Sorting Rows 32
Permuting Rows and Columns 33

37.10Factors ................................................................................................................34

Creating Factors 34
Properties of Factors 36
Accessing Factors 36
Creating Groupings with Factors 36

37.11Cross-Tabulation .......................................................................................40

Column Delegates 40
Applying Column Delegates to Tabulated Data 41

37.12Exporting Data from DataFrames .............................................44

Exporting to a Matrix 44
Exporting to a String 45
Exporting to an ADO.NET DataTable 46
Binary and SOAP Serialization 47

Chapter 38.  Descriptive Statistics ....................................................................49

38.1 Column Types................................................................................................50

38.2 Missing Values ................................................................................................51

38.3 Counts and Sums ........................................................................................53

38.4 Min/Max Functions .....................................................................................54
      xvii



38.5 Ranks, Percentiles, Deciles, and Quartiles ...........................54

38.6 Central Tendency .......................................................................................56

38.7 Spread ...................................................................................................................58

38.8 Shape .....................................................................................................................59

38.9 Covariance, Correlation, and Autocorrelation................60

38.10Sorting ................................................................................................................62

38.11Logical Functions.......................................................................................62

Chapter 39.  Special Functions ................................................................................65

39.1 Combinatorial Functions .....................................................................65

39.2 Gamma Function ........................................................................................65

39.3 Beta Function .................................................................................................66

Chapter 40.  Probability Distributions ........................................................67

40.1 Distribution Classes ..................................................................................67

Beta Distribution 69
Binomial Distribution 70
Chi-Square Distribution 71
Exponential Distribution 72
F Distribution 73
Gamma Distribution 73
Geometric Distribution 75
Johnson Distribution 75
Logistic Distribution 77
Log-Normal Distribution 78
Negative Binomial Distribution 79
Normal Distribution 80
Poisson Distribution 80
Student’s t Distribution 81
Triangular Distribution 82
Uniform Distribution 83
Weibull Distribution 84

40.2 Correlated Random Inputs ................................................................85
xviii   NMath User’s Guide



Constructing Correlator Instances 85
Correlating Random Inputs 86
Correlator Properties 87
Convenience Method 87

40.3 Box-Cox Power Transformations ................................................89

Chapter 41.  Hypothesis Tests...................................................................................91

41.1 Common Interface ....................................................................................91

Static Properties 91
Creating Hypothesis Test Objects 92
Properties of Hypothesis Test Objects 93
Modifying Hypothesis Test Objects 94
Printing Results 95

41.2 One Sample Z-Test...................................................................................96

41.3 One Sample T-Test...................................................................................98

41.4 Two Sample Paired T-Test ............................................................. 100

41.5 Two Sample Unpaired T-Test...................................................... 103

41.6 Two Sample F-Test................................................................................ 106

41.7 Pearson’s Chi-Square Test .............................................................. 108

41.8 Fisher’s Exact Test.................................................................................. 110

Chapter 42.  Linear Regression ............................................................................ 113

42.1 Creating Linear Regressions .......................................................... 113

Parameter Calculation by Least Squares Minimization 114
Intercept Parameters 115

42.2 Regression Results................................................................................... 115

Variance Inflation Factor 116

42.3 Predictions ..................................................................................................... 117

42.4 Accessing and Modifying the Model......................................... 118

Accessing and Modifying Predictors 118
Accessing and Modifying Observations 120
      xix



Accessing and Modifying the Intercept Option 122
Updating the Entire Model 122

42.5 Significance of Parameters...............................................................123

Creating Linear Regression Parameter Objects 123
Properties Linear Regression Parameters 123
Hypothesis Tests 124
Updating Linear Regression Parameters 124

42.6 Significance of the Overall Model...............................................125

Chapter 43.  Logistic Regression ........................................................................127

43.1 Regression Calculators ........................................................................127

43.2 Creating Logistic Regressions .......................................................128

Design Variables 130

43.3 Checking for Convergence...............................................................131

43.4 Goodness of Fit ...........................................................................................131

43.5 Parameter Estimates ............................................................................133

43.6 Predicted Probabilities ........................................................................134

43.7 Auxiliary Statistics ...................................................................................135

Chapter 44.  Analysis of Variance .....................................................................137

44.1 One-Way ANOVA...................................................................................137

Creating One-Way ANOVA Objects 137
The One-Way ANOVA Table 139
Grand Mean, Group Means, and Group Sizes 140
Critical Value of the F Statistic 141
Updating One-Way ANOVA Objects 141

44.2 One-Way Repeated Measures ANOVA ...............................141

Creating One-Way RANOVA Objects 142
The One-Way RANOVA Table 143
Grand Mean, Subject Means, and Treatment Means 144
Critical Value of the F Statistic 144
Updating One-Way RANOVA Objects 145
xx   NMath User’s Guide



44.3 Two-Way Balanced ANOVA......................................................... 145

Creating Two-Way ANOVA Objects 145
The Two-Way ANOVA Table 146
Cell Data 147
Grand Mean, Cell Means, and Group Means 148
ANOVA Regression Parameters 148

44.4 Two-Way Unbalanced ANOVA ................................................. 154

Creating UnbalancedTwo-Way ANOVA Objects 154
Unbalanced Two-Way ANOVA Tables and Regression Parameters 154

44.5  Two-Way Repeated Measures ANOVA ............................ 156

Creating Two-Way RANOVA Objects 156
Two-Way RANOVA Tables 157

Chapter 45.  Non-Parametric Tests.............................................................. 159

45.1 One Sample Kolmogorov-Smirnov Test ............................ 159

45.2 Two Sample Kolmogorov-Smirnov Test ............................ 161

45.3 Shapiro-Wilk Test ................................................................................... 161

45.4 One Sample Anderson-Darling Test ...................................... 162

45.5 Kruskal-Wallis Test ................................................................................ 163

Creating Kruskal-Wallis Objects 163
The Kruskal-Wallis Table 165
Ranks, Grand Mean Ranks, Group Means Ranks, and Group Sizes 166
Critical Value of the Test Statistic 167
Updating Kruskal-Wallis Test Objects 168

45.6 Wilcoxon Signed-Rank Test ........................................................... 168

Creating Wilcoxon Signed-Rank Objects 168

Chapter 46.  Multivariate Techniques ....................................................... 171

46.1 Principal Component Analysis ..................................................... 171

Creating Principal Component Analyses 171
Principal Component Analysis Results 172

46.2 Factor Analysis ........................................................................................... 174

Creating Factor Analyses 174
      xxi



Factor Analysis Results 176
Factor Scores 179

46.3 Hierarchical Cluster Analysis.........................................................180

Distance Functions 180
Linkage Functions 182
Creating Cluster Analyses 184
Cluster Analysis Results 186
Reusing Cluster Analysis Objects 188

46.4 K-Means Clustering.................................................................................189

Creating KMeansClustering Objects 189
Stopping Criteria 190
Clustering 190
Cluster Analysis Results 191

Chapter 47.  Nonnegative Matrix Factorization ......................193

47.1 Nonnegative Matrix Factorization ............................................193

Update Algorithms 194

47.2 Data Clustering Using NMF ............................................................196

Creating NMFClustering Instances 197
Performing the Factorization 197
Cluster Results 198
Computing a Consensus Matrix 200

Chapter 48.  Partial Least Squares .................................................................205

48.1 Computing a PLS Regression ........................................................206

48.2 Error Checking ...........................................................................................207

48.3 Predicted Values........................................................................................207

48.4 Analysis of Variance ...............................................................................208

48.5 PLS Algorithms ..........................................................................................208

48.6 Cross Validation.........................................................................................209

Jackknifing of Regression Coefficients 210

48.7 Partial Least Squares Discriminant Analysis ...................211
xxii   NMath User’s Guide



Chapter 49.  Goodness of Fit ................................................................................... 215

49.1 Significance of the Overall Model.............................................. 215

49.2 Significance of Parameters.............................................................. 217

Creating Goodness of Fit Parameter Objects 217
Properties of Goodness of Fit Parameters 218
Hypothesis Tests 218

Chapter 50.  Process Control .................................................................................. 219

50.1 Process Capability ................................................................................... 219

50.2 Process Performance ........................................................................... 220

50.3 Z Bench ............................................................................................................. 221

Part VI  - Miscellaneous Topics

Chapter 51.  Serialization .............................................................................................. 225

51.1 Binary Serialization ................................................................................ 225

51.2 SOAP Serialization................................................................................. 226

51.3 XML Serialization .................................................................................... 228

Chapter 52.  Database Integration................................................................. 231

52.1 Creating ADO.NET Objects from Vectors and 
Matrices231

52.2 Creating Vector and Matrices from ADO.NET 
Objects232

Chapter 53.  Error Handling...................................................................................... 235

53.1 Exception Types........................................................................................ 235
      xxiii



Index ...................................................................................................................................................................237
xxiv   NMath User’s Guide



PART I - INTRODUCTION
      xxv



xxvi   NMath User’s Guide



CHAPTER 1.  
OVERVIEW

Welcome to the NMath User’s Guide.

CenterSpace Software’s NMath™ numerical library provides object-oriented 
components for mathematical, engineering, scientific, and financial applications 
on the .NET platform. NMath provides a modern, easy to use, object-oriented 
interface, including a very rich set of matrix and vector manipulation semantics. 
Fully compliant with the Microsoft Common Language Specification (CLS), all 
NMath routines are callable from any .NET language, including C#, Visual Basic, 
and F#.

For most computations, NMath uses the Intel® Math Kernel Library (MKL), which 
contains highly-optimized, extensively-threaded versions of the C and FORTRAN 
public domain computing packages known as the BLAS (Basic Linear Algebra 
Subroutines) and LAPACK (Linear Algebra PACKage). This gives NMath classes 
performance levels comparable to C, and often results in performance an order of 
magnitude faster than non-platform-optimized implementations.

1.1 Product Components

All NMath types are organized into a single namespace for simplicity.  

 CenterSpace.NMath.Core

Prior to NMath 7.0 the library was organized in four namespaces: Core, Matrix, 
Analysis, and Stats. Although these namespaces can still be included for backward 
compatibility, they all now simply forward to the single 
CenterSpace.NMath.Core namespace.

To avoid using fully qualified names, preface your code with the namespace 
statement.

Code Example – C#

using CenterSpace.NMath.Core;

Code Example – VB

Imports CenterSpace.NMath.Core

All NMath code shown in this manual assumes the presence of such namespace 
statements.
   Chapter 1.   Overview 1



1.2 Software Requirements

NMath requires the following additional software to be installed on your system:

 To use the NMath library, you need the Microsoft .NET Framework, .NET 
5, or .NET Core installed on your system. These frameworks are available 
without cost from:

https://dotnet.microsoft.com/download/

 Use of Microsoft Visual Studio .NET (or other .NET IDE) is strongly 
encouraged. However, the .NET Framework includes command line 
compilers for .NET languages, so an IDE is not strictly required. 

 Viewing PDF documentation requires Adobe Acrobat Reader, available 
without cost from:

http://www.adobe.com 

The Intel® Math Kernel Library (MKL) is included with NMath. You do not need 
to provide your own version.

1.3 NMath Assemblies

The NMath installer places the following .NET assemblies in directory <installdir>/
Assemblies:        

 NMath.dll, the main NMath assembly

  System.Configuration.ConfigurationManager.dll (>= 4.6.0) 

Native assemblies are placed in architecture-specific subdirectories.

<installdir>/Assemblies/x86

 nmath_native_x86.dll, 32-bit native code, including the Intel® Math 
Kernel Library (MKL)

 nmath_sf_x86.dll, 32-bit native code for special functions

 libiomp5md.dll, dynamically-linked 32-bit Intel OMP threading library

<installdir>/Assemblies/x64

 nmath_native_x64.dll, 64-bit native code, including Intel® Math Kernel 
Library (MKL)

 nmath_sf_x64.dll, 64-bit native code for special functions
2   NMath User’s Guide



 libiomp5md.dll, dynamically-linked 64-bit Intel OMP threading library

The installer also places the .NET assemblies in your global assembly cache (GAC). 
The native DLLs are linked resources to the corresponding kernel assemblies.

Microsoft Solver Foundation

NMath nonlinear programming, and quadratic programming classes are built on 
the Microsoft Solver Foundation (MSF). The Standard Edition of MSF is included 
with NMath (Microsoft.Solver.Foundation.dll), but is limited to 100,000 non-
zero coefficients. Note that this is not a limit on the number of variables, but rather 
on the total number of all non-zero coefficients used to specify the constraints. 
Given n variables and m constraints, there are between 0 and m*n non-zero 
coefficients.

Google OR Tools

NMath linear programming and mixed integer programming classes are built on 
the Google OR Tools libraries. This library is included with NMath 
(Google.OrTools.dll), and has no artificially imposed limits on the number of 
constraints or variables.

1.4 NMath License Key

NMath license information is stored in a license key which must be found at 
runtime. The license key governs the properties of your NMath installation.

Evaluation License

If no license key is found, a default evaluation license key is used which provides a 
free 30-day evaluation period for NMath on the current machine.

Product License

You can specify your license key using various mechanisms: by environment 
variable, by configuration app setting, and programmatically. These mechanisms 
may be preferable in group development environments, and at deployment. (See 
Section 1.5 for more information.) 
   Chapter 1.   Overview 3



1.5 NMath Configuration

NMath configuration settings govern the loading of the NMath license key and 
native library. 

Property values can be set three ways: 

1. by environment variable

2. by configuration setting

3. by programmatically setting properties on class NMathConfiguration

NOTE—Settings are applied in that order, and resetting a property takes precedent 
over any earlier values.

For example, here an environment variable is used:

NMATH_NATIVE_LOCATION="C:\temp"

This code uses an application configuration file:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
  <appSettings>
    <add key="NMathNativeLocation" value="C:\temp" />
  </appSettings>
</configuration>

Configuration settings may also be placed in a DLL configuration file placed next 
to the main NMath assembly (NMath.DLL.config, for example). If a setting is 
specified in both a DLL and an application configuration file, the application 
configuration takes precedence.

This code accomplishes the same thing programmatically:

NMathConfiguration.NativeLocation = @"C:\temp";

The supported environment variables, configuration app setting keys, and 
property names are show in Table 1.

Table 1 – Configuration Properties

Environment Variable Configuration Setting Property or Method

NMATH_LOG_FILENAME NMathLogFilename LogFilename

NMATH_LOG_LOCATION NMathLogLocation LogLocation

NMATH_LICENSE_KEY NMathLicenseKey LicenseKey
4   NMath User’s Guide



NOTE—Assembly loading and license checking is normally performed the first time 
you make an NMath call. If you wish to explicitly control when these operations occur—
at application start-up, for example—use the static NMathConfiguration.Init() method.

Logging

To debug configuration issues, specify a log file location. For example, setting the 
property programmatically:

NMathConfiguration.LogLocation = @"C:\temp";

NOTE—The specified location must exist.

Setting a log file location turns on logging at that location, using the currently 
defined log filename (NMathConfiguration.log, unless previously modified).

To turn off logging, set the log location to null.

For verbose logging, such as all native function calls, set 
NMathConfiguration.LogVerbose to true.

License Key

You can specify your NMath license key using the 
NMathConfiguration.LicenseKey property, or the equivalent environment 
variable or app config setting.

Native Location

The NMath native libraries must be found at runtime (Section 1.3). Failure to 
locate these files is one of the most common configuration issues, especially in 
deployment. The search order is determined by your PATH. Some standard 
locations are automatically prepended to your (process-specific) PATH. You can 
also use the NMathConfiguration.NativeLocation property, or the equivalent 
environment variable or app config setting, to prepend another location. An 

NMATH_NATIVE_LOCATION NMathNativeLocation NativeLocation

NMATH_MKL_NUM_THREADS NMathMKLNumThreads SetMKLNumThreads()

NMATH_REPRODUCIBILITY NMathReproducibility Reproducibility

Table 1 – Configuration Properties

Environment Variable Configuration Setting Property or Method
   Chapter 1.   Overview 5



architecture-specific /x86 and /x64 subdirectory is also prepended. The 
appropriate architecture-specific natives are loaded at runtime.

MKL Threading Control

MKL contains highly optimized, extensively threaded math routines. In rare cases, 
these can cause conflicts between the Intel OMP threading library 
(libiomp5md.dll) and the .NET threading model. If your .NET application is itself 
highly multi-threaded, you may wish to use MKL in single-threaded mode. Set the 
suggested number of threads to 1 using the SetMKLNumThreads() method, or use 
the equivalent environment variable or app config setting.

NOTE—MKL does not always have a choice on the number of threads for certain rea-
sons, such as system resources. Although Intel MKL may actually use a different 
number of threads from the number suggested, this method enables you to instruct the 
library to try using the suggested number when the number used in the calling applica-
tion is unavailable.

MKL Conditional Numerical Reproducibility (CNR)

For general single and double precision IEEE floating-point math, the order of 
computation matters. For example, in infinite precision arithmetic, the associative 
property holds, (a+b)+c = a+(b+c), but on a computer using double precision 
floating-point numbers, rounding error is introduced, and the equality is not 
guaranteed. The order of floating-point operations within a single executable 
program is affected by code-path selection based on a variety of factors: run-time 
processor dispatching, data array alignment, variation in number of threads, 
threaded algorithms, and so forth.

If strict reproducibility is a requirement, set the Reproducibility property equal 
to true, or use the equivalent environment variable or app config setting. You 
must also set the suggested number of MKL threads to a constant value (see 
above).

For more information, see

https://software.intel.com/en-us/articles/introduction-to-the-
conditional-numerical-reproducibility-cnr

NOTE—Using MKL Conditional Numerical Reproducibility can significantly degrade 
performance, and is only recommended for use during testing or debugging, such as 
comparison to previous ‘gold’ results.
6   NMath User’s Guide



1.6 Building and Deploying NMath Applications

To use NMath types in your application, add a reference to NMath.dll. The search 
order is the same as for the common language runtime: first the GAC is searched, 
then the directory containing the currently executing assembly, and so on. (See 
Section 1.5 for more information.)

We recommend that you build your application using either the x86 or x64 build 
configuration (depending on which NuGet package is being used), so you can 
deploy to either 32-bit or 64-bit environments. Also note that if you are building for 
.NET 4.5 or higher and targeting x64, ensure that the Prefer 32-bit flag is 
unchecked under Build | Platform target in your project properties.

To deploy your application, either

 Install the NMath .NET assemblies in the GAC (NMath.dll)—the 
appropriate native DLLs will also be placed in the GAC since they are 
linked resources; or

 Place the main .NET assembly (NMath.dll) in the same directory as your 
application. Use the NativeLocation property, or the equivalent 
environment variable or app config setting, to specify the location of the 
native assemblies (Section 1.5). The specified location should contain /x86 
and /x64 subdirectories. The appropriate architecture-specific natives are 
loaded at runtime.

If your application fails to locate the native assemblies at runtime, enable 
configuration logging (Section 1.5), which will provide information on the search 
path.

License Key

A valid license key must accompany your deployed NMath code. The key can be 
specified using an environment variable, app config setting, or compiled in your 
code for greatest security. (See Section 1.5 for more information.)

C++ Runtime

NMath has a dependency on the Microsoft Visual C++ 2017 runtime. The NMath 
installer places the C++ runtime on your development machine, if necessary. 
However, when you deploy your application, you may need to add it to your 
installer.
   Chapter 1.   Overview 7



There are two ways to do this:

 Add the Microsoft Visual C++ 2017 merge module to your installer. It can 
be found here:

x86: C:\Program Files (x86)\Common Files\Merge 
Modules\Microsoft_VC120_CRT_x86.msm

x64: C:\Program Files (x86)\Common Files\Merge 
Modules\Microsoft_VC120_CRT_x64.msm

or on the web.

 Use the Microsoft Visual C++ 2017 redistributable:

https://support.microsoft.com/en-us/help/2977003/the-latest-
supported-visual-c-downloads

Note: Visual C++ 2015, 2017 and 2019 all share the same redistributable 
files.

1.7 Web Applications

You can create ASP.NET web applications using NMath, just like any other .NET 
application. However, there are a few additional considerations for building and 
deploying ASP.NET applications.

Referencing NMath

To use NMath types in your web application, add a reference to NMath.dll, just as 
you would with other types of .NET applications. If you are using web projects in 
Visual Studio, you can simply right-click the References folder, and select the Add 
Reference… command. If you specify Copy Local equals true in the reference’s 
properties, then the assembly will be copied to the /bin directory of the web 
application, facilitating deployment to a web server.

If you are not using web projects in Visual Studio—if you are using the Open Web 
Site command in Visual Studio, for example, or are using other development 
tools— you can alternatively specify the reference in the web.config file:

<configuration>
  <system.web>
    <compilation>
      <assemblies>
        <add assembly="NMath, Version=<Version>, Culture=neutral, 
          PublicKeyToken=<Token>"/>
      </assemblies>
8   NMath User’s Guide



    </compilation>
  </system.web>
</configuration>

Native DLLs

For ASP.NET applications, Microsoft recommends that the /bin directory contain 
only .NET assemblies, not native DLLs.

If the deployment web server does not have NMath installed directly, then we 
recommend that the native DLLs be placed in a folder within the web application 
root directory, such as /NativeBin. This folder should then be copied to the 
deployment web server along with the rest of your application.

NMath Configuration

NMath settings can be configured as described in Section 1.5. However, when 
deploying web applications, especially to a shared hosting environment, it's quite 
common not to know the details of the physical structure of the file system, and to 
have restricted access to the system’s environment variables. The references to 
resources within web applications are typically relative to the root of the virtual 
directory for the website, regardless of where they might physically reside on disk.

For this reason, the ASP.NET ~ operator can be used to specify the location of the 
NMath native libraries and the log file, relative to the web application root. That is, 
these can be specified in the web.config file like so:

<add key="NMathNativeLocation" value="~/NativeBin" />
<add key="NMathLogLocation" value="~/Logs" />

It is not sufficient to use relative paths, such as bin/, since the executing assembly 
is usually the ASP.NET worker process. Depending on the web server 
configuration, the working directory is usually a subdirectory of the Windows 
system directory (such as c:\windows\system32).

NOTE—The ~ operator can only be used in ASP.NET applications; specifying this in a 
Windows application will cause the path to be resolved incorrectly.

1.8 Very Large Objects

By default, the .NET runtime limits the size of any one object to 2 GB. For example, 
a matrix is limited to a theoretical maximum of 402,653,184 doubles or 
   Chapter 1.   Overview 9



805,306,368 floats —such as a 20,066 x 20,066 square DoubleMatrix or a 
28,377 x 28,377 square FloatMatrix. With the release of .NET 4.5, developers can 
now create objects that exceed this limit by enabling gcAllowVeryLargeObjects 
in the run-time schema (x64 only), which controls the behavior of the .NET 
garbage collection system.

<configuration>
  <runtime>
    <gcAllowVeryLargeObjects enabled="true" />
  </runtime>
</configuration>

Very large objects are subject to the following restrictions:

 The maximum number of elements in an array is UInt32.MaxValue.

 The maximum index in any single dimension is 2,147,483,591 
(0x7FFFFFC7) for byte arrays and arrays of single-byte structures, and 
2,146,435,071 (0X7FEFFFFF) for other types.

 The maximum size for strings and other non-array objects is unchanged.

For more information, see

https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/
file-schema/runtime/gcallowverylargeobjects-element

Underlying all NMath vectors and matrices is a contiguous 1D array called a data 
block (Chapter 4). Thus, the number of elements for vectors or matrices must be 
less than 2,146,435,071. Table 2 summarizes the maximum size of various 
NMath objects under .NET 4.5 on a x64 OS with gcAllowVeryLargeObjects 
enabled.

The complex versions of these classes have the same maximum number of 
elements but occupy twice the memory.

To use gcAllowVeryLargeObjects, you must target .NET 4.5 or later versions.

Table 2 – Maximum object sizes

Class Maximum size 
(elements)

 Memory size

(GBytes)

FloatVector 2,146,435,071  7.996

DoubleVector 2,146,435,071  15.992

FloatMatrix 2,146,435,071  7.996

DoubleMatrix 2,146,435,071  15.992
10   NMath User’s Guide



Very Large Objects with ASP.NET

The gcAllowVeryLargeObjects flag can only be set per-process, and only when 
the CLR is initializing. It cannot be set in the application-level Web.config file, 
because the CLR is already initialized by the time that file is read.

The workaround is to specify a CLRConfigFile in the aspnet.config file in the 
.NET framework installation. This little-known file is used to specify startup flags 
for both ASP.NET and CLR for those settings that are needed very early in the 
worker process lifetime, when the configuration system is not yet present.

Using CLRConfigFile allows you to specify an intermediate configuration file that 
the CLR can use for initialization. Once the CLR is up, ASP.NET will read your 
Web.config and run your application as normal.

For more information, see

https://weblogs.asp.net/owscott/setting-an-aspnet-config-file-per-
application-pool

1.9 Documentation

NMath includes the following documentation:

 The NMath User’s Guide (this manual)

This document contains an overview of the product, and instructions on 
how to use it. You are encouraged to read the entire User’s Guide. The 
NMath User’s Guide is installed in:

installdir/Docs/NMath.UsersGuide.pdf

An HTML version of the NMath User’s Guide may be viewed online using 
your browser at:

http://www.centerspace.net/doc/NMath/user/

 The NMath Reference

Complete API reference documentation may be viewed online using your 
browser at:

http://www.centerspace.net/doc/NMathSuite/ref/

 A readme file

This document describes the results of the installation process, how to 
build and run code examples, and lists any late-breaking product issues. 
The readme file is installed in:
   Chapter 1.   Overview 11



installdir/readme.txt

This Manual

This manual assumes that you are familiar with the basics of .NET programming 
and object-oriented technology. 

Most code examples in this manual are shown in both C# and Visual Basic. All 
NMath routines are callable from any .NET language.

This manual uses the following typographic conventions:

 specified range:

1.10 Technical Support

Technical support is available according to the terms of your CenterSpace License 
Agreement. You can also purchase extended support contracts through the 
CenterSpace website:

http://www.centerspace.net

To obtain technical support, contact CenterSpace by email at:

mailto:support@centerspace.net

You can save time if you isolate the problem to a small test case before contacting 
Technical Support. 

Table 3 – Typographic conventions

Convention Purpose Example

Courier Function names, code, direc-
tories, file names, examples, 
and operating system 
commands.

DoubleMatrix.Transform()

the Assemblies directory

italic Conventional uses, such as 
emphasis and new terms.

The data-view model distinguishes 
between data and different views 
of the data.

bold Class names, product names, 
and commands from an 
interface.

FloatComplexVector

NMath

Click OK.
12   NMath User’s Guide



PART II - NMATH CORE
      15



16   NMath User’s Guide



CHAPTER 2.  NMATH CORE

The CenterSpace.NMath.Core namespace is the unique NMath namespace. It 
includes the following core functionality:

 Single- and double-precision complex number classes.

 Full-featured vector and matrix classes for four datatypes: single- and 
double-precision floating point numbers, and single- and double-precision 
complex numbers.

 Flexible indexing using slices and ranges.

 Overloaded arithmetic operators with their conventional meanings for 
those .NET languages that support them, and equivalent named methods 
(Add(), Subtract(), and so on) for those that do not.

 Extension of standard mathematical functions, such as Cos(), Sqrt(), and 
Exp(), to work with vectors, matrices, and complex number classes.

 LU factorization for a matrix, as well as functions for solving linear 
systems, computing determinants, inverses, and condition numbers. 

 Least Squares solutions.

 Random number generation from various probability distributions.

 Fast Fourier Transforms (FFTs), and linear convolution and correlation.

 Discrete Wavelet Transforms (DWTs).

 Classes for encapsulating functions of one variable, with support for 
numerical integration (Romberg and Gauss-Kronrod methods), 
differentiation (Ridders' method), and algebraic manipulation of functions.

 Polynomial encapsulation, interpolation, and exact differentiation and 
integration.

 Data filtering, including a moving average filter and a Savitzky-Golay 
smoothing filter.

 Special functions, such factorial, binomial, the gamma function and related 
functions, Bessel functions, elliptic integrals, and many more.
   Chapter 2.   NMath Core 15



To avoid using fully qualified names, preface your code with an appropriate 
namespace statement. For example:

Code Example – C#

using CenterSpace.NMath.Core;

Code Example – VB

imports CenterSpace.NMath.Core
16   NMath User’s Guide



CHAPTER 3.  
COMPLEX NUMBER TYPES

In NMath, the FloatComplex and DoubleComplex structures represent complex 
numbers, consisting of real and imaginary parts of single- and double-precision 
floating point numbers. NMath defines these types as structures, rather than 
classes, for greater efficiency. Remember that structures are value types in .NET, 
and are always passed by value. 

These types support equality operations, conversion from float, double, or a 
string representation, and basic arithmetic operations. They also provide static 
member functions for returning the argument (or phase) of a complex number, the 
complex conjugate, the norm (or modulus), and for converting from polar 
coordinates.

Trigonometric functions for complex numbers, and transcendental functions such 
as exponents, logarithms, powers, and square roots, are available in the 
NMathFunctions class. 

3.1 Creating Complex Numbers

This section describes how to construct instances of FloatComplex and 
DoubleComplex.

Creating Complex Numbers from Numeric Values

You can construct complex number objects from a pair of numeric values 
representing the real and imaginary parts. If only a single value is passed, it is 
assumed to be the real part, and the imaginary part is set to 0.0. For example:

Code Example – C# complex numbers

var c = new FloatComplex( 1.3, 4.5 );   // 1.3 + 4.5i
var c2 = new DoubleComplex( 6.5 );      // 6.5 + 0.0i

Code Example – VB complex numbers

Dim C As New FloatComplex(1.3, 4.5)   ' 1.3 + 4.5i
Dim C2 As New DoubleComplex(6.5)      ' 6.5 + 0.0i
   Chapter 3.   Complex Number Types 17



The static FromPolar() function constructs a complex number with a given 
magnitude and phase angle:

Code Example – C# complex numbers

var c = DoubleComplex.FromPolar( 2 * Math.Sqrt(2), Math.PI/4 );
// c = 2.0 + 2.0i

Code Example – VB complex numbers

Dim C As DoubleComplex =
  DoubleComplex.FromPolar(2 * Math.Sqrt(2), Math.PI / 4)
' c = 2.0 + 2.0i

Creating Complex Numbers from Strings

You can also construct complex number types from a string representation of the 
form (real,imag). The parentheses are optional, and whitespace is ignored. 
Again, if only one value is supplied, it is assumed to be the real part. For instance, 
these are valid strings:

4.2,-5.1
(4.2,-5.1)
4.2

These are not valid strings:

4.2 - 5.1i    
4.2 - 5.1     

Thus:

Code Example – C# complex numbers

string s = “(1.1, -3.23)”; 
var c = new DoubleComplex( s );

Code Example – VB complex numbers

Dim S As String = "(1.1, -3.23)"
Dim C As New DoubleComplex(S)

The static Parse() method performs the same function:

Code Example – C# complex numbers

string s = “(1.1, -3.23)”; 
DoubleComplex c = DoubleComplex.Parse( s );

Code Example – VB complex numbers

Dim S As String = "(1.1, -3.23)"
Dim C As DoubleComplex = DoubleComplex.Parse(s)
18   NMath User’s Guide



NOTE—Note that you cannot use parentheses to represent negative numbers, as is 
done in some financial formats, when parsing complex number strings.

Conversely, the overridden ToString() member function returns a string 
representation of complex number:

Code Example – C# complex numbers

var c = new FloatComplex( 7.61, -1.2 );
Console.WriteLine( c.ToString() );  // prints “(7.61,-1.2)”

Code Example – VB complex numbers

Dim C As New FloatComplex(7.61, -1.2)
Console.WriteLine(c.ToString())  ' prints "(7.61,-1.2)"

A variant of the ToString() method also accepts a standard .NET numeric format 
string. For example, the format string “E” indicates exponential (scientific) notion. 

Implicit Conversion

The implicit conversion operators for the complex number classes are shown in 
Figure 1. An arrow indicates implicit promotion.

Figure 1 – Implicit conversion for complex numbers

3.2 Value Operations on Complex Numbers

Both FloatComplex and DoubleComplex have public instance variables Real and 
Imag that you can use to access and modify the real and imaginary parts of a 
complex number. For instance:

Code Example – C# complex numbers

var c1 = new DoubleComplex( 1.0 );
var c2 = new DoubleComplex( 2.13, 5.6 );
c1.Imag = c2.Imag;
c1.Real = -7.77;
   Chapter 3.   Complex Number Types 19



Code Example – VB complex numbers

Dim C1 As New DoubleComplex(1.0)
Dim C2 As New DoubleComplex(2.13, 5.6)
C1.Imag = C2.Imag
C1.Real = -7.77

You can also use the static functions Real() and Imag() on class NMathFunctions 
to return the real and imaginary parts of a complex number: 

Code Example – C# complex numbers

var c = new DoubleComplex( 2.13, 5.6 );
double d1 = c.Real();
double d2 = NMathFunctions.Real( c );   // d2 == d1

Code Example – VB complex numbers

Dim C As New DoubleComplex(2.13, 5.6)
Dim D1 = C.Real
Dim D2 = NMathFunctions.Real(C)   ' d2 == d1

3.3 Logical Operations on Complex Numbers

Operator == tests for equality of two complex numbers, and returns true if 
left.Real==right.Real and left.Imag==right.Imag; otherwise, false. 
Following the convention of the .NET Framework, if both objects are null, they 
test equal. Operator != returns the logical negation of ==.

The Equals() member function also tests for equality. NaNEquals() ignores 
values that are Not-a-Number (NaN).

NOTE—NMath provides no comparison operators for FloatComplex and DoubleCom-
plex because there is no standard ordering for complex numbers.

3.4 Arithmetic Operations on Complex 
Numbers

NMath provides overloaded arithmetic operators for complex numbers with their 
conventional meanings for those .NET languages that support them, and 
equivalent named methods for those that do not. Table 4 lists the equivalent 
20   NMath User’s Guide



operators and methods.

All binary operators and equivalent named methods work either with two 
complex numbers, or with a complex number and a real value. For example, this 
C# code uses the overloaded operators:

Code Example – C# complex numbers

var c1 = new DoubleComplex( 3.2, 1.0 );
var c2 = new DoubleComplex( -11.002, -6.57 );
DoubleComplex c3 = c1 * c2;
c3 = (c1 / 3.5) - c2;

This Visual Basic code uses the equivalent named methods:

Code Example – VB complex numbers

Dim C1 As New DoubleComplex(3.2, 1.0)
Dim C2 As New DoubleComplex(-11.002, -6.57)
Dim C3 = DoubleComplex.Multiply(C1, C2)
C3 = DoubleComplex.Subtract(DoubleComplex.Divide(C1, 3.5), C2)

3.5 Functions of Complex Numbers

NMath provides a variety of functions that take complex numbers as arguments.

Conjugate, Norm, and Argument

NMath provides static functions on FloatComplex and DoubleComplex for 
common complex number functions:

Table 4 – Arithmetic operators

Operator Equivalent Named Method

+ Add()

- Subtract()

* Multiply()

/ Divide()

Unary - Negate()
   Chapter 3.   Complex Number Types 21



 The static Conj() function returns the conjugate of a complex number. The 
conjugate of a complex number a + bi is defined as a - bi.

 The static Norm() method returns the norm (or modulus) of a complex 
number, defined as the square root of the sum of the squares of the real and 
imaginary parts. 

 The static Arg() method returns the argument of a complex number, 
defined as the directed phase angle in polar coordinates.

For instance:

Code Example – C# complex numbers

var c = new FloatComplex( -8.2, 3.4 );
FloatComplex conj = FloatComplex.Conj( c );
float norm = FloatComplex.Norm( c );
float arg = FloatComplex.Arg( c );

Code Example – VB complex numbers

Dim C As New FloatComplex(-8.2, 3.4)
Dim Conj = FloatComplex.Conj(C)
Dim Norm = FloatComplex.Norm(C)
Dim Arg = FloatComplex.Arg(C)

Trigonometric Functions

NMath extends standard trigonometric functions Sin(), Cos(), Sinh(), Cosh(), 
Tan(), and Tanh() to take complex number arguments. Class NMathFunctions 
provides these functions as static methods; all take a single complex number as an 
argument and return a complex number as a result:

Code Example – C# complex numbers

var c = new DoubleComplex( 1.0, -3.9 );
DoubleComplex sin = NMathFunctions.Sin( c );
DoubleComplex cos = NMathFunctions.Cos( c );

Code Example – VB complex numbers

Dim C As New DoubleComplex(1.0, -3.9)
Dim Sin = NMathFunctions.Sin(C)
Dim Cos = NMathFunctions.Cos(C)
22   NMath User’s Guide



Transcendental Functions

NMath extends standard transcendental functions Exp() and Log() to take 
complex arguments. Class NMathFunctions provides these functions as static 
methods. For example:

Code Example – C# complex numbers

var c = new FloatComplex( -8.11, 3.04 );
FloatComplex exp = NMathFunctions.Exp( c );
FloatComplex log = NMathFunctions.Log( c );

Code Example – VB complex numbers

Dim C As New FloatComplex(-8.11, 3.04)
Dim Exp = NMathFunctions.Exp(C)
Dim Log = NMathFunctions.Log(C)

Class NMathFunctions also provides several static overloads of the exponential 
function Pow(). Versions exist to:

 raise a complex number to an integer exponent

 raise a complex number to a real exponent

 raise a complex number to a complex exponent

 raise a real value to a complex exponent

All return a complex number. For instance:

Code Example – C# complex numbers

var c1 = new DoubleComplex( 12.932, -4.0 );
DoubleComplex c2 = NMathFunctions.Pow( c1, 3 );
DoubleComplex c3 = NMathFunctions.Pow( c1, 1.12 );
DoubleComplex c4 = NMathFunctions.Pow( c1, c3 );
DoubleComplex c5 = NMathFunctions.Pow( 5.2, c1 );

Code Example – VB complex numbers

Dim C1 As New DoubleComplex(12.932, -4.0)
Dim C2 = NMathFunctions.Pow(C1, 3)
Dim C3 = NMathFunctions.Pow(C1, 1.12)
Dim C4 = NMathFunctions.Pow(C1, C3)
Dim C5 = NMathFunctions.Pow(5.2, C1)

Absolute Value and Square Root

The static Abs() function on class NMathFunctions returns the absolute value of a 
complex number, which is simply equal to the norm:
   Chapter 3.   Complex Number Types 23



Code Example – C# complex numbers

var c = new DoubleComplex( 7.99, 0.3 );
double abs = NMathFunctions.Abs( c );

Code Example – VB complex numbers

Dim C As New DoubleComplex(7.99, 0.3)
Dim Abs = NMathFunctions.Abs(C)

NMath also extends the standard Sqrt() function to take a complex argument, 
again as a static method on class NMathFunctions. For example:

Code Example – C# complex numbers

var c = new FloatComplex( -8.11, 3.04 );
FloatComplex sqrt = NMathFunctions.Sqrt( c );

Code Example – VB complex numbers

Dim C As New FloatComplex(-8.11, 3.04)
Dim Sqrt = NMathFunctions.Sqrt(C)
24   NMath User’s Guide



CHAPTER 4.  
VIEWING DATA 

NMath employs the data-view design pattern by distinguishing between data, and 
the different ways mathematical objects such as vectors and matrices view the 
data. For example, a contiguous array of numbers in memory might be viewed by 
one object as the elements of a vector, while another object might view the same 
data as the elements of a matrix, laid out row by row. At any given point in time, 
many different objects might share a given block of data. The data-view pattern 
has definite advantages for both storage efficiency and performance.

Combined with slicing, the data-view pattern also offers a very rich set of matrix 
and vector manipulation semantics.

4.1 DataBlock Classes

This section describes the data block classes that underlie the NMath matrix and 
vector types.

NOTE—You will rarely need to deal directly with data block objects.

Class Names

The classes that encapsulate blocks of data in NMath are named 
<Type>DataBlock, where <Type> is Float, Double, FloatComplex, or 
DoubleComplex. (See Chapter 3 for a description of the complex number 
structures.) Thus:

 The FloatDataBlock class represents an array of single-precision floating 
point numbers.

 The DoubleDataBlock class represents an array of double-precision 
floating point numbers.

 The FloatComplexDataBlock class represents an array of single-precision 
complex numbers.

 The DoubleComplexDataBlock class represents an array of double-
precision complex numbers.
   Chapter 4.   Viewing Data 25



The data referenced by the NMath vector and matrix classes is in the form of an 
instance of one of the data block classes.

Data Block Properties

Each data block object contains a reference to an array of the appropriate datatype, 
and an offset into the array. For instance, a FloatComplexDataBlock object 
contains a reference to an array of FloatComplex instances.

Think of a data block as encapsulating the concept of a pointer without using 
unsafe code. The value of an equivalent pointer is the address of the first element 
of the array, plus the offset.

Data block classes have the following public, read-only properties:

 The Data property returns the array referenced by the data block.

 The Offset property returns the current offset into the array.

 The Length property returns the number of elements currently referenced 
by the data block.

Accessing the Underlying Data

You rarely need to deal directly with data block objects. However, for applications 
that need to interface with native or legacy code, the NMath vector and matrix 
classes can be used to obtain a pointer to the underlying data. Each of these classes 
has a property called DataBlock that returns the data block object being viewed. 
As mentioned above, each data block class contains an array and an offset that 
allows you to extract a pointer to the beginning of the data. For example:

Code Example – C# data block

var v = new DoubleVector( 12, 0, 1 );

DoubleDataBlock dataBlock = v.DataBlock;
unsafe
{
  double *ptr = &(dataBlock.Data[dataBlock.Offset]);
  
  // Do something with *ptr here
}

NOTE—Exercise caution when using raw data pointers.

Vector and matrix classes also provide ToArray() methods that return data copied 
into an array. Thus:
26   NMath User’s Guide



Code Example – C# data block

var v = new DoubleVector( “1 2 3 4 5” );
double[] d = v.ToArray();

var A = new DoubleMatrix( "3x3 [1 2 3  4 5 6  7 8 9]" );
double[,] d2 = A.ToArray();

Code Example – VB data block

Dim V As New DoubleVector("1 2 3 4 5")
Dim D() As Double = V.ToArray()

Dim A As New DoubleMatrix("3x3 [1 2 3  4 5 6  7 8 9]")
Dim D2(,) As Double = A.ToArray()

4.2 Slices and Ranges

The most common means of obtaining a different view of a specific block of data in 
NMath is by using Slice and Range indexing objects. These classes simply provide 
a way to specify a subset on non-negative integers with constant spacing, which 
you can then use as an indexing object into matrices and vectors. (See Chapter 5 
and Chapter 6 for more information.) 

Creating Slices and Ranges

The difference between a Slice and a Range is only in how you specify the integer 
subset. You construct a Slice object by specifying:

 a beginning index

 the total number of indices

 a step increment, or stride

For example, to create a slice for the indices { 2, 4, 6, 8, 10 }, specify a start of 
2, 5 total elements, and a stride of 2, like so:

Code Example – C# slice

var s = new Slice( 2, 5, 2 );

Code Example – VB slice

Dim S As New Slice(2, 5, 2)

You construct a Range object by specifying:

 a beginning index
   Chapter 4.   Viewing Data 27



 an ending index

 a stride

Thus, to create a range for the indices { 2, 4, 6, 8, 10 }, specify a starting 
point of 2, a stopping point of 10, and a stride of 2:

Code Example – C# range

var r = new Range( 2, 10, 2 );

Code Example – VB range

Dim R As New Range(2, 10, 2)

Creating Abstract Subsets

Suppose you want to address the elements in a vector v from the third element to 
the last. You could do this by creating a Range like so:

Code Example – C# range

var r = new Range( 2, v.Length - 1, 1 );

Code Example – VB range

Dim R As New Range(2, v.Length - 1, 1)

but this is rather cumbersome. As a convenience, therefore, NMath provides the 
Position enumeration which lists different view positions of underlying data. You 
can use values in the Position enumeration in conjunction with ranges and slices 
to create abstract subsets. The precise meaning of an abstract subset is only 
determined when an indexing object is applied to a particular matrix or vector. The 
enumerated values are:

 Start indicates the starting position.

 MidPoint indicates the midpoint position, rounded down for data 
structures with an even number of elements.

 End indicates the ending position.

For instance, this code creates two ranges that could be used to specify the odd and 
even elements of a vector:

Code Example – C# range

var evenElements = new Range( Position.Start, Position.End, 2 );
var oddElements = new Range( 1, Position.End, 2 );

Code Example – VB range

Dim EvenElements As New Range(Position.Start, Position.End, 2)
28   NMath User’s Guide



Dim OddElements As New Range(1, Position.End, 2)

The static All property on Slice and Range returns a new object indexing all 
elements:

Code Example – C# slice

Slice allElements = Slice.All;

Code Example – VB range

Dim AllElements As Slice = Slice.All

Modifying Ranges and Slices

You can modify an existing Slice or Range object using the Set() member 
function. For example:

Code Example – C# range

var r = new Range( Position.Start, Position.End, 2 );
r.Set( Position.Start, Position.MidPoint, 1 );

Code Example – VB range

Dim R As New Range(Position.Start, Position.End, 2)
R.Set(Position.Start, Position.MidPoint, 1)
   Chapter 4.   Viewing Data 29



30   NMath User’s Guide



CHAPTER 5.  
VECTOR CLASSES

The NMath vector classes represent mathematical vectors of a particular datatype. 
Each class contains a reference to the data block they are viewing (see Chapter 4), 
along with the parameter values necessary to define their view:

 the number of elements

 a step increment, or stride, between elements of the data block

This is generally transparent to you. NMath provides indexers to perform the 
necessary indirection. For example, v[i] always returns the ith element of vector 
v’s view of the data. 

NOTE—Indexing starts at 0.

5.1 Class Names

The classes that encapsulate vectors in NMath are named <Type>Vector, where 
<Type> is Float, Double, FloatComplex, or DoubleComplex. (See Chapter 3 for a 
description of the complex number classes.) Thus:

 The FloatVector class represents a vector of single-precision floating point 
numbers.

 The DoubleVector class represents a vector of double-precision floating 
point numbers.

 The FloatComplexVector class represents a vector of single-precision 
complex numbers.

 The DoubleComplexVector class represents a vector of double-precision 
complex numbers.

5.2 Creating Vectors

This section describes how to create instances of the vector classes.
   Chapter 5.   Vector Classes 31



Creating Vectors from Numeric Values

You can construct vector objects from numeric values in a variety of ways. All such 
constructors create a new view of a new data block.

A single passed, non-negative integer creates a vector of that length, with all 
values initialized to zero. For instance, this creates a vector of floating point values 
with 10 elements:

Code Example – C# vector

var v = new FloatVector( 10 );

Code Example – VB vector

Dim V As New FloatVector(10)

Another constructor enables you to set the initial value of all elements in the 
vector:

Code Example – C# vector

var v = new DoubleVector( 10, 2.0 );
// v[i]==2 for all i

var u =
  new FloatComplexVector( 10, new FloatComplex( 1.0, -2.0 ) );
// u[j] == 1 - 2i for all j

Code Example – VB vector

Dim V As New DoubleVector(10, 2.0)
' V(i)=2 for all i

Dim U As New FloatComplexVector(10, New FloatComplex(1.0, -2.0))
' U(j) = 1 - 2i for all j

Similarly, the vector classes provide a constructor that lets you set the length, the 
value of the first element, and an amount to increment each successive element in 
the vector. The ith element of the vector thus has the value initialValue + i * 
increment. For example, this creates the vector [1, 3, 5, 7, 9]:

Code Example – C# vector

var v = new FloatVector( 5, 1, 2 );

Code Example – VB vector

Dim V As New FloatVector(5, 1, 2)

You can also create a vector from an array of values:
32   NMath User’s Guide



Code Example – C# vector

double[] dblArray = {1.12, -2.0, 3.88, 1.2, 15.345};
var v = new DoubleVector( dblArray );

Code Example – VB vector

Dim DblArray() As Double = {1.12, -2.0, 3.88, 1.2, 15.345}
Dim V As New DoubleVector(DblArray)

Or a comma-delimited list:

Code Example – C# vector

var v = new FloatVector( 3.5, -6.7, 0.0, 3.11, 8.90, 5.0 );

Code Example – VB vector

Dim V As New FloatVector(3.5, -6.7, 0.0, 3.11, 8.9, 5.0)

Complex vector types can also be created from polar coordinates:

Code Example – C# complex vector from polar coordinates

var magnitudes = new FloatVector( 1, 2, 3, 6 );
var angles = new FloatVector( 1, 2, 3, -3 );
var v = FloatComplexVector.FromPolar( magnitudes, angles );

Code Example – VB complex vector from polar coordinates

Dim Magnitudes As New FloatVector( 1, 2, 3, 6 )
Dim Angles as New FloatVector( 1, 2, 3, -3 )
Dim V = FloatComplexVector.FromPolar( magnitudes, angles )

Lastly, you can use a random number generator to fill a vector with random 
values. See Chapter 9 for more information.

Creating Vectors from Strings

You can also construct vectors from a string representation of the form [ v1 v2 v3 
... ]. The brackets are optional, and extra whitespace is ignored. Again, these 
constructors create a new view of a new data block.

For instance:

Code Example – C# vector

string s = "4.3 -232   5.344 23.4   -32.43      ";
var v = new DoubleVector( s );

s = "[ (4.3,3.5) (23.4,-234.3) (-21.2,0) ]";
var u = new DoubleComplexVector( s );
   Chapter 5.   Vector Classes 33



Code Example – VB vector

Dim S As String = "4.3 -232   5.344 23.4   -32.43      "
Dim V As New DoubleVector(S)

S = "[ (4.3,3.5) (23.4,-234.3) (-21.2,0) ]"
Dim U As New DoubleComplexVector(S)

 An optional second parameter to the constructor accepts values from the 
System.Globalization.NumberStyles enumeration. These styles are used by the 
Parse() methods of the numeric base types. For example:

Code Example – C# vector

using System.Globalization;

string s = "$4.52 $4.32 $4.56 $9.94 ($0.04) ($5.00)";
var v = new FloatVector( s,
     NumberStyles.AllowCurrencySymbol | 
     NumberStyles.AllowDecimalPoint |
     NumberStyles.AllowParentheses );

Code Example – VB vector

Imports System.Globalization

Dim S As String = "$4.52 $4.32 $4.56 $9.94 ($0.04) ($5.00)"
Dim V As New FloatVector(s,
  NumberStyles.AllowCurrencySymbol Or
  NumberStyles.AllowDecimalPoint Or
  NumberStyles.AllowParentheses)

NOTE—Whitespace, even if set as a group separator, is interpreted as a data separator. 
Also note that currency representation is based on locale information in System.Glo-
balization.CultureInfo, unless you override that information.

Finally, you can construct a vector from a given text reader. Just position the text 
reader at the start of a valid text representation of a vector. In this case, the brackets 
are required, since the text reader reads the stream until a closing bracket is 
encountered. For instance:

Code Example – C# vector

var reader = new StreamReader( "data.txt" );
// ... read until start of vector
var v = new DoubleVector( reader );

Code Example – VB vector

Dim Reader As New StreamReader("data.txt")
' ... read until start of vector
Dim V As New DoubleVector(Reader)
34   NMath User’s Guide



Again, an optional second parameter accept values from the 
System.Globalization.NumberStyles enumeration. 

Instead of using a constructor, you can also create a vector from a string 
representation using the static Parse() method. The vector classes provide 
overloads of the Parse() method that accept a string, a string plus number styles, 
a text reader, and a text reader plus number styles.

Thus:

Code Example – C# vector

string s = "$4.52 $4.32 $4.56 $9.94 ($0.04) ($5.00)";
FloatVector v = FloatVector.Parse( s, 
  NumberStyles.AllowCurrencySymbol | 
  NumberStyles.AllowDecimalPoint |
  NumberStyles.AllowParentheses );

Code Example – VB vector

Dim S As String = "$4.52 $4.32 $4.56 $9.94 ($0.04) ($5.00)"
Dim V As FloatVector = FloatVector.Parse(s,
  NumberStyles.AllowCurrencySymbol Or
  NumberStyles.AllowDecimalPoint Or
  NumberStyles.AllowParentheses)

Conversely, the overridden ToString() member function returns a string 
representation of a vector of the form [ v1 v2 v3 ... ]. A variant of the 
ToString() method also accepts a standard .NET numeric format string. For 
example, the format string “C” indicates currency notion:

Code Example – C# vector

var v = new DoubleVector( “[ 1.12 8.95 3.95 4.60 ]” );
Console.WriteLine( v.ToString( “C” ) );

Code Example – VB vector

Dim V As New DoubleVector("[ 1.12 8.95 3.95 4.60 ]")
Console.WriteLine(V.ToString("C"))

The Write() member function writes a text representation of a vector to a given 
text writer. Again, a numeric format string is an optional second parameter.

Creating Vectors from ADO.NET Objects

You can create a vector object from an ADO.NET object such as a DataTable, an 
array of DataRow objects, a DataRowCollection, or a DataView. See Chapter 52 
for more information.
   Chapter 5.   Vector Classes 35



Implicit Conversion

The implicit conversion operators for the vector classes are shown in Figure 2. An 
arrow indicates implicit promotion.

Figure 2 – Implicit conversion for vectors

Copying Vectors

The vector classes provide three copy methods:

 Clone() returns a deep copy of a vector. Data is copied, so each vector 
references different data.

 ShallowCopy() returns a shallow copy of a vector. Data is not copied. Both 
vectors reference the same data.

 DeepenThisCopy() copies the data viewed by a vector to new data block. 
This guarantees that there is only one reference to the underlying data, and 
that this data is in contiguous storage.

For example:

Code Example – C# vector

var v = new DoubleVector( "[1 2 3 4 5]" );
DoubleVector u = v.ShallowCopy();

u[0] = 0;   // v[0] == u[0]
u.DeepenThisCopy();
u[1] = 0;   // v[1] != u[1]

Code Example – VB vector

Dim V As New DoubleVector("[1 2 3 4 5]")
Dim U As DoubleVector = V.ShallowCopy()

U(0) = 0   ' V(0) = U(0)
U.DeepenThisCopy()
U(1) = 0   ' V(1) <> U(1)
36   NMath User’s Guide



New Vector Views

A common method of creating vectors in NMath is to create a new vector view of 
data already referenced by another object. This is achieved using Slice and Range 
objects, as described in Section 4.2. Here’s an example using a Slice object to create 
a new view of a vector’s data:

Code Example – C# vector

var v = new DoubleVector( 10, 1, 1 );
// v = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ] 

var first3Elements = new Slice( 0, 3 );
DoubleVector u = v[first3Elements];

Code Example – VB vector

Dim V As New DoubleVector(10, 1, 1)
' v = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ] 

Dim First3Elements As New Slice(0, 3)
Dim U As DoubleVector = v(First3Elements)

Notice that the vector indexer is overloaded to accept indexing objects, and return 
a new view of the indexed data. 

Vector u behaves exactly like a vector constructed with 3 elements whose values 
are 1, 2, 3. That is: 

Code Example – C# vector

u[0] == 1; // true
u[1] == 2; // true
u[2] == 3; // true
u[3]; //Index out of bounds exception!

Code Example – VB vector

U(0) = 1 ' true
U(1) = 2 ' true
U(2) = 3 ' true
U(3) 'Index out of bounds exception!

The difference between u and a newly constructed vector becomes clear when a 
value in u is changed. This changes the corresponding value in v, since they both 
reference the same data. 

Code Example – C# vector

u[2] = 99;
v[2] == 99; // true!
   Chapter 5.   Vector Classes 37



Code Example – VB vector

U(2) = 99
V(2) = 99 ' true!

Here’s another example using a Range object:

Code Example – C# vector

var v = new DoubleVector( "[1 2 3 4 5 6]" );
DoubleVector everyOther = v[new Range( 0,Position.End,2 )];

Code Example – VB vector

Dim V As New DoubleVector("[1 2 3 4 5 6]")
Dim EveryOther As DoubleVector = V(New Range(0, Position.End, 2))

Methods such as Row(), Column(), Diagonal(), and Slice() on the matrix classes 
also create vector views. See Chapter 6 for more information.

5.3 Value Operations on Vectors

The vector classes have the following read-only properties:

 Length gets the number of data elements in a vector.

 Stride gets the step between successive elements in the data block that a 
vector is viewing.

 DataBlock gets a reference to the data block that a vector is viewing.

For instance, if v is a DoubleComplexVector instance:

Code Example – C# vector

int length = v.Length;
int stride = v.Stride;
DoubleComplexDataBlock block = v.DataBlock;

Code Example – VB vector

Dim Length As Integer = V.Length
Dim Stride As Integer = V.Stride
Dim Block As DoubleComplexDataBlock = V.DataBlock

NOTE—As described in Section 4.1, use caution when accessing a data block refer-
enced by a vector. Other objects may be viewing the same data. 
38   NMath User’s Guide



Accessing and Modifying Vector Values

The vector classes provide standard indexing operators for getting and setting 
element values. Thus, v[i] always returns the ith element of vector v’s view of the 
data.

NOTE—Indexing starts at 0.

You can also use the Set() member function to set the data elements of a vector to 
a specified value.

For example, this code changes the contents of v to alternate values of 0 and 1:

Code Example – C# vector

var v = new FloatVector(10, 0, 1);

var evenElements = new Range( 0, Position.End, 2 );
var oddElements = new Range( 1, Position.End, 2 );

v.Set( evenElements, 0 );
v.Set( oddElements, 1 );

Code Example – VB vector

Dim V As New FloatVector(10, 0, 1)

Dim EvenElements As New Range(0, Position.End, 2)
Dim OddElements As New Range(1, Position.End, 2)

V.Set(EvenElements, 0)
V.Set(OddElements, 1)

NOTE—Any method that returns a vector view of the data referenced by a vector can 
be used to modify the values of the original vector, since the returned vector and the 
original vector share the data. 

Clearing and Resizing a Vector

The vector classes provide two methods for changing the length of a vector after it 
has been created:

 Clear()resetsthe value of all data elements to zero.

 Resize() changes the size of a vector to the specified length, adding zeros 
or truncating as necessary.

 ResizeAndClear() performs the same function as Resize(), but also 
resets the value of all remaining data elements to zero.
   Chapter 5.   Vector Classes 39



Appending to a Vector

You can add new elements to the end of a vector using the Append() methods. 
Thus, this code adds a single element to the end of a vector:

Code Example – C# vector

var v = new FloatVector( 10, 0, 0.5F );
float x = 5.5F;
v.Append( x );

Code Example – VB vector

Dim V As New FloatVector(10, 0, 0.5F)
Dim X As Single = 5.5F
V.Append(X)

This code appends another vector to the end of a vector:

Code Example – C# vector

var v = new DoubleVector( 10, 0, 1 );
var w = new DoubleVector( 5, 11, 1 );
v.Append( w );

Code Example – VB vector

Dim V As New DoubleVector(10, 0, 1)
Dim W As New DoubleVector(5, 11, 1)
V.Append(W)

Note that a new vector is allocated by the Append() methods, and data is copied.
40   NMath User’s Guide



5.4 Logical Operations on Vectors

Operator == tests for equality of two vectors, and returns true if both vectors have 
the same dimensions and all values are equal; otherwise, false. Following the 
convention of the .NET Framework, if both objects are null, they test equal. The 
comparison of the values for DoubleVector and DoubleComplexVector is done 
using operator == for doubles; comparison of the values for FloatVectorand 
FloatComplexVector is done using operator == for floats.  Therefore, the values of 
the vectors must be exactly equal for this method to return true. Operator != 
returns the logical negation of ==.

The Equals() member function also tests for equality. NaNEquals() ignores 
values that are Not-a-Number (NaN).

5.5 Arithmetic Operations on Vectors

NMath provides overloaded arithmetic operators for vectors with their 
conventional meanings for those .NET languages that support them, and 
equivalent named methods for those that do not. Table 5 lists the equivalent 
operators and methods.

Unary negation, increment, and decrement operators are applied to every element 
in a vector. The Negate() method returns a new vector object; Increment() and 
Decrement() do not.

All binary operators and equivalent named methods work either with two vectors, 
or with a vector and a scalar.

Table 5 – Arithmetic operators

Operator Equivalent Named Method

+ Add()

- Subtract()

* Multiply()

/ Divide()

Unary - Negate()

++ Increment()

-- Decrement()
   Chapter 5.   Vector Classes 41



NOTE—Vectors must have the same length to be combined using the element-wise 
operators. Otherwise, a MismatchedSizeException is thrown. (See Chapter 53.) 

For example, this C# code uses the overloaded operators:

Code Example – C# vector

var v = new FloatVector(5,0,1);  // [0,1,2,3,4]
var u = new FloatVector(5,1,1);  // [1,2,3,4,5]
float scalar = 2;

FloatVector w = v + scalar*u;

This Visual Basic code uses the equivalent named methods:

Code Example – VB vector

Dim V As New FloatVector(5, 0, 1)
Dim U As New FloatVector(5, 1, 1)
Dim Scalar As Single = 2

Dim W As FloatVector = FloatVector.Add(V,
  FloatVector.Multiply(Scalar, U))

NMath also provides overloads of the arithmetic named methods that accept three 
vector arguments. The third vector holds the result of applying the appropriate 
operation to the first two vectors. Because no new memory is allocated, efficiency 
is increased. This is especially useful for repeated operations, such as within loops. 
For instance, this code adds two vectors and stores the result in a third:

Code Example – C# vector

var v = new DoubleVector( "[ 0 1 2 3 4 ]" );
var u = new DoubleVector( 5, 1 );
var w = new DoubleVector( u.Length );

DoubleVector.Add( v, u, w );
DoubleVector.Add( v, u++, w );
DoubleVector.Add( v, v, w );
// Still only three vectors allocated

Code Example – VB vector

Dim V As New DoubleVector("[ 0 1 2 3 4 ]")
Dim U As New DoubleVector(5, 1)
Dim W As New DoubleVector(U.Length)

DoubleVector.Add(V, U, W)
DoubleVector.Add(V, U.Increment(), W)
DoubleVector.Add(V, V, W)
' Still only three vectors allocated
42   NMath User’s Guide



If the three vectors are not all of the same length, a MismatchedSizeException is 
thrown. 

Note that the third vector argument can also be the same as one of the first two 
arguments, in which case it is overwritten with the result:

Code Example – C# vector

DoubleVector.Subtract( u, v, v );

Code Example – VB vector

DoubleVector.Subtract(U, V, V)

5.6 Functions of Vectors

NMath provides a variety of functions that take vectors as arguments.

Rounding Functions

Class NMathFunctions provides static methods for rounding a vector’s elements:

 Round() rounds each element of a given vector to the specified number of 
decimal places.

 Ceil() applies the ceiling rounding function to each element of a given 
vector.  

 Floor() applies the floor rounding function to each element of a given 
vector. 

For instance, this code converts a vector of dollar amounts to Euros, then rounds to 
two decimal places:

Code Example – C# vector

var v = new DoubleVector( "$4.30 $0.08 ($5.87)", 
   NumberStyles.Number | NumberStyles.AllowCurrencySymbol | 
   NumberStyles.AllowParentheses );
v = v * 0.9289;  // exchange rate
v = NMathFunctions.Round( v, 2 );

Code Example – VB vector

Dim V As New DoubleVector("$4.30 $0.08 ($5.87)",
  NumberStyles.Number Or NumberStyles.AllowCurrencySymbol Or
  NumberStyles.AllowParentheses)
V = V * 0.9289  ' exchange rate
V = NMathFunctions.Round(V, 2)
   Chapter 5.   Vector Classes 43



Sums, Differences, and Products

Class NMathFunctions provides static methods to calculate sums, differences, and 
products of vector elements:

 Sum() returns the sum of the elements in a given vector.

 AbsSum() returns the sum of the absolute value of the elements in a given 
vector. (For complex vectors, this function calculates the sum of the L1 
norms of the vector's elements.)

 CumulativeSum() returns a vector containing the cumulative sum of the 
elements in a given vector, such that u[i] = v[0] + v[1] + ... v[i].

 NaNSum() returns the sum of the elements in a given vector, ignoring values 
that are Not-a-Number (NaN). NaN functions are available for real-value 
vectors only, not complex number vectors.

 Delta() returns a vector containing the differences between successive 
elements in a given vector, such that:

u[0] = v[0]
u[i] = v[i] - v[i-1]

 Product() returns the product of the elements in a given vector.

 CumulativeProduct() returns a vector containing the cumulative product 
of the elements in a given vector.

 Dot() returns the vector dot, or inner, product d of two vectors, v and w, 
where

d = v[0]*w[0] + v[1]*w[1]...

 OuterProduct() creates a matrix containing the outer product of two 
vectors.

 Cross() computes the cross product of two vectors. The vectors must have 
at least length three, and elements beyond three are ignored for purposes of 
computing the cross product.

For example:

Code Example – C# vector

var v = new FloatVector( "[1 2 3 4 5 6]" ); 
var u = new FloatVector( v.Length, 1, 1 );

float dp = NMathFunctions.Dot( v, u );
44   NMath User’s Guide



Code Example – VB vector

Dim V As New FloatVector("[1 2 3 4 5 6]")
Dim U As New FloatVector(V.Length, 1, 1)

Dim DP As Single = NMathFunctions.Dot(V, U)

Min/Max Functions

Class NMathFunctions provides static min/max finding methods that return the 
integer index of the element that meets the appropriate criterion:

 MaxIndex() returns the index of the element with the greatest value.

 MinIndex() returns the index of the element with the smallest value.

 MaxAbsIndex() returns the index of the element with the greatest absolute 
value.

 MinAbsIndex() returns the index of the element with the smallest absolute 
value.

Min/max value methods MaxValue(), MinValue(), MaxAbsValue(), and 
MinAbsValue() return the value of the element that meets the appropriate 
criterion. The returned type depends on the type of the vector. For instance, the 
MaxValue() method that accepts a DoubleVector returns a double.

NaNMax(), NaNMin(), NaNMaxIndex(), and NaNMinIndex() ignore values that are 
Not-a-Number (NaN). NaN functions are available for real-value vectors only, not 
complex number vectors.

Statistical Functions

The static Mean() method on NMathFunctions returns the mean of a given 
vector’s elements. Median() returns the median. If the length of the vector is even, 
the middle two elements are averaged. Median() is available for real-value vectors 
only, not complex number vectors, because there is no standard ordering for 
complex numbers.

Variance() returns the biased variance of the elements. For instance:

Code Example – C# vector

var v = new DoubleVector( "[1 2 3 4 5 6]" ); 
double mean = NMathFunctions.Mean( v );
double variance = NMathFunctions.Variance( v );
   Chapter 5.   Vector Classes 45



Code Example – VB vector

Dim V As New DoubleVector("[1 2 3 4 5 6]")
Dim Mean As Double = NMathFunctions.Mean(V)
Dim Variance As Double = NMathFunctions.Variance(V)

SumOfSquares() returns the sum of the squared deviations from the mean of the 
elements of a given vector.

NaNMean(), NanMedian(), NaNVariance(), and NanSumOfSquares() ignore 
values that are Not-A-Number (NaN). NaNCount() returns the number of NaN 
values in a vector. NaN functions are available for real-value vectors only, not 
complex vectors.

Trigonometric Functions

NMath extends standard trigonometric functions Acos(), Asin(), Atan(), Cos(), 
Cosh(), Sin(), Sinh(), Tan(), and Tanh() to take vector arguments. Class 
NMathFunctions provides these functions as static methods. For example, this 
code construct a vector whose contents are the cosines of another vector:

Code Example – C# vector

var v = new FloatVector( 10, 0, 2 );
FloatVector cosv = NMathFunctions.Cos( v );

Code Example – VB vector

Dim V As New FloatVector(10, 0, 2)
Dim Cosv As FloatVector = NMathFunctions.Cos(V)

The static Atan2() method takes two vectors and applies the two-argument arc 
tangent function to successive pairs of elements.

Transcendental Functions

NMath extends standard transcendental functions Exp() and Log(), Log10() to 
take vector arguments. Class NMathFunctions provides these functions as static 
methods; each takes a single vector as an argument and return a vector as a result. 
For instance, this code creates a vector whose elements are the log of another 
vector’s elements:

Code Example – C# vector

var v = new DoubleVector( 10, 0, 5 );
DoubleVector log = NMathFunctions.Log( v );
46   NMath User’s Guide



Code Example – VB vector

Dim V As New DoubleVector(10, 0, 5)
Dim Log As DoubleVector = NMathFunctions.Log(V)

Class NMathFunctions also provides the exponential function Pow() to raise each 
element of a vector to a real exponent:

Code Example – C# vector

var v = new DoubleVector( 100, 0, 1 );
FloatVector vCubed = NMathFunctions.Pow( v, 3 );

Code Example – VB vector

Dim V As New DoubleVector(100, 0, 1)
Dim VCubed As FloatVector = NMathFunctions.Pow(V, 3)

Absolute Value and Square Root

The static Abs() function on class NMathFunctions applies the absolute value 
function to each element of a given vector: 

Code Example – C# vector

var v = new DoubleVector ( 10, 0, -1 );
DoubleVector abs = NMathFunctions.Abs( v );

Code Example – VB vector

Dim V As New DoubleVector(10, 0, -1)
Dim ABS As DoubleVector = NMathFunctions.Abs(V)

NMath also extends the standard Sqrt() function to take a vector argument. 
Thus, this code creates a vector whose elements are the square root of another 
vector’s elements:

Code Example – C# vector

var v = new DoubleVector( 10, 0, 5 );
DoubleVector sqrt = NMathFunctions.Sqrt( v );

Code Example – VB vector

Dim V As New DoubleVector(10, 0, 5)
Dim SQRT As DoubleVector = NMathFunctions.Sqrt(V)

Sorting Functions

The static Sort() method on class NMathFunctions sorts the elements of a given 
vector in ascending order using the quicksort algorithm and returns a new vector 
containing the result:
   Chapter 5.   Vector Classes 47



Code Example – C# vector

double[] dblArray = { 1.12, -2.0, 3.88, 1.2, 15.345 };
var v = new DoubleVector( dblArray );    

v = NMathFunctions.Sort( v );

Code Example – VB vector

Dim DblArray() As Double = {1.12, -2.0, 3.88, 1.2, 15.345}
Dim V As New DoubleVector(DblArray)

V = NMathFunctions.Sort(V)

NOTE—This method is only available for FloatVector and DoubleVector, since there is 
no standard ordering for complex numbers.

Any NaN values in the vector are placed at the end of the ordered vector. To order 
the elements in descending order, Reverse() the returned vector:

Code Example – C# vector

v = NMathFunctions.Sort( v ).Reverse();

Code Example – VB vector

V = NMathFunctions.Sort(V).Reverse()

Complex Vector Functions

Static methods Real() and Imag() on class NMathFunctions return the real and 
imaginary part of a vector’s elements. If the elements of the given vector are real, 
Real() simply returns the given vector and Imag() returns a vector of the same 
length containing all zeros.

Static methods Arg() and Conj() on class NMathFunctions return the arguments 
(or phases) and complex conjugates of a vector’s elements. If the elements of the 
given vector are real, both methods simply return the given vector.

5.7 Generic Functions

NMath provides convenience methods for applying unary and binary functions to 
elements of a vector. Each of these methods takes a function delegate. The Apply() 
method returns a new vector whose contents are the result of applying the given 
function to each element of the vector. The Transform() method modifies a vector 
object by applying the given function to each of its elements. For example, 
assuming MyFunc is a function that takes a double and returns a double:
48   NMath User’s Guide



Code Example – C# vector

var v = new DoubleVector ( 10, 0, -1 );

// Construct a delegate for MyFunc
Func<double, double> MyFuncDelegate =
   new Func<double, double>( MyFunc ); 

// Construct a new vector whose values are the result of applying
// MyFunc to the values in vector v. v remains unchanged.
DoubleVector w = v.Apply( MyFuncDelegate );

// Transform the contents of v.
v.Transform( MyFuncDelegate );

v == w; // true!

Code Example – VB vector

Dim V As New DoubleVector(10, 0, -1)

' Construct a delegate for MyFunc
Dim MyFuncDelegate As New Func(Of Double, Double)(AddressOf MyFunc)

' Construct a new vector whose values are the result of applying
' MyFunc to the values in vector v. v remains unchanged.
Dim W As DoubleVector = V.Apply(MyFuncDelegate)

' Transform the contents of v.
V.Transform(MyFuncDelegate)

V = W ' true!

NMath provides delegates for many commonly used math functions in the 
NMathFunctions class.

5.8 Vector Enumeration

NMath vector classes provide standard .NET GetEnumerator() methods for 
returning IEnumerator objects. For example:

Code Example – C# vector

var v = new FloatVector( 12, -4.3F );
IEnumerator elements = v.GetEnumerator();
   Chapter 5.   Vector Classes 49



var data = new float[ v.Length ];
int i = 0;
while ( elements.MoveNext() ) 
{
  data[i++] = (float) elements.Current;
}

Code Example – VB vector

Dim V As New FloatVector(12, -4.3F)
Dim Elements As IEnumerator = V.GetEnumerator()

Dim Data(V.Length) As Single
Dim I = 0
While Elements.MoveNext()
  I = I + 1
  Data(I) = CType(Elements.Current, Single)
End While

Note that the Current property on an IEnumerator returns the current object in 
the collection, which must then be cast to the appropriate type. NMath also 
provides custom strongly-typed enumerators: IFloatEnumerator, 
IDoubleEnumerator, IFloatComplexEnumerator, and 
IDoubleComplexEnumerator. These avoid casting, and are therefore much faster. 
For instance:

Code Example – C# vector

var v = new FloatVector( 12, -4.3F );
IFloatEnumerator elements = v.GetFloatEnumerator();

var data = new float[ v.Length ];
int i = 0;
while ( elements.MoveNext() ) 
{
  data[i++] = elements.Current;      // No need to cast to float
}

Code Example – VB vector

Dim V As New FloatVector(12, -4.3F)
Dim Elements As IFloatEnumerator = V.GetFloatEnumerator()

Dim Data(V.Length) As Single
Dim I = 0
While Elements.MoveNext()
  I = I + 1
  Data(I) = elements.Current      ' No need to cast to float
End While
50   NMath User’s Guide



CHAPTER 6.  
MATRIX CLASSES

The NMath matrix classes represent mathematical matrices of a particular 
datatype. Each class contains a reference to the data block they are viewing (see 
Chapter 4), along with the parameter values necessary to define their view:

 the number of rows and columns

 the distance between successive row elements, called the row stride

 the distance between successive column elements, called the column stride

This is generally transparent to you. NMath provides indexers to perform the 
necessary indirection. For example, A[i,j] always returns the element in the ith 
row and jth column of matrix A’s view of the data.

NOTE—Indexing starts at 0.

6.1 Class Names

The classes that encapsulate matrices in NMath are named <Type>Matrix, where 
<Type> is Float, Double, FloatComplex, or DoubleComplex. (See Chapter 3 for a 
description of the complex number classes.) Thus:

 The FloatMatrix class represents a matrix of single-precision floating point 
numbers.

 The DoubleMatrix class represents a matrix of double-precision floating 
point numbers.

 The FloatComplexMatrix class represents a matrix of single-precision 
complex numbers.

 The DoubleComplexMatrix class represents a matrix of double-precision 
complex numbers.

6.2 Creating Matrices

This section describes how to create instances of the matrix classes.
   Chapter 6.   Matrix Classes 51



Creating Matrices from Numeric Values

You can construct matrix objects from numeric values in a variety of ways. All 
such constructors create a new view of a new data block.

The simplest constructor creates a matrix of the specified dimensions, with all 
values initialized to zero. For example, this code creates a 4x5 matrix of floating 
point values:

Code Example – C# matrix

var v = new FloatMatrix( 4, 5 );

Code Example – VB matrix

Dim V As New FloatMatrix(4, 5)

Another constructor enables you to set the initial value of all elements in the 
matrix. This creates a 3x3 matrix of FloatComplex instances with all values 
initialized to 1.0 - 3.0i:

Code Example – C# matrix

var c = new FloatComplex( 1.0, -3.0 );
var A = new FloatComplexMatrix( 3, 3, c );

Code Example – VB matrix

Dim C As New FloatComplex(1.0F, -3.0F)
Dim A As New FloatComplexMatrix(3, 3, c)

Similarly, the matrix classes provide a constructor that lets you specify the 
dimensions of the matrix, the value of the first element, and an amount to 
increment each successive element. That is: 

Code Example – C# matrix

A[i,j] = initialValue + (i+j) * increment

Code Example – VB matrix

A(I, J) = InitialValue + (I + J) * Increment

For instance:

Code Example – C# matrix

var A = new DoubleMatrix( 5, 5, 0, 1 );

//     | 0 5 10 15 20 |
//     | 1 6 11 16 21 |
// A = | 2 7 12 17 22 |
//     | 3 8 13 18 23 |
//     | 4 9 14 19 24 |
52   NMath User’s Guide



Code Example – VB matrix

Dim A As New DoubleMatrix(5, 5, 0, 1)

'     | 0 5 10 15 20 |
'     | 1 6 11 16 21 |
' A = | 2 7 12 17 22 |
'     | 3 8 13 18 23 |
'     | 4 9 14 19 24 |

You can easily create a matrix from a 2-dimensional array of values. For example:

Code Example – C# matrix

float[,] data = new float[10,17];
for ( i = 0; i < 10; ++i )
{
  for ( j = 0; j < 17; ++j )
  {
    data[i,j] = 3.1415*i + j;
  }
}
var A = new FloatMatrix( data );

Code Example – VB matrix

Dim Data(10, 17) As Single
For I As Integer = 0 To 9
  For J As Integer = 0 To 16
    Data(I, J) = 3.1415 * I + J
  Next
Next
Dim A As New FloatMatrix(Data)

You can also create a matrix from a 1-dimensional array of values, but in this case 
you must also specify the dimensions of the matrix, and whether the given array is 
laid out in row-major or column-major order. NMath provides the StorageType 
enumeration for indicating the storage scheme. For instance: 

Code Example – C# matrix

double[] data = { 0.0, 2.0,  4.0, 1.0,  3.0, 5.0 };
DoubleMatrix A =
   new DoubleMatrix( 3, 2, data, StorageType.ColumnMajor );

//     |  0.0  1.0  |
// A = |  2.0  3.0  |
//     |  4.0  5.0  |

Code Example – VB matrix

Dim Data() As Double = {0.0, 2.0, 4.0, 1.0, 3.0, 5.0}
Dim A As New DoubleMatrix(3, 2, Data, StorageType.ColumnMajor)
   Chapter 6.   Matrix Classes 53



'     |  0.0  1.0  |
' A = |  2.0  3.0  |
'     |  4.0  5.0  |

NOTE—Once in a matrix, all data is stored in the underlying data block in column-
major order.

You can also tile a matrix by replicating an existing matrix or vector using the 
NMathFunctions RepMat() methods. For example, this code creates a large matrix 
B consisting of an m-by-n tiling of copies of A:

Code Example – C# matrix

var A = new DoubleMatrix( 15, 3, -0.4, 0.3 );
int m = 4;
int n = 8;
DoubleMatrix B = NMathFunctions.RepMat( A, m, n );

Code Example – VB matrix

Dim A As New DoubleMatrix(15, 3, -0.4, 0.3)
Dim M As Integer = 4
Dim N As Integer = 8
Dim B As DoubleMatrix = NMathFunctions.RepMat(A, M, N)

Lastly, you can use a random number generator to fill a matrix with random 
values. See Chapter 9 for more information.

Creating Matrices from Strings

You can also construct matrices from a string representation. The string must 
contain the number of rows, followed by an optional separator character such as x, 
followed by the number of columns. The matrix values, separated by white space, 
are then read in row by row. If the sequence of numbers begins with a left bracket 
'[', then the numbers are read until a matching right bracket ']' is encountered. 
If no brackets are used, numbers are read until the end of the string. For example:

Code Example – C# matrix

var A = new DoubleMatrix( "3x3 [1 2 3 4 5 6 7 8 9]" );
var B =
   new FloatComplexMatrix( "2 2 (1,0) (2,1.2) (3.3,0) (4,3.12)" );

Code Example – VB matrix

Dim A As New DoubleMatrix("3x3 [1 2 3 4 5 6 7 8 9]")
Dim B As New FloatComplexMatrix(
  "2 2 (1,0) (2,1.2) (3.3,0) (4,3.12)")
54   NMath User’s Guide



 An optional second parameter accepts values from the 
System.Globalization.NumberStyles enumeration. These styles are used by the 
Parse() methods of the numeric base types. For instance:

Code Example – C# matrix

using System.Globalization;

string s = " 2 x 2 [ 1.1e+001 2.2e+000 4.4e+002 8.8e+000 ]";
var A = new DoubleMatrix( s, NumberStyles.Number |  
  NumberStyles.AllowExponent );

Code Example – VB matrix

Imports System.Globalization

Dim S As String = " 2 x 2 [ 1.1e+001 2.2e+000 4.4e+002 8.8e+000 ]"
Dim A As New DoubleMatrix(S, NumberStyles.Number Or 
  NumberStyles.AllowExponent)

Finally, you can construct a matrix from a given text reader. Just position the text 
reader at the start of a valid text representation of a matrix. In this case, the 
brackets are required, since the text reader reads the stream until a closing bracket 
is encountered.

For example:

Code Example – C# matrix

var reader = new StreamReader( "data.txt" );
// Read until the start of the matrix
var A = new FloatMatrix( reader );

Code Example – VB matrix

Dim Reader As New StreamReader("data.txt")
' Read until the start of the matrix
Dim A As New FloatMatrix(Reader)

Again, an optional second parameter accept values from the 
System.Globalization.NumberStyles enumeration. 

Instead of using a constructor, you can also create a matrix from a string 
representation using the static Parse() method. The matrix class provide 
overloads of the Parse() method that accept a string, a string plus number styles, 
a text reader, and a text reader plus number styles. Thus:

Code Example – C# matrix

string s = "2x2 [ [1 2 3 4 ]”;
DoubleMatrix A = DoubleMatrix.Parse( s );
   Chapter 6.   Matrix Classes 55



Code Example – VB matrix

Dim S As String = "2x2 [ [1 2 3 4 ]"
Dim A As DoubleMatrix = DoubleMatrix.Parse(S)

Conversely, the overridden ToString() member function returns a string 
representation of a matrix of the form:

[number of rows] x [number of columns] [ matrix values row by row] 

A variant of the ToString() method also accepts a standard .NET numeric format 
string. For instance, the format string “C” indicates currency notion:

Code Example – C# matrix

var A = new FloatMatrix( "2x2 [4.523 4.323 4.555 -9.943]" );
Console.WriteLine(A.ToString("C"));
// prints out "2x2 [ $4.52 $4.32 $4.56 ($9.94) ]" in en-US locale

Code Example – VB matrix

Dim A As New FloatMatrix("2x2 [4.523 4.323 4.555 -9.943]")
Console.WriteLine(A.ToString("C"))
' prints out "2x2 [ $4.52 $4.32 $4.56 ($9.94) ]" in en-US locale  

The Write() member function writes a text representation of a matrix to a given 
text writer. Again, a numeric format string is an optional second parameter.

Creating Matrices from ADO.NET Objects

You can create a matrix object from an ADO.NET object such as a DataTable, an 
array of DataRow objects, a DataRowCollection, or a DataView. See Chapter 52 
for more information.
56   NMath User’s Guide



Implicit Conversion

The implicit conversion operators for the matrix classes are shown in Figure 3. An 
arrow indicates implicit promotion.

Figure 3 – Implicit conversion for matrices

Copying Matrices

The matrix classes provide three copy methods:

 Clone() returns a deep copy of a matrix. Data is copied, so each matrix 
references different data.

 ShallowCopy() returns a shallow copy of a matrix. Data is not copied. Both 
matrices reference the same data.

 DeepenThisCopy() copies the data viewed by a matrix to new data block. 
This guarantees that there is only one reference to the underlying data, and 
that this data is in contiguous storage.

For instance:

Code Example – C# matrix

var A = new FloatMatrix( 4, 5, 1.0 );
FloatMatrix B = A.ShallowCopy();

B[0,0] = 0;   // A[0,0] == B[0,0]
B.DeepenThisCopy();
B[0,1] = 0;   // A[0,1] != B[0,1]

Code Example – VB matrix

Dim A As New FloatMatrix(4, 5, 1.0)
Dim B As FloatMatrix = A.ShallowCopy()

B(0, 0) = 0   ' A[0,0] == B[0,0]
B.DeepenThisCopy()
B(0, 1) = 0   ' A[0,1] != B[0,1]
   Chapter 6.   Matrix Classes 57



Matrix Views

Another way to create matrices in NMath is to create a new matrix view of data 
already referenced by another matrix. This is achieved using Slice and Range 
objects, as described in Section 4.2. Here’s an example using a Range object to 
create a new matrix view of the top left corner of a matrix:

Code Example – C# matrix

var A = new DoubleMatrix( 8, 8 );
var topLeft = new Range( 0, 3 );
DoubleMatrix AtopLeft = A[ topLeft, topLeft ];

Code Example – VB matrix

Dim A As New DoubleMatrix(8, 8)
Dim TopLeft As New Range(0, 3)
Dim ATopLeft As DoubleMatrix = A(TopLeft, TopLeft)

Notice that the matrix indexer is overloaded to accept indexing objects, and return 
a new view of the indexed data. 

6.3 Value Operations on Matrices

The matrix classes have the following read-only properties:

 Cols gets the number of columns in a matrix.

 ColStride gets the step increment between successive elements in a 
column.

 Rows gets the number of rows in a matrix.

 RowStride gets the step increment between successive elements in a 
column.

 DataBlock gets a reference to the data block that a matrix is viewing.

For example, if A is a FloatComplexMatrix instance:

Code Example – C# matrix

int cols = A.Cols;
int rows = A.Rows;
FloatComplexDataBlock block = A.DataBlock;
58   NMath User’s Guide



Code Example – VB matrix

Dim Cols As Integer = A.Cols
Dim Rows As Integer = A.Rows
Dim Block As FloatComplexDataBlock = A.DataBlock

NOTE—As described in Section 4.1, use caution when accessing a data block refer-
enced by a matrix. Other objects may be viewing the same data. 

Accessing and Modifying Matrix Values

The matrix classes provide standard indexers for getting and setting element value 
at a specified row and column position in a matrix. Thus, A[i,j] always returns 
the element in the ith row and jth column of matrix A’s view of the data.

NOTE—Indexing starts at 0.

Thus, this code sets the value in the lower right corner of the matrix to zero:

Code Example – C# matrix

var A = new DoubleMatrix( "2x2 [1 2 3 4]" );
A[1,1] = 0;

Code Example – VB matrix

Dim A As New DoubleMatrix("2x2 [1 2 3 4]")
A(1, 1) = 0

The matrix indexer is also overloaded to accept Range and Slice indexing objects. 
For instance:

Code Example – C# matrix

var A = new DoubleMatrix( 5, 5, 2);
var B = new DoubleMatrix( 2, 2, 1);
var s = new Slice( 0, 2 );

A[s,s] = B

Code Example – VB matrix

Dim A As New DoubleMatrix(5, 5, 2)
Dim B As New DoubleMatrix(2, 2, 1)
Dim S As New Slice(0, 2)

A(S, S) = B

You can also use the Set() member function to set the data elements of a matrix to 
a specified value. For instance, this code sets values in the last two columns of 
matrix A to zero:
   Chapter 6.   Matrix Classes 59



Code Example – C# matrix

int rows = 5, cols = 5;
var A = new DoubleMatrix( rows, cols, 0, 1 );

var col = new Slice( 3, 2 );
Slice row = Slice.All; 
A.Set( col, row, 0 );

Code Example – VB matrix

Dim Rows As Integer = 5
Dim Cols As Integer = 5
Dim A As New DoubleMatrix(Rows, Cols, 0, 1)

Dim Col As New Slice(3, 2)
Dim Row As Slice = Slice.All
A.Set(Col, Row, 0)

You can replace either slice with an integer value indicating a particular row or 
column. Thus, this code changes the values in the first column of A to -1:

Code Example – C# matrix

A.Set( 1, Slice.All, -1);

Code Example – VB matrix

A.Set(1, Slice.All, -1)

NOTE—Any method that returns a vector view of the data referenced by a matrix can 
be used to modify the values of matrix, since the returned vector and the matrix share 
the data. See Section 6.6.

Clearing and Resizing a Matrix

The matrix classes provide two methods for changing the size of a matrix after it 
has been created:

 Clear() resets the value of all data elements to zero.

 Resize() changes the size of a matrix to the specified number of rows and 
columns, adding zeros or truncating as necessary.

 ResizeAndClear() performs the same function as Resize(), but also 
resets the value of all remaining data elements to zero.
60   NMath User’s Guide



6.4 Logical Operations on Matrices

Operator == tests for equality of two matrices, and returns true if both matrices 
have the same dimensions and all values are equal; otherwise, false. Following 
the convention of the .NET Framework, if both objects are null, they test equal. 
The comparison of the values for DoubleMatrix and DoubleComplexMatrix is 
done using operator == for doubles; comparison of the values for FloatMatrix and 
FloatComplexMatrix is done using operator == for floats. Therefore, the values of 
the matrices must be exactly equal for this method to return true. Operator != 
returns the logical negation of ==.

The Equals() member function also tests for equality. NaNEquals() ignores 
values that are Not-a-Number (NaN).

6.5 Arithmetic Operations on Matrices

NMath provides overloaded arithmetic operators for matrices with their 
conventional meanings for those .NET languages that support them, and 
equivalent named methods for those that do not. Table 6 lists the equivalent 
operators and methods.

Unary negation, increment, and decrement operators are applied to every element 
in a matrix. The Negate() method returns a new matrix object; Increment() and 
Decrement() do not.

All binary operators and equivalent named methods work either with two 
matrices, or with a matrix and a scalar.

Table 6 – Arithmetic operators

Operator Equivalent Named Method

+ Add()

- Subtract()

* Multiply()

/ Divide()

Unary - Negate()

++ Increment()

-- Decrement()
   Chapter 6.   Matrix Classes 61



NOTE—Matrices must have the same dimensions to be combined using the element-
wise operators. Otherwise, a MismatchedSizeException is thrown. (See Chapter 53.) 

For example, this C# code uses the overloaded operators:

Code Example – C# matrix

int rows = 3, cols = 3;

var A =
   new DoubleComplexMatrix( rows, cols, new DoubleComplex(1,0) );
var B =
   new DoubleComplexMatrix( rows, cols, new DoubleComplex(0,1) );
var s = new DoubleComplex( 2, 0 );

DoubleComplexMatrix result = A + s*B;

This Visual Basic code uses the equivalent named methods:

Code Example – VB matrix

Dim rows As Integer = 3
Dim cols As Integer = 3

Dim A As _
   New DoubleComplexMatrix(rows, cols, New DoubleComplex(1, 0))
Dim B As _
   New DoubleComplexMatrix(rows, cols, New DoubleComplex(0, 1))
Dim s As New DoubleComplex(2, 0)

Dim result As DoubleComplexMatrix = _
   DoubleComplexMatrix.Add(A, DoubleComplexMatrix.Multiply(s, B))

NMath also provides overloads of the arithmetic named methods that accept three 
matrix arguments. The third matrix holds the result of applying the appropriate 
operation to the first two matrices. Because no new memory is allocated, efficiency 
is increased. This is especially useful for repeated operations, such as within loops. 
For instance, this code multiplies two matrices and stores the result in a third:

Code Example – C# matrix

int rows = size;
int cols = size;
var A = new DoubleMatrix( rows, cols, 0, 1);
var B = new DoubleMatrix( rows, cols, 1, 1 );
var C = new DoubleMatrix( rows, cols );

FloatMatrix.Multiply( A, B, C );
FloatMatrix.Multiply( A--, B, C );
FloatMatrix.Multiply( B, B, C );
// Still only three matrices allocated
62   NMath User’s Guide



Code Example – VB matrix

Dim Rows As Integer = Size
Dim Cols As Integer = Size
Dim A As New DoubleMatrix(Rows, Cols, 0, 1)
Dim B As New DoubleMatrix(Rows, Cols, 1, 1)
Dim C As New DoubleMatrix(Rows, Cols)

FloatMatrix.Multiply(A, B, C)
FloatMatrix.Multiply(A.Decrement(), B, C)
FloatMatrix.Multiply(B, B, C)
' Still only three matrices allocated

If the three matrices do not have the same dimensions, a 
MismatchedSizeException is thrown. 

6.6 Vector Views

A variety of methods are providing for returning vector views of the data 
referenced by a matrix. The returned vector and the matrix share the data, so care 
must be exercised when modifying values. If after constructing a different view of 
an object’s data you want your own private view that you can modify without 
affecting any other objects, simply invoke the DeepenThisCopy() method on the 
vector:

Code Example – C# matrix

var A = new DoubleMatrix( 8, 8, 1, 1 );
DoubleVector v = A.Diagonal();

v.DeepenThisCopy();

Code Example – VB matrix

Dim A As New DoubleMatrix(8, 8, 1.0, 1.0)
Dim V As DoubleVector = A.Diagonal()

V.DeepenThisCopy()
   Chapter 6.   Matrix Classes 63



Row and Column Views

Member functions Row() and Column() return vector views of a specified row or 
column. For instance:

Code Example – C# matrix

var A = new DoubleMatrix( "3x3 [1 2 3  4 5 6  7 8 9]" );
     
DoubleVector row1 = A.Row( 1 );
DoubleVector col0 = A.Col( 0 );

Code Example – VB matrix

Dim A As New DoubleMatrix("3x3 [1 2 3  4 5 6  7 8 9]")

Dim Row1 As DoubleVector = A.Row(1)
Dim Col0 As DoubleVector = A.Col(0)

Diagonal Views

The Diagonal() member function returns a vector view of a diagonal of a matrix. 
If no diagonal is specified, a vector view of the main diagonal is returned. For 
example, this code increments every element along the main diagonal:

Code Example – C# matrix

var A = new FloatMatrix( 5, 8 );
A.Diagonal()++;

Code Example – VB matrix

Dim A As New FloatMatrix(5, 8)
A.Diagonal().Increment()

Arbitrary Slices

The Slice() member function returns a vector view of an arbitrary slice of a 
matrix. The parameters are:

 the starting row

 the starting column

 the number of elements

 the row stride

 the column stride
64   NMath User’s Guide



The slice begins at the starting row and column, and extends for the number of 
elements. The increment between successive elements in the vector is row stride 
rows and column stride columns. For example, this code returns a view of the 
diagonal from the bottom left corner to the top right of a 3x3 matrix:

Code Example – C# matrix

var A = new DoubleMatrix( "3x3 [1 2 3  4 5 6  7 8 9]" );
DoubleVector v = A.Slice( 2, 0, 3, -1, 1 );

Code Example – VB matrix

Dim A As New DoubleMatrix("3x3 [1 2 3  4 5 6  7 8 9]")
Dim V As DoubleVector = A.Slice(2, 0, 3, -1, 1)

6.7 Functions of Matrices

NMath provides a variety of functions that take matrices as arguments.

Matrix Transposition 

The matrix classes provide Transpose() member functions for calculating the 
transpose of a matrix: B[i,k] = A[k,i]. Class NMathFunctions also provides a 
static Transpose() method that returns the transpose of a matrix. For instance:

Code Example – C# matrix

var A = new FloatComplexMatrix( 5, 5, 1, 1 );
FloatComplexMatrix B = A.Transpose();
FloatComplexMatrix C = NMathFunctions.Transpose(A);
// B == C

Code Example – VB matrix

Dim A As New FloatComplexMatrix(5, 5, 1.0F, 1.0F)
Dim B As FloatComplexMatrix = A.Transpose()
Dim C As FloatComplexMatrix = NMathFunctions.Transpose(A)
' B == C

In both cases, the matrix returned is a new view of the same data. Transpose() 
just swaps the number of rows and the number of columns, as well as the row 
strides and column strides. No data is copied.

Matrix Norms

The matrix classes provide member functions OneNorm() to compute the 1-norm 
(or largest column sum) of a matrix, InfinityNorm() to compute the infinity-
   Chapter 6.   Matrix Classes 65



norm (or largest row sum) of a matrix, and FrobeniusNorm() to compute the 
Frobenius norm. For instance:

Code Example – C# matrix

var A = new DoubleMatrix( "3x3 [1 2 3  4 5 6  7 8 9]" );
double d1 = A.OneNorm();
double d2 = A.InfinityNorm();

Code Example – VB matrix

Dim A As New DoubleMatrix("3x3 [1 2 3  4 5 6  7 8 9]")
Dim D1 As Double = A.OneNorm()
Dim D2 As Double = A.InfinityNorm()

Matrix Products

Class NMathFunctions provides the static Product() method for calculating the 
matrix product of two matrices. For example:

Code Example – C# matrix

var A = new FloatMatrix( "3x3 [1 2 3  4 5 6  7 8 9]" );
var B = new FloatMatrix( 3, 3, 1, 1 );
FloatMatrix C = NMathFunctions.Product( A, B );

Code Example – VB matrix

Dim A As New FloatMatrix("3x3 [1 2 3  4 5 6  7 8 9]")
Dim B As New FloatMatrix(3, 3, 1.0F, 1.0F)
Dim C As FloatMatrix = NMathFunctions.Product(A, B)

Transpose operations to be performed on the operands of a matrix-matrix multiply 
operation are specified using a value from the 
NMathFunctions.ProductTransposeOption enum:

 TransposeNone does not transpose either matrix before multiplying.

 TransposeBoth transposes both operands before multiplying.

 TransposeFirst transposes only the first operand before multiplying.

 TransposeSecond transposes only the second operand before multiplying. 

 ConjTransposeBoth takes the conjucate transpose of both operands before 
multiplying.

 ConjTransposeFirst takes the conjugate transpose only of the first 
operand before multiplying.

 ConjTransposeSecond takes the conjugate transpose only of the second 
operand before multiplying.
66   NMath User’s Guide



Thus, this code calculates the inner product of the transpose of A with B:

Code Example – C# matrix

var A = new FloatMatrix( "3x3 [1 2 3  4 5 6  7 8 9]" );
var B = new FloatMatrix( 3, 3, 1, 1 );
FloatMatrix C = NMathFunctions.Product( A, B,
  ProductTransposeOption.TransposeFirst );

Code Example – VB matrix

Dim A As New FloatMatrix("3x3 [1 2 3  4 5 6  7 8 9]")
Dim B As New FloatMatrix(3, 3, 1.0F, 1.0F)
Dim C As FloatMatrix = NMathFunctions.Product(A, B, 
  ProductTransposeOption.TransposeFirst)

Additional overloads of the Product() method calculate the inner product of a 
matrix and a scalar:

Code Example – C# matrix

var A = new DoubleMatrix( "3x3 [1 2 3  4 5 6  7 8 9]" );
var v = new DoubleVector( "[3 2 1]" );
DoubleVector u = NMathFunctions.Product( A, v );

Code Example – VB matrix

Dim A As New DoubleMatrix("3x3 [1 2 3  4 5 6  7 8 9]")
Dim V As New DoubleVector("[3 2 1]")
Dim U As DoubleVector = NMathFunctions.Product(A, V)

Overloads are also provided which place the result of multiplying the first two 
operands into a third argument, rather than allocating new memory for the result:

Code Example – C# matrix

NMathFunctions.Product( A, B, C, 
  ProductTransposeOption.TransposeBoth );

Code Example – VB matrix

NMathFunctions.Product(A, B, C, 
  ProductTransposeOption.TransposeBoth)

Matrix Inverse and Pseudoinverse

Class NMathFunctions provides the static Inverse() method for calculating the 
inverse of a matrix:

Code Example – C# matrix

var A = new FloatMatrix( "3x3 [1 2 3  4 5 6  7 8 9]" );
FloatMatrix AInv = NMathFunctions.Inverse( A );
   Chapter 6.   Matrix Classes 67



Code Example – VB matrix

Dim A As New FloatMatrix("3x3 [1 2 3  4 5 6  7 8 9]")
Dim AInv As FloatMatrix = NMathFunctions.Inverse(A)

The standard inverse fails if the matrix is singular or not square.

The pseudoinverse  is a generalization of the inverse, and exists for any n x m 
matrix, where :

NMathFunctions provides the static Pseudoinverse() method:

Code Example – C# matrix

FloatMatrix APseudoInv = NMathFunctions.Pseudoinverse( A );

Code Example – VB matrix

Dim APseudoInv As FloatMatrix = NMathFunctions.PseudoInverse(A)

To test the quality of the pseudoinverse, you can check the condition number of 
:

Code Example – C# matrix

float cond = NMathFunctions.ConditionNumber(
  NMathFunctions.TransposeProduct( A, A ), NormType.OneNorm );
if (cond > 0.000001)
{
  // good
}

Code Example – VB matrix

Dim Cond As Single = NMathFunctions.ConditionNumber(
  NMathFunctions.TransposeProduct(A, A), NormType.OneNorm)
If Cond > 0.000001 Then
  ' good
End If

NOTE—The best way to compute the pseudoinverse is to use singular value decompo-
sition. Method MatrixFunctions.Pseudoinverse() implements this method.

Rounding Functions

Class NMathFunctions provides static methods for rounding the elements of a 
matrix:

 Round() rounds each element of a given matrix to the specified number of 
decimal places.

A+

n m

A
+

A
T
A 

1–
A

T=

ATA
68   NMath User’s Guide



 Ceil() applies the ceiling rounding function to each element of a given 
matrix.  

 Floor() applies the floor rounding function to each element of a given 
matrix. 

Sums and Differences

The static Sum() method on NMathFunctions accepts a matrix and returns a 
vector containing the sums of the elements in each column. To sum the rows, 
simply Transpose() the matrix first.

For example:

Code Example – C# matrix

var A = new DoubleMatrix( 5, 8, 1, 1 );

DoubleVector AColSums = NMathFunctions.Sum( A );
DoubleVector ARowSums = NMathFunctions.Sum( A.Transpose() );
A.Transpose()  // return A to original view

Code Example – VB matrix

Dim A As New DoubleMatrix(5, 8, 1.0, 1.0)

Dim AColSums As DoubleVector = NMathFunctions.Sum(A)
Dim ARowSums As DoubleVector = NMathFunctions.Sum(A.Transpose())
A.Transpose()  ' return A to original view

Transpose() just swaps the number of rows and the number of columns, as well 
as the row strides and column strides. No data is copied.

NaNSum() ignores values that are Not-A-Number (NaN).

NOTE—NaN functions are available for real-value matrices only, not complex number 
matrices. 

The static Delta() method on NMathFunctions returns a new matrix with the 
same dimensions as a given matrix, whose values are the result of applying the 
vector delta function to each column of the matrix. The vector delta computes the 
differences between successive elements in a given vector, such that:

u[0] = v[0]
u[i] = v[i] - v[i-1]

Applied to a matrix, Delta() returns a new matrix such that:

B[0,j] = A[0,j]
B[i,j] = A[i,j] - A[i-1,j]
   Chapter 6.   Matrix Classes 69



Again, to apply the Delta() function to rows rather than columns, just transpose 
the matrix first.

Min/Max Functions

Class NMathFunctions provides static min/max finding methods that return a 
vector containing the value of the element in each column that meets the 
appropriate criterion:

 Max() returns a vector containing the greatest values in each column.

 Min() returns a vector containing the smallest values in each column.

 NaNMax() returns a vector containing the greatest values in each column, 
ignoring values that are Not-a-Number (NaN).

 NaNMin() returns a vector containing the smallest values in each column.

NOTE—NaN functions are available for real-value matrices only, not complex number 
matrices.

To apply these functions to the rows of a matrix, simply Transpose() the matrix 
first.

Statistical Functions

The static Mean(), Median(), Variance(), and SumOfSquares() methods on 
NMathFunctions are overloaded to accept a matrix and return a vector containing 
the result of applying the appropriate function to each column in the matrix:

Code Example – C# matrix

var A = new FloatMatrix( 5, 5, 0, 2 ); 
FloatVector means = NMathFunctions.Mean( A );
FloatVector medians = NMathFunctions.Median( A );
FloatVector variances = NMathFunctions.Variance( A );

Code Example – VB matrix

Dim A As New FloatMatrix(5, 5, 0.0F, 2.0F)
Dim Means As FloatVector = NMathFunctions.Mean(A)
Dim Medians As FloatVector = NMathFunctions.Median(A)
Dim Variances As FloatVector = NMathFunctions.Variance(A)

NaNMean(), NaNMedian(), NaNVariance(), and NaNSumOfSquares() ignore 
values that are Not-A-Number (NaN). NaNCount() returns the number of NaN 
values in each column. NaN functions are available for real-value matrices only, 
not complex matrices.
70   NMath User’s Guide



To apply these functions to the rows of a matrix, simply Transpose() the matrix 
first.

Trigonometric Functions

NMath extends standard trigonometric functions Acos(), Asin(), Atan(), Cos(), 
Cosh(), Sin(), Sinh(), Tan(), and Tanh() to take matrix arguments. Class 
NMathFunctions provides these functions as static methods. For instance, this 
code construct a matrix whose contents are the sines of another matrix:

Code Example – C# matrix

var A = new FloatMatrix( 10, 10, 0, Math.Pi/4 );
FloatMatrix cosA = NMathFunctions.Cos( A );

Code Example – VB matrix

Dim A As New FloatMatrix(10, 10, 0.0F, Math.PI / 4.0F)
Dim CosA As FloatMatrix = NMathFunctions.Cos(A)

The static Atan2() method takes two matrices and applies the two-argument arc 
tangent function to corresponding pairs of elements.

Transcendental Functions

NMath extends standard transcendental functions Exp(), Log(), Log10(), and 
Sqrt() to take matrix arguments. Class NMathFunctions provides these functions 
as static methods; each takes a single matrix as an argument and return a matrix as 
a result. For example, this code creates a matrix whose elements are the square root 
of the elements in another matrix:

Code Example – C# matrix

var A = new DoubleMatrix( 3, 3, 1, 1 );
DoubleMatrix sqrt = NMathFunctions.Sqrt( A );

Code Example – VB matrix

Dim A As New DoubleMatrix(3, 3, 1.0, 1.0)
Dim Sqrt As DoubleMatrix = NMathFunctions.Sqrt(A)

Function Expm() on NMathFunctions raises the constant e to a given matrix 
power, using a scaling and squaring method based upon Pade approximation. This 
is different than method Exp() which exponentiates each element of a matrix 
independently.

Class NMathFunctions also provides the exponential function Pow() to raise each 
element of a matrix to a real exponent.
   Chapter 6.   Matrix Classes 71



Code Example – C# matrix

var A = new DoubleMatrix( "2x2 [1 2 3 4]" );
DoubleMatrix cubed = NMathFunctions.Pow( A, 3 );

Code Example – VB matrix

Dim A As New DoubleMatrix("2x2 [1 2 3 4]")
Dim Cubed As DoubleMatrix = NMathFunctions.Pow(A, 3)

Absolute Value and Square Root

The static Abs() function on class NMathFunctions applies the absolute value 
function to each element of a given matrix: 

Code Example – C# matrix

var A = new DoubleMatrix( 10, 10, 0, -1 );
DoubleMatrix abs = NMathFunctions.Abs( A );

Code Example – VB matrix

Dim A As New DoubleMatrix(10, 10, 0.0, -1.0)
Dim Abs As DoubleMatrix = NMathFunctions.Abs(A)

NMath also extends the standard Sqrt() function to take a matrix argument. 
Thus, this code creates a matrix whose elements are the square root of another 
matrix’s elements:

Code Example – C# matrix

var A = new FloatMatrix( 10, 10, 1, 2 );
FloatMatrix sqrt = NMathFunctions.Sqrt( A );

Code Example – VB matrix

Dim A As New FloatMatrix(10, 10, 1.0F, 2.0F)
Dim Sqrt As FloatMatrix = NMathFunctions.Sqrt(A)

Sorting Functions

The static SortByColumn() method on class NMathFunctions sorts the rows of a 
matrix by the values in a specified column. For instance, this code sorts matrix A by 
values in the first column:

Code Example – C# matrix

var A = new FloatMatrix( 20, 20, 0, 1 );
A = NMathFunctions.SortByColumn( A, 0 );
72   NMath User’s Guide



Code Example – VB matrix

Dim A As New FloatMatrix(20, 20, 0.0F, 1.0F)
A = NMathFunctions.SortByColumn(A, 0)

Complex Matrix Functions

Static methods Real() and Imag() on class NMathFunctions return the real and 
imaginary part of the elements of a matrix. If the elements of the given matrix are 
real, Real() simply returns the given matrix and Imag() returns a matrix of the 
same dimensions containing all zeros.

Static methods Arg() and Conj() on class NMathFunctions return the arguments 
(or phases) and complex conjugates of the elements of a matrix. If the elements of 
the given matrix are real, both methods simply return the given matrix.

For instance:

Code Example – C# matrix

DoubleComplexMatrix A =
 new DoubleComplexMatrix( "2x2 [(1,-1) (2,-.5) (2.2,1.1) (7,9)]" );

DoubleComplexMatrix AConj = NMathFunctions.Conj( A );
// AConj = 2x2 [(1,1) (2,0.5) (2.2,-1.1) (7,-9)]

// Now use the Imag method to create a real matrix containing
// the imaginary parts of AConj.
DoubleMatrix AConjImag = NMathFunctions.Imag( AConj );

Code Example – VB matrix

Dim A As New DoubleComplexMatrix(
  "2x2 [(1,-1) (2,-.5) (2.2,1.1) (7,9)]")

Dim AConj As DoubleComplexMatrix = NMathFunctions.Conj(A)
' AConj = 2x2 [(1,1) (2,0.5) (2.2,-1.1) (7,-9)]

' Now use the Imag method to create a real matrix containing
' the imaginary parts of AConj.
Dim AConjImag As DoubleMatrix = NMathFunctions.Imag(AConj)

6.8 Generic Functions

NMath provides generic functions that apply a given function delegate to every 
element in a matrix, or to every column in a matrix.
   Chapter 6.   Matrix Classes 73



Applying Elementwise Functions

NMath provides convenience methods for applying unary and binary functions to 
elements of a matrix. Each of these methods takes a function delegate. The 
Apply() method returns a new matrix whose contents are the result of applying 
the given function to each element of the matrix. The Transform() method 
modifies a matrix object by applying the given function to each of its elements. For 
example, assuming MyFunc is a function that takes a double and returns a double:

Code Example – C# matrix

var A = new DoubleMatrix( 5, 5, 0, Math.Pi/4 );
var MyFuncDelegate = new Func<double, double>( MyFunc );
DoubleMatrix B = A.Apply( MyFuncDelegate );

Code Example – VB matrix

Dim A As New DoubleMatrix(5, 5, 0.0, Math.PI / 4.0)
Dim MyFuncDelegate As New Func(Of Double, Double)(MyFunc)
Dim B As DoubleMatrix = A.Apply(MyFuncDelegate)

Applying Columnwise Functions

NMath provides the ApplyColumns() method on the matrix classes for applying a 
vector function to columns of a matrix. This function takes a function delegate that 
accepts a vector and returns a single value.

For instance, assuming MyFunc takes a FloatVector and returns a float:

Code Example – C# matrix

var A = new FloatMatrix( 5, 5, 0, Math.Pi/4 );
var MyFuncDelegate = new Func<FloatVector, float>( MyFunc );
FloatVector v = A.ApplyColumns( MyFuncDelegate );

Code Example – VB matrix

Dim A As New FloatMatrix(5, 5, 0.0F, Math.PI / 4.0F)
Dim MyFuncDelegate As New Func(Of FloatVector, Single)(MyFunc)
Dim V As FloatVector = A.ApplyColumns(MyFuncDelegate)

To apply a function to the rows of matrix, just Transpose() the matrix first. 
Transpose() simply swaps the number of rows and the number of columns, as 
well as the row strides and column strides. No data is copied, so it's a relatively 
cheap operation. For instance:

Code Example – C# matrix

FloatVector v = A.Transpose().ApplyColumns( MyFuncDelegate );
A.Transpose();   // return A to original view
74   NMath User’s Guide



Code Example – VB matrix

Dim V As FloatVector = A.Transpose().ApplyColumns(MyFuncDelegate)
A.Transpose()   ' return A to original view

6.9 Matrix Enumeration

NMath matrix classes provide standard .NET GetEnumerator() methods for 
returning IEnumerator objects. For example:

Code Example – C# matrix

int rows = 13, cols = 3;
var A = new DoubleMatrix( rows, cols, 0, .25 );
IEnumerator elements = A.GetEnumerator();

var data = new double[rows*cols];
i = 0;
while ( elements.MoveNext() )
{
  data[i++] = (double) elements.Current;
}

Code Example – VB matrix

Dim Rows As Integer = 13
Dim Cols As Integer = 3
Dim A As New DoubleMatrix(Rows, Cols, 0.0, 0.25)
Dim Elements As IEnumerator = A.GetEnumerator()

Dim Data(Rows * Cols) As Double

Dim I As Integer = 0
While Elements.MoveNext()
  I += 1
  Data(I) = CType(Elements.Current, Double)
End While

Note that the Current property on an IEnumerator returns the current object in 
the collection, which must then be cast to the appropriate type. NMath also 
provides custom strongly-typed enumerators: IFloatEnumerator, 
IDoubleEnumerator, IFloatComplexEnumerator, and 
IDoubleComplexEnumerator. These avoid casting, and are therefore much faster. 
   Chapter 6.   Matrix Classes 75



For instance:

Code Example – C# matrix

int rows = 13, cols = 3;
var A = new DoubleMatrix( rows, cols, 0, .25 );
IDoubleEnumerator elements = A.GetDoubleEnumerator();

var data = new double[rows*cols];
i = 0;
while ( elements.MoveNext() )
{
  data[i++] = elements.Current;       // No need to cast to double
}

Code Example – VB matrix

Dim Rows As Integer = 13
Dim Cols As Integer = 3
Dim A As New DoubleMatrix(Rows, Cols, 0.0, 0.25)
Dim Elements As IDoubleEnumerator = A.GetDoubleEnumerator()

Dim Data(Rows * Cols) As Double
Dim I As Integer = 0
While Elements.MoveNext()
  I += 1
  Data(I) = Elements.Current ' No need to cast to Double
End While
76   NMath User’s Guide



CHAPTER 7.  
SOLUTIONS OF LINEAR SYSTEMS

NMath provides classes for computing and storing the LU factorization for a 
matrix.

LU factorization is a procedure for decomposing a matrix into a product of a lower 
triangular matrix and an upper triangular matrix. Given a matrix A, an LU 
factorization class factors A as follows: 

PA = LU

where P is a permutation matrix, L is a lower triangular matrix with ones on the 
diagonal, and U is an upper triangular matrix. 

Once an LU factorization is constructed, it can be reused to solve for different 
right-hand sides, to compute inverses, to compute condition numbers, and so on.

NMath also provides several static functions for solving linear systems, and for 
computing determinants, inverses, and condition numbers. 

7.1 Class Names

The classes that compute and store LU factorizations in NMath are named 
<Type>LUFact, where <Type> is Float, Double, FloatComplex, or 
DoubleComplex. (See Chapter 3 for a description of the complex number classes.) 
Thus:

 The FloatLUFact class represents the LU factorization of a matrix of single-
precision floating point numbers.

 The DoubleLUFact class represents the LU factorization of a matrix of 
double-precision floating point numbers.

 The FloatComplexLUFact class represents the LU factorization of a matrix 
of single-precision complex numbers.

 The DoubleComplexLUFact class represents the LU factorization of a 
matrix of double-precision complex numbers.
   Chapter 7.   Solutions of Linear Systems 77



7.2 Creating LU Factorizations

You can create an instance of an LU factorization class by supplying the 
constructor with a matrix to factor. Thus:

Code Example – C# LU factorization

var A = new DoubleComplexMatrix( 5, 5, 1, 1 );
var lu = new DoubleComplexLUFact( A );

Code Example – VB LU factorization

Dim A As New DoubleComplexMatrix(5, 5, 1, 1)
Dim LU As New DoubleComplexLUFact(A)

You can also use an existing instance to factor other matrices with the provided 
Factor() method. For instance:

Code Example – C# LU factorization

var A = new FloatMatrix( n, n, 1, 1.62F );
var lu = new FloatLUFact( A );

B = new FloatVector( n, -1.2F, 1.78F );
lu.Factor( B );

Code Example – VB LU factorization

Dim A As New FloatMatrix(N, N, 1, 1.62F)
Dim LU As New FloatLUFact(A)

Dim B As New FloatVector(N, -1.2F, 1.78F)
LU.Factor(B)

The read-only IsGood property gets a boolean value that is true if the matrix 
factorization succeeded and the factorization may be used to solve equations, 
compute determinants, inverses, and so on. Otherwise, it returns false. For 
example:

Code Example – C# LU factorization

if ( lu.IsGood ) 
{
  // Do something here...
}

Code Example – VB LU factorization

If LU.IsGood Then
  ' Do something here...
End If
78   NMath User’s Guide



Other read-only properties provide information about the matrix used to construct 
an LU factorization:

 Cols gets the number of columns of the factored matrix.

 Rows gets the number of rows of the factored matrix.

 IsSingular returns true if the matrix was singular; otherwise, false.

7.3 Using LU Factorizations

Once an LU factorization is constructed from a matrix (see Section 7.2), it can be 
reused to solve for different right hand sides, to compute inverses, to compute 
condition numbers, and so on.

Component Matrices

Read-only properties provide access to the component matrices of the LU 
factorization: 

 P gets the permutation matrix.

 L gets the lower triangular matrix.

 U gets the upper triangular matrix.

 Pivots gets an array of pivot indices, where row i was interchanged with 
Pivots[i].

Solving for Right-Hand Sides

You can use an LU factorization to solve for right-hand sides using the Solve() 
method. For instance, this code solves for one right-hand side.:

Code Example – C# LU factorization

var A = new DoubleMatrix( "3x3 [2 1 1 4 1 0 -2 2 1]" );
var lu = new DoubleLUFact( A );
 
var v = new DoubleVector( "[8 11 3]" );
DoubleVector x = lu.Solve( v );

Code Example – VB LU factorization

Dim A As New DoubleMatrix("3x3 [2 1 1 4 1 0 -2 2 1]")
Dim LU As New DoubleLUFact(A)
   Chapter 7.   Solutions of Linear Systems 79



Dim V As New DoubleVector("[8 11 3]")
Dim X As DoubleVector = LU.Solve(V)

The returned vector x is the solution to the linear system Ax = v. Note that the 
length of vector v must be equal to the number of rows in the factored matrix A or 
a MismatchedSizeException is thrown. (See Section 53.1.)

Similarly, you can use the Solve() method to solve for multiple right-hand sides:

Code Example – C# LU factorization

var A = new FloatMatrix( "3x3 [2 1 1  4 1 0 -2 2 1]" );
var lu = new FloatLUFact( A );

var B = new FloatMatrix( "3x2[8 3  11 11  3 8]" );
FloatMatrix X = fact.Solve( B );

Code Example – VB LU factorization

Dim A As New FloatMatrix("3x3 [2 1 1  4 1 0 -2 2 1]")
Dim LU As New FloatLUFact(A)

Dim B As New FloatMatrix("3x2[8 3  11 11  3 8]")
Dim X As FloatMatrix = Fact.Solve(B)

The returned matrix X is the solution to the linear system AX= B. That is, the right-
hand sides are the columns of B, and the solutions are the columns of X. Matrix B 
must have the same number of rows as the factored matrix A.

SolveInPlace() methods are also provided which place the solution in the given 
vector or matrix, without allocating new memory. The given right-hand side data 
must have unit stride.

Computing Inverses, Determinants, and Condition 
Numbers

You can use an LU factorization to compute inverses using the Inverse() method, 
and determinants using the Determinant() method. For example:

Code Example – C# LU factorization

var A = new FloatMatrix( "3x3 [2 1 1  4 1 0 -2 2 1]" );
var lu = new FloatLUFact( A );

FloatMatrix AInv = lu.Inverse();
float ADet = lu.Determinant();

Code Example – VB LU factorization

Dim A As New FloatMatrix("3x3 [2 1 1  4 1 0 -2 2 1]")
Dim LU As New FloatLUFact(A)
80   NMath User’s Guide



Dim AInv As FloatMatrix = LU.Inverse()
Dim ADet As Single = LU.Determinant()

The ConditionNumber() method computes the condition number in a specified 
norm type. The condition number of a matrix A is: 

kappa = ||A|| ||AInv||

where AInv is the inverse of the matrix A.

NOTE—The ConditionNumber() method returns the reciprocal of the condition num-
ber, rho, where rho = 1/kappa.

The provided NormType enumeration contains values for specifying the matrix 
norm. You can also choose to estimate the condition number, which is faster but 
less accurate, or to compute it directly. For small matrices, the results are usually 
the same. Thus, this code estimates the condition number in the infinity-norm:

Code Example – C# LU factorization

var A = new DoubleMatrix( "3x3 [2 1 1   4 3 3   8 7 9 ]" );
var lu = new DoubleLUFact( A );

double AEstimatedConditionNum =
  lu.ConditionNumber( NormType.InfinityNorm, true );

Code Example – VB LU factorization

Dim A As New DoubleMatrix("3x3 [2 1 1   4 3 3   8 7 9 ]")
Dim LU As New DoubleLUFact(A)

Dim AEstimatedConditionNum As Double = 
  LU.ConditionNumber(NormType.InfinityNorm, True)

This code computes the condition number directly in the 1-norm:

Code Example – C# LU factorization

double AComputedConditonNum = 
   lu.ConditionNumber( NormType.OneNorm, false );

Code Example – VB LU factorization

Dim AComputedConditonNum As Double = 
  LU.ConditionNumber(NormType.OneNorm, False)
   Chapter 7.   Solutions of Linear Systems 81



7.4 Static Methods

As a convenience, NMath provides static methods on class NMathFunctions for 
solving linear systems, and for computing determinants, inverses, and condition 
numbers. All methods accept a matrix.

The following static methods are provided:

 NMathFunctions.Solve() solves linear systems for single or multiple 
right-hand sides.

 NMathFunctions.Inverse() computes the inverse of a given matrix.

 NMathFunctions.Determinant() computes the determinant of a given 
matrix.

 NMathFunctions.EstimateConditionNumber() estimates the condition 
number of a given matrix in the specified norm type.

 NMathFunctions.ConditionNumber() directly computes the condition 
number of a given matrix in the specified norm type.

For instance:

Code Example – C# LU factorization

var A = new DoubleMatrix( "3x3 [2 1 1  4 1 0 -2 2 1]" );

var b = new DoubleVector( "[8 11 3]" );
DoubleVector x = NMathFunctions.Solve( A, b );
     
var B = new DoubleMatrix( "3x2[8 3  11 11  3 8]" );
DoubleMatrix X = NMathFunctions.Solve( A, B );

DoubleMatrix AInv = NMathFunctions.Inverse( A );
double ADet = NMathFunctions.Determinant( A );
double ACond =
   NMathFunctions.ConditionNumber( A, NormType.InfinityNorm );

Code Example – VB LU factorization

Dim A As New DoubleMatrix("3x3 [2 1 1  4 1 0 -2 2 1]")

Dim B As New DoubleVector("[8 11 3]")
Dim X As DoubleVector = NMathFunctions.Solve(A, B)

Dim B As New DoubleMatrix("3x2[8 3  11 11  3 8]")
Dim X As DoubleMatrix = NMathFunctions.Solve(A, B)

Dim AInv As DoubleMatrix = NMathFunctions.Inverse(A)
Dim ADet As Double = NMathFunctions.Determinant(A)
82   NMath User’s Guide



Dim ACond As Double =
  NMathFunctions.ConditionNumber(A, NormType.InfinityNorm)

Note that an an LU factorization instance is created with each call to 
NMathFunctions.Solve(). If you are calling Solve() repeatedly (inside a loop, 
for example), and the coefficient matrix is not changing between calls, this is more 
efficient:

Code Example – C# LU factorization

var fact = new DoubleLUFact( A, false );
...
fact.Solve( B );

Code Example – VB LU factorization

Dim Fact As New DoubleLUFact(A, False)
...
Fact.Solve(B)
   Chapter 7.   Solutions of Linear Systems 83



84   NMath User’s Guide



CHAPTER 8.  
LEAST SQUARES

NMath provides classes for computing the minimum-norm solution to a linear 
system Ax = y. In a linear model, a quantity y depends on one or more 
independent variables a1, a2,...,an such that y = x0 + x1a1 + ... + xnan. 
(Parameter x0 is called the intercept parameter.) The goal of a least squares problem 
is to solve for the best values of  x0, x1,...,xn.

Several observations of the independent values ai are recorded, along with the 
corresponding values of the dependent variable y. If m observations are performed, 
and for the ith observation we denote the values of the independent variables ai1, 
ai2,...,ain and the corresponding dependent value of y as yi, then we form the 
linear system Ax = y, where A = (aij) and y = (yi). The general least squares 
solution is the value of x that minimizes ||Ax - y||. The nonnegative least squares 
solution is the value of x subject to the constraint that each element of x is 
nonnegative.

Note that if the model contains a non-zero intercept parameter, then the first 
column of A is all ones.

The NMath least squares classes use a complete orthogonal factorization of A to 
compute the solution. Matrix A is rectangular, and may be rank deficient.

8.1 Class Names

The classes that compute general least squares solutions in NMath are named 
<Type>LeastSquares, where <Type> is Float, Double, FloatComplex, or 
DoubleComplex. (See Chapter 3 for a description of the complex number classes.) 
Thus:

 The FloatLeastSquares class computes the least squares solution to the 
linear system Ax = y, where A is a FloatMatrix of independent 
observations, and y is a FloatVector of corresponding values for the 
dependent variable.

 The DoubleLeastSquares class computes the least squares solution to the 
linear system Ax = y, where A is a DoubleMatrix of independent 
   Chapter 8.   Least Squares 85



observations, and y is a DoubleVector of corresponding values for the 
dependent variable.

 The FloatComplexLeastSquares class computes the least squares solution 
to the linear system Ax = y, where A is a FloatComplexMatrix of 
independent observations, and y is a FloatComplexVector of 
corresponding values for the dependent variable.

 The DoubleComplexLeastSquares class computes the least squares 
solution to the linear system Ax = y, where A is a DoubleComplexMatrix 
of independent observations, and y is a DoubleComplexVector of 
corresponding values for the dependent variable.

The classes that compute nonnegative least squares solutions in NMath are named 
<Type>NonnegativeLeastSquares, where <Type> is Float or Double—
FloatNonnegativeLeastSquares and DoubleNonnegativeLeastSquares.

8.2 Creating Least Squares Solutions

Least squares solutions to the linear system Ax = y are constructed from a 
rectangular matrix A and a vector of values y. For instance:

Code Example – C# least squares

var A =
   new DoubleMatrix( "4x2[1.0 20.0 1.0 30.0 40.0 1.0 50.0 1.0]" );
var y = new DoubleVector( "[.446 .601 .786 .928]" );

var lsq = new DoubleLeastSquares( A, y );

Code Example – VB least squares

Dim A =
  New DoubleMatrix("4x2[1.0 20.0 1.0 30.0 40.0 1.0 50.0 1.0]")
Dim Y = New DoubleVector("[.446 .601 .786 .928]")
Dim LSQ = New DoubleLeastSquares(A, Y)

An optional Boolean parameter to the constructor can be used to add an intercept 
parameter to the model. If true, a column of ones is prepended to a deep copy of 
matrix A before solving for the least squares solution.

NOTE—The input matrix A is not changed.

For example:

Code Example – C# least squares

var lsq = new FloatComplexLeastSquares ( A, y, true );
86   NMath User’s Guide



Code Example – VB least squares

Dim LSQ As New FloatComplexLeastSquares(A, Y, True)

Finally, for advanced users, you can specify a non-default tolerance to be used in 
computing the effective rank. The effective rank of A is determined by treating as 
zero those singular values that are less than the tolerance times the largest singular 
value.

Thus:

Code Example – C# least squares

double tolerance = 1e-5;
var lsq =
   new DoubleComplexLeastSquares( A, y, false, tolerance );

Code Example – VB least squares

Dim Tolerance As Double = "1e-5"
Dim LQS As New DoubleComplexLeastSquares(A, Y, False, Tolerance)

NOTE—For details of the effective rank computation, see the documentation for 
LAPACK routines sgelsy(), dgelsy(), zgelsy(), and cgelsy().

8.3 Using Least Squares Solutions

Once constructed, an NMath least squares class provides read-only properties to 
access the least squares solution to the linear system Ax = y:

 X gets the least squares solution.

 Yhat gets the predicted value yHat = Ax, where x is the calculated 
solution.

 Residuals gets the vector of residuals r where ri = yi - yHati.

 ResidualSumOfSquares gets the residual sum of squares (y0 - yHat0)2 + 
(y1 - yHat1)

2 + ... + (ym-1 - yHatm-1)
2.

 Rank gets the effective rank of the matrix A.

 Tolerance gets the tolerance used to compute the effective rank of the 
matrix A.

For instance, this code calculates the slope and intercept of a linear least squares fit 
through five data points, then prints out the properties of the solution:
   Chapter 8.   Least Squares 87



Code Example – C# least squares

var A = new DoubleMatrix( "5x1[20.0  30.0  40.0  50.0  60.0]" );
var y = new DoubleVector( "[.446 .601 .786 .928 .950]" );
var lsq = new DoubleLeastSquares( A, y, true );

Console.WriteLine( "Y-intercpt = {0}", lsq.X[0] );
Console.WriteLine( "Slope = {0}", lsq.X[1] );
Console.WriteLine( "Residuals = {0}", lsq.Residuals );
Console.WriteLine( "Residual Sum of Squares (RSS) = {0}", 
   lsq.ResidualSumOfSquares );

Code Example – VB least squares

Dim A As New DoubleMatrix("5x1[20.0  30.0  40.0  50.0  60.0]")
Dim Y As New DoubleVector("[.446 .601 .786 .928 .950]")
Dim LSQ As New DoubleLeastSquares(A, Y, True)

Console.WriteLine("Y-intercpt = {0}", LSQ.X(0))
Console.WriteLine("Slope = {0}", LSQ.X(1))
Console.WriteLine("Residuals = {0}", LSQ.Residuals)
Console.WriteLine("Residual Sum of Squares (RSS) = {0}", 
  LSQ.ResidualSumOfSquares)

8.4 Nonnegative Least Squares Solutions

Classes FloatNonnegativeLeastSquares and DoubleNonnegativeLeastSquares  
find nonnegative least squares solutions—that is, the value of x that minimizes 
||Ax - y|| subject to the constraint that each element of the vector x is 
nonnegative.

The interface is the same as for the general least squares classes (Section 8.2 and 
Section 8.3), with the addition of a RankDeficiencyDetected property. If a rank 
deficiency is detected while solving an unconstrained least squares problem 
during the nonnegative least squares iterative algorithm, this property returns 
true.
88   NMath User’s Guide



CHAPTER 9.  
RANDOM NUMBER GENERATORS

NMath provides random number generators that generate random deviates from 
a variety of probability distributions, including the beta, binomial, Cauchy, 
exponential, gamma, geometric, Gumbel, Johnson, Laplace, log-normal, normal, 
Pareto, Poisson, Rayleigh, triangular, uniform, and Weibull distributions.

NMath provides two sets of random number generators:

 Scalar random number generators, which generate random deviates one at 
a time, via the Next() method. All NMath scalar generators inherit from 
the abstract base class RandomNumberGenerator, providing a common 
interface. 

 Vectorized random number generators, which yield a stream of random 
numbers. Vectorized random number generators generally outperform 
scalar generators in computations requiring multiple deviates. All NMath 
scalar generators implement the IRandomNumberDistribution interface, 
and use a RandomNumberStream. 

This chapter describes how to use the random number generator classes.

9.1 Scalar Random Number Generators

NMath provides scalar generator classes that return random deviates from a 
variety of probability distributions.

Table 7 – Scalar Random Number Generators

Class Description

RandGenUniform Uniform distribution.

RandGenBeta Beta distribution. 

RandGenBinomial Binomial distribution.

RandGenExponential Exponential distribution.

RandGenGamma Gamma distribution.

RandGenGeometric Geometric distribution.
   Chapter 9.   Random Number Generators 89



Underlying Uniform Generators

All NMath scalar random number generators, regardless of the distribution, 
require an underlying uniform random number generator that returns random 
deviates in the range zero to one. Each generator first generates a random uniform 
deviate in the range zero to one, then from this deviate derives a random number 
from the appropriate probability distribution. Thus, the statistical properties and 
performance of the generators largely depend on the statistical properties and 
performance of the underlying random number generator. 

By default, all scalar generators use the NMath class RandGenMTwist as the 
underlying uniform generator. RandGenMTwist implements the Mersenne 
Twister algorithm, developed by Makoto Matsumoto and Takuji Nishimura in 
1996-1997. This algorithm is faster and more efficient, and has a far longer period 
and far higher order of equidistribution, than other existing generators.

If you have your own uniform random number generator that you wish to use, all 
NMath random number generators provide constructor overloads that accept a 
RandomNumberGenerator.UniformRandomNumber function delegate. The function 
must generate uniform deviates in the range zero to one, and return a double.

RandGenJohnson Johnson distribution.

RandGenLogNormal Log-normal distribution.

RandGenNormal Normal distribution.

RandGenPareto Pareto distribution.

RandGenPoisson Poisson distribution.

RandGenTriangular Triangular distribution.

RandGenWeibull Weibull distribution.

Table 7 – Scalar Random Number Generators

Class Description
90   NMath User’s Guide



For example, this code creates a delegate object from the method 
System.Random.NextDouble(), then constructs a binomial random number 
generator that uses this delegate:

Code Example – C# random number generators

var sysRand = new Random();
var uniformDeviates = 
   new RandomNumberGenerator.UniformRandomNumber( 
       sysRand.NextDouble );

int trials = 2000;
double prob = .002;
var binRand =
   new RandGenBinomial( trials, prob, uniformDeviates );

Code Example – VB random number generators

Dim SysRand As New Random()
Dim UniformDeviates As New 
  RandomNumberGenerator.UniformRandomNumber(
    AddressOf SysRand.NextDouble)

Dim Trials As Integer = 2000
Dim Prob As Double = 0.002
Dim BinRand As New RandGenBinomial(Trials, Prob, UniformDeviates)

All generators inherit a UniformDeviateMethod property from 
RandNumberGenerator for accessing and modify the underlying delegate 
method. For example, this code changes the delegate used by binRand:

Code Example – C# random number generators

var mt = new RandGenMTwist( );
binRand.UniformDeviateMethod = 
   new RandomNumberGenerator.UniformRandomNumber( mt.NextDouble );

Code Example – VB random number generators

Dim MT As New RandGenMTwist()
BinRand.UniformDeviateMethod =
  New RandomNumberGenerator.UniformRandomNumber(AddressOf 
    MT.NextDouble)

Generating Random Numbers

All NMath generators provide a Next() method that returns a random deviate as 
a double, except for RandGenBinomial and RandGenPoisson that return an int. 
For example, this code prints out 100 random deviates from a normal distribution 
with mean of -12.9 and variance of 2.066:
   Chapter 9.   Random Number Generators 91



Code Example – C# random number generators

double mean = -12.9;
double variance = 2.066;
var gen = new RandGenNormal( mean, variance );

for (int i=0; i<100; i++) 
{
   Console.WriteLine( gen.Next() );
}

Code Example – VB random number generators

Dim Mean As Double = -12.9
Dim Variance As Double = 2.066
Dim Gen As New RandGenNormal(Mean, Variance)

For I As Integer = 0 To 99
  Console.WriteLine(Gen.Next())
Next

The base class RandomNumberGenerator also provides the abstract method 
NextDouble(), which is equivalent to calling Next(). This is a common method 
for applications that require polymorphic random number generation across the 
different generators, but also incurs the extra overhead of a virtual function call.

The Fill() method enables you to fill an array of float, double, FloatComplex, 
or DoubleComplex with random values. Thus:

Code Example – C# random number generators

var array1 = new double[ 100 ];
var array2 = new FloatComplex[ 100 ];

var gen = new RandGenPoisson();
gen.Fill( array1 );
gen.Fill( array2 );

Code Example – VB random number generators

Dim Array1(100) As Double
Dim Array2(100) As FloatComplex

Dim Gen As New RandGenPoisson()
Gen.Fill(Array1)
Gen.Fill(Array2)
92   NMath User’s Guide



Lastly, as a convenience, NMath vector and matrix classes provide constructor 
overloads that initialize all elements with random values. For example:

Code Example – C# random number generators

var gen = new RandGenUniform( 0, 100 );
var v = new DoubleVector( 10, gen );
var A = new DoubleComplexMatrix( 25, 25, gen );

Code Example – VB random number generators

Dim Gen As New RandGenUniform(0, 100)
Dim V As New DoubleVector(10, Gen)
Dim A As New DoubleComplexMatrix(25, 25, Gen)

Random Seeds

As described above, all NMath random number generators, regardless of the 
distribution, use an underlying uniform random number generator to generate 
random deviates in the range (0,1), then derive from the deviate a random 
number from the appropriate probability distribution. Thus, the seed that 
determines the pseudorandom sequence is associated with the underlying 
uniform generator, not with the wrapping generator.

All NMath random number generator classes have Reset() and Reset(int) 
methods that attempt to reset the underlying uniform generator with the time of 
day, for the no argument reset, or the given seed, for the integer argument version. 
These methods return true if the reset was successful and false if it was not. The 
reset methods succeed if the following conditions are met: 

1. The uniform generator delegate is an instance method; that is, the Target 
property of the Delegate class returns a non-null reference.

2. The object reference thus obtained has a method named Initialize() that 
returns void and takes no arguments, for the Reset() method, or a single 
integer argument for the Reset(int) method.

For example, this code attempts to generate two identical sequences by explicitly 
setting and resetting the seed:

Code Example – C# random number generators

int seed = 0x124;
var mt = new RandGenMTwist( seed );
var uniformDeviates = 
   new RandomNumberGenerator.UniformRandomNumber( mt.NextDouble );

var gen = new RandGenNormal( 50, 5, uniformDeviates );
var randomSequence1 = new DoubleVector( 100, gen );
   Chapter 9.   Random Number Generators 93



if ( gen.Reset(seed) ) {
   var randomSequence2 = new DoubleVector( 100, gen );
}
else {
   Console.WriteLine( "Could not reset generator" ); 
}

Code Example – VB random number generators

Dim Seed As Integer = &H124
Dim MT As New RandGenMTwist(Seed)
Dim UniformDeviates As New 
 RandomNumberGenerator.UniformRandomNumber(AddressOf MT.NextDouble)

Dim Gen As New RandGenNormal(50, 5, UniformDeviates)
Dim RandomSequence1 As New DoubleVector(100, Gen)

If Gen.Reset(Seed) Then
  Dim RandomSequence2 As New DoubleVector(100, Gen)
Else
  Console.WriteLine("Could not reset generator")
End If

9.2 Vectorized Random Number Generators

Unlike scalar-type generators, whose output is a successive random number 
(Section 9.1), vectorized generators produce a vector of n successive random 
numbers from a given distribution. Vectorized generators typically outperform 
scalar generators because the overhead expense of a function call is comparable to 
the total time required for computation. 

NMath provides vectorized distribution classes for many continuous (Table 8) and 
discrete (Table 9) distributions.

Table 8 – Continuous Distributions

Class Description

DoubleRandomBetaDistribution

FloatRandomBetaDistribution

Beta distribution.

DoubleRandomCauchyDistribution

FloatRandomCauchyDistribution

Cauchy distribution. 
94   NMath User’s Guide



DoubleRandomExponentialDistribution

FloatRandomExponentialDistribution

Exponential distribution

DoubleRandomGammaDistribution

FloatRandomGammaDistribution

Gamma distribution.

DoubleRandomGaussianDistribution

FloatRandomGaussianDistribution

Gaussian distribution.

DoubleRandomGumbelDistribution

FloatRandomGumbelDistribution

Gumbel distribution.

DoubleRandomLaplaceDistribution

FloatRandomLaplaceDistribution

Laplace distribution.

DoubleRandomLogNormalDistribution

FloatRandomLogNormalDistribution

Log-normal distribution.

DoubleRandomRayleighDistribution

FloatRandomRayleighDistribution

Rayleigh distribution.

DoubleRandomUniformDistribution

FloatRandomUniformDistribution

Uniform distribution.

DoubleRandomWeibullDistribution

FloatRandomWeibullDistribution

Weibull distribution.

Table 9 – Discrete Distributions

Class Description

IntRandomBernoulliDistribution Bernoulli distribution.

IntRandomBinomialDistribution Binomial distribution. 

IntRandomGeometricDistribution Geometric Distribution

IntRandomHypergeometricDistribution Hypergeometric distribution.

IntRandomNegativeBinomialDistribution Negative Binomial distribution.

IntRandomPoissonDistribution Poisson distribution.

Table 8 – Continuous Distributions

Class Description
   Chapter 9.   Random Number Generators 95



Distribution objects are constructed from the relevant distribution parameters. For 
example:

Code Example – C# random number generators

double mean = 1.0;
double sigma = 1.0;
DoubleRandomGaussianDistribution dist =
    new DoubleRandomGaussianDistribution(mean, sigma);

Code Example – VB random number generators

Dim Mean = 1.0
Dim Sigma = 1.0
Dim Dist As New DoubleRandomGaussianDistribution(Mean, Sigma)

Generating Random Numbers

Class RandomNumberStream encapsulates a vectorized random number 
generator which yields a stream of random numbers.

A stream is constructed from an optional seed, and an optional enumerated value 
specifying which algorithm to use for generating random numbers uniformly 
distributed in the interval [0, 1].

Code Example – C# random number generators

int seed = 0x345;
var stream = new RandomNumberStream(seed, 
  RandomNumberStream.BasicRandGenType.MersenneTwister);

Code Example – VB random number generators

Dim Seed As Integer = &H345
Dim Stream As New RandomNumberStream(Seed,
  RandomNumberStream.BasicRandGenType.MersenneTwister

IntRandomPoissonVaryingMeanDistribution Possion distribution with vary-
ing mean.

IntRandomUniformDistribution Uniform distribution.

IntRandomUniformBitsDistribution Integer values with uniform bit 
distribution.

Table 9 – Discrete Distributions

Class Description
96   NMath User’s Guide



You can use a stream and distribution to fill an array:

Code Example – C# random number generators

int n = 100;
int start = 0;
var a = new double[n];
dist.Fill(stream, a, start, n);

Code Example – VB random number generators

Dim N As Integer = 100
Dim Start As Integer = 0
Dim A(N) As Double
Dist.Fill(Stream, A, Start, N)

Or to fill a new vector or matrix:

Code Example – C# random number generators

var v = new DoubleVector(n, stream, dist);

Code Example – VB random number generators

Dim V As New DoubleVector(N, Stream, Dist)

Successive Random Numbers

If you want the performance of a vectorized random number generator, but still 
need to access the random deviates sequentially, NMath provides class 
RandomNumbers, which uses a stream to buffer the random numbers internally.

For instance:

Code Example – C# random number generators

int bufferSize = 100;
RandomNumbers<double, DoubleRandomGaussianDistribution> rnd =
  new RandomNumbers<double, DoubleRandomGaussianDistribution>(seed, 
    dist, bufferSize);

for (int i = 0; i < 10; i++)
{
  Console.WriteLine("Next() = {0}", rnd.Next());
}

   Chapter 9.   Random Number Generators 97



Code Example – VB random number generators

Dim BufferSize As Integer = 100
Dim RND As New RandomNumbers(Of Double, 
  DoubleRandomGaussianDistribution)(Seed, Dist, BufferSize)

For I As Integer = 0 To 9
  Console.WriteLine("Next() = {0}", RND.Next())
Next

Independent Streams

NMath provides classes for generating several independent streams of random 
numbers using two methods:

 In the leapfrog method, the independent sequences are created by splitting 
the original sequence into k disjoint subsets, where k is the number of 
independent streams, is such a way that the first stream generates the 
random numbers x1, xk+1, x2k+1, x3k+1,..., the second stream generates the 
numbers x2, xk+2, x2k+2, x3k+2,..., and, finally, the kth stream would generate 
xk, x2k, x3k... Class LeapfrogRandomStreams uses the leapfrog method.

 In the skip-ahead, or block-splitting, method, the independent sequences are 
created by splitting the original sequence into k non-overlapping blocks, 
where k is the number of independent streams. Each stream generates 
numbers only from its corresponding block. Class 
SkipAheadRandomStreams uses the skip-ahead method.

For example, this code creates 10 streams of length 100 using the skip-ahead 
method: 

Code Example – C# random number generators

int seed = 0x124;
RandomNumberStream.BasicRandGenType genType = 
    RandomNumberStream.BasicRandGenType.MultiplicativeCongruent31;
int nstreams = 10;
int streamLen = 100;
SkipAheadRandomStreams gen =
    new SkipAheadRandomStreams(seed, genType, nstreams, streamLen);

Code Example – VB random number generators

Dim Seed = &H124
Dim GenType = 
  RandomNumberStream.BasicRandGenType.MultiplicativeCongruent31
Dim NStreams = 10
Dim StreamLen = 100
Dim Gen As New SkipAheadRandomStreams(Seed, GenType, NStreams, 
  StreamLen)
98   NMath User’s Guide



You can use a single distribution to fill an array or matrix:

Code Example – C# random number generators

var dist = new DoubleRandomUniformDistribution();
var A = new DoubleMatrix(streamLen, nstreams);
gen.Fill(dist, A);

Code Example – VB random number generators

Dim Dist As New DoubleRandomUniformDistribution()
Dim A As New DoubleMatrix(StreamLen, NStreams)
Gen.Fill(Dist, A)

Or to create a new matrix:

Code Example – C# random number generators

var dist = new DoubleRandomLogNormalDistribution();
DoubleMatrix B = gen.Next(dist);

Code Example – VB random number generators

Dim Dist As New DoubleRandomLogNormalDistribution()
Dim B As DoubleMatrix = Gen.Next(Dist)

You can also use an array of distributions, one per stream:

Code Example – C# random number generators

nstreams = 3;
var intDists = new IRandomNumberDistribution<double>[nstreams];
intDists[0] = new DoubleRandomUniformDistribution();
intDists[1] = new DoubleRandomBetaDistribution();
intDists[2] = new DoubleRandomCauchyDistribution();
var gen = new SkipAheadRandomStreams(seed, genType, nstreams, 
  streamLen);
DoubleMatrix C = gen.Next(intDists);

Code Example – VB random number generators

nstreams = 3
Dim IntDists(NStreams) As IRandomNumberDistribution(Of Double)
IntDists(0) = New DoubleRandomUniformDistribution()
IntDists(1) = New DoubleRandomBetaDistribution()
IntDists(2) = New DoubleRandomCauchyDistribution()
Dim Gen = New SkipAheadRandomStreams(Seed, GenType, NStreams, 
  StreamLen)
Dim C As DoubleMatrix = Gen.Next(IntDists)
   Chapter 9.   Random Number Generators 99



Quasirandom Numbers

NMath provides classes for generating sequences of quasirandom points. A 
quasirandom sequence is a sequence of n-tuples that fills n-space more uniformly 
than uncorrelated random points. NiederreiterQuasiRandomGenerator generates 
quasirandom numbers using the Niederreiter method; 
SobolQuasiRandomGenerator uses the Sobol method. 

For example:

Code Example – C# quasirandom numbers

int dim = 3;
var nqrg = new NiederreiterQuasiRandomGenerator(dim);

Code Example – VB quasirandom numbers

Dim Dimensions As Integer = 3
Dim NQRG As New NiederreiterQuasiRandomGenerator(Dimensions)

You can fill an existing matrix or array. (The points are the columns of the matrix, 
so the number of rows in the given matrix must be equal to the Dimension of the 
quasirandom number generator.)

Code Example – C# quasirandom numbers

int numPts = 5000;
var A = new DoubleMatrix(nqrg.Dimension, numPts);
nqrg.Fill(A);

Code Example – VB quasirandom numbers

Dim NumPts As Integer = 5000
Dim A As New DoubleMatrix(NQRG.Dimension, NumPts)
NQRG.Fill(A)

Or create a new matrix:

Code Example – C# quasirandom numbers

DoubleMatrix B = nqrg.Next(
  new DoubleRandomUniformDistribution(), numPts);

Code Example – VB quasirandom numbers

Dim B As DoubleMatrix = NQRG.Next(
  New DoubleRandomUniformDistribution(), NumPts)

The quasirandom numbers will follow the given distribution.
100   NMath User’s Guide



CHAPTER 10.  
FOURIER TRANSFORMS, CONVOLUTION 
AND CORRELATION

NMath provides classes for performing Fast Fourier Transforms (FFTs) on real and 
complex 1D and 2D data, and for performing linear convolution and correlation on 
real and complex 1D data. This chapter describes how to use the FFT, convolution, 
and correlation classes.

10.1 Fast Fourier Transforms

Fast Fourier Transforms (FFTs) are efficient algorithms for calculating the discrete 
fourier transform (DFT) and its inverse. NMath provides classes for performing 
FFTs on real and complex 1D and 2D data.

FFT Classes

The classes that perform FFTs in NMath are named in the form 
<Type><Direction><Dimensionality>FFT, where 

 <Type> is Float, Double, FloatComplex, or DoubleComplex based on the 
precision of the data and the forward domain of the FFT, either real or 
complex.

 <Direction> is Forward for calculating the DFT, and Backward for 
calculating its inverse.

 <Dimensionality> is 1D or 2D, depending on the dimensionality of the 
signal data.

For example, class DoubleForward2DFFT performs the forward DFT on 2D 
double-precision real signal data. Class FloatComplexBackward1DFFT represents 
the backward DFT of a 1D single-precision complex signal vector.

This set of classes elegantly supports all common 1D and 2D FFT computations in 
a robust, easy to use, object-oriented interface.
   Chapter 10.   Fourier Transforms, Convolution and Correlation 101



Creating FFT Instances

FFT instances are constructed by specifying the size of the signal data. For 
example, this code constructs a DoubleForward1DFFT for a signal vector of 
length 1024: 

Code Example – C# FFT

var fft = new DoubleForward1DFFT( 1024 );

Code Example – VB FFT

Dim FFT As New DoubleForward1DFFT(1024)

This creates a DoubleComplexBackward2DFFT for a 500 x 500 data matrix:

Code Example – C# FFT

var fft = new DoubleComplexBackward2DFFT( 500, 500 );

Code Example – VB FFT

Dim FFT As New DoubleComplexBackward2DFFT(500, 500)

FFT instances can also be created by copying the configuration from another FFT 
instance. For example:

Code Example – C# FFT

var fft2 = new FloatForward1DFFT( fft1 );

Code Example – VB FFT

Dim FFT2 As New FloatForward1DFFT(FFT1)

An NMathFormatException is raised if the given FFT is not of a compatible 
precision, domain, and dimensionality. You can, however, create a forward FFT 
from a backward FFT instance, and vice versa.

Scale Factors

FFT classes provide properties for setting the scale factor of the FFT:

 Forward FFT classes provide a ForwardScaleFactor property.

 Backward FFT classes provide a BackwardScaleFactor property.

The default scale factor is 1.0. This code sets the scale factor on a 
DoubleForward1DFFT instance to 2.0:

Code Example – C# FFT

var fft = new DoubleForward1DFFT( 1024 );
fft.ForwardScaleFactor = 2.0;
102   NMath User’s Guide



Code Example – VB FFT

Dim FFT As New DoubleForward1DFFT(1024)
FFT.ForwardScaleFactor = 2.0

As a convenience, backward FFT classes also provide a 
SetScaleFactorByLength() method which sets the scale factor to the inverse of 
the signal length. If the forward FFT scale factor is 1.0, using this backward scale 
factor guarantees that backwardFFT(forwardFFT(signal)) = signal. Note that 
MATLAB uses this scale factor by default. 

Computing FFTs

FFTs can be computed either in place, overwriting the input data, or with the result 
placed in a separate, pre-allocated data structure passed by reference. 

The FFTInPlace() method computes the FFT in place, while the FFT() method 
places the result in a second data structure. For example, this code compute an FFT 
in place:

Code Example – C# FFT

var data = new DoubleVector( 1024, new RandGenUniform() );
var fft = new DoubleForward1DFFT( 1024 );
fft.FFTInPlace( data );

Code Example – VB FFT

Dim data As New DoubleVector(1024, New RandGenUniform())
Dim FFT As New DoubleForward1DFFT(1024)
FFT.FFTInPlace(data)

This code places the result in a second data structure:

Code Example – C# FFT

var data = new FloatMatrix( 5, 5, new RandGenUniform() );
var result = new FloatMatrix( 5, 5 );
var fft = new FloatForward2DFFT( 5, 5 );
fft.FFT( data, ref result );

Code Example – VB FFT

Dim Data As New FloatMatrix(5, 5, New RandGenUniform())
Dim Result As New FloatMatrix(5, 5)
Dim FFT As New FloatForward2DFFT(5, 5)
FFT.FFT(data, Result);

Data can be supplied either using NMath vector and matrix types, or using arrays. 
For NMath types, an offset into the data can be specified on the vector or matrix 
instance. For arrays, a separate integer offset may be passed to the FFT methods.
   Chapter 10.   Fourier Transforms, Convolution and Correlation 103



NOTE—In general, the FFT classes require that all input signal data be in contiguous 
(packed) storage—that is, have positive or negative unit stride. More complex memory 
layouts can be handled with class DoubleGeneral1DFFT (see “Strided Signals” below).

Unpacking Real Results

Results from computing an FFT on real signal data are returned in MKL Pack 
format1, a compact representation of a complex conjugate-symmetric sequence. 
The result is the same size as the original signal data.

For convenience, reader classes are provided for unpacking the results. The FFT 
instance used to generated the result can be queried for the appropriate reader 
using the GetSignalReader() method. This guarantees that the correct packed 
signal reader is constructed.

For example:

Code Example – C# FFT

var data = new DoubleVector( 1024, new RandGenUniform() );
var fft = new DoubleForward1DFFT( 1024 );
fft.FFTInPlace( data );
DoubleSymmetricSignalReader reader = fft.GetSignalReader( data );

Code Example – VB FFT

Dim Data As New DoubleVector(1024, New RandGenUniform())
Dim FFT As New DoubleForward1DFFT(1024)
FFT.FFTInPlace(Data)
Dim Reader As DoubleSymmetricSignalReader = 
FFT.GetSignalReader(Data)

Readers provide random access to any element in the pack FFT result:

Code Example – C# FFT

DoubleComplex thirdelement = reader[2];

Code Example – VB FFT

Dim ThirdElement As DoubleComplex = Reader(2)

Reader classes also provide methods for unpacking the entire result:

 The full unpack methods—such as UnpackFullToArray() and 
UnpackFullToMatrix()—build the unpacked signal representation of the 
entire packed complex symmetric signal.

 The symmetric half unpack methods—such as 
UnpackSymmetricHalftoArray() and 

1“Packed Formats”, Intel Math Kernel Library Reference Manual, September 2007, pp. 2554-2559.
104   NMath User’s Guide



UnpackSymmetricHalfToMatrix()—build the unpacked signal 
representation of the symmetric leading half of the packed signal.

For instance, this code unpacks the entire signal:

Code Example – C# FFT

DoubleSymmetric2DSignalReader reader = 
  fft.GetSignalReader( ref result );

DoubleComplexMatrix unpacked = reader.UnpackFullToMatrix();

Code Example – VB FFT

Dim Reader As DoubleSymmetric2DSignalReader = 
  FFT.GetSingalReader(Result)

Dim Unpacked As DoubleComplexMatrix = reader.UnpackFullToMatrix()

NOTE—Complex FFTs do not create packed results. The result is already the same 
size as the signal data.

Inverting Real Results

Results from computing an FFT on real signal data are returned in symmetric 
complex conjugate form, and NMath provides special classes for inverting this 
data back to the real domain. 

For example, this code computes a forward FFT on real 1D signal data:

Code Example – C# FFT

var data = new DoubleVector( "[ 1 2 2 1 ]" );
var result = new DoubleVector( 4) ;

var fft = new DoubleForward1DFFT( 4 );
fft.FFT( data, ref result );

Code Example – VB FFT

Dim Data As New DoubleVector("[ 1 2 2 1 ]")
Dim Result As New DoubleVector(4)

Dim FFT As New DoubleForward1DFFT(4)
FFT.FFT(data, Result)
   Chapter 10.   Fourier Transforms, Convolution and Correlation 105



This code uses class DoubleSymmetricBackward1DFFT to invert the result:

Code Example – C# FFT

var reverse = new DoubleVector( 4 );

var rfft = new DoubleSymmetricBackward1DFFT( 4 );
rfft.SetScaleFactorByLength();
rfft.FFT( result, ref reverse );

Code Example – VB FFT

Dim Reverse As New DoubleVector(4)

Dim RFFT As New DoubleSymmetricBackward1DFFT(4)
RFFT.SetScaleFactorByLength()
RFFT.FFT(Result, Reverse)

Symmetric backward FFT classes, such as DoubleSymmetricBackward1DFFT, 
exploit the complex conjugate symmetry of the forward FFT result. The scaling is 
necessary for reverse to match data. (See “Scale Factors“above.)    

Strided Signals

In general, the FFT classes require that all input signal data be in contiguous 
(packed) storage—that is, have unit stride. When working with strided signals, the 
FFT must be configured separately, and then used to create an advanced general 
FFT instance.

NOTE—Strided signals are supported for 1D signals only.

For example, suppose we have the following signal data, and wish to perform an 
FFT on the subset of the data specified by an offset of 3 and a stride of 2:

Code Example – C# FFT

double[] data = 
  { 94423, -341, 42343, 1, -1, 2, -1, 2, -1, 1, -85, 22 };

Code Example – VB FFT

Dim Data() As Double =
  {94423.0, -341.0, 42343.0, 1.0, -1.0, 2.0, -1.0, 2.0, -1.0, 1.0, 
  -85.0, 22.0}
106   NMath User’s Guide



The desired subset has a length of 4. To perform an FFT on this subset:

1. Build an FFTConfiguration instance which describes the FFT to be com-
puted, including the stride and offset:   

Code Example – C# FFT

int dimension = 1;
int length = 4;
var config = new FFTConfiguration(
  FFTDirection.FORWARD,
  FFTPrecision.DOUBLE,
  FFTDomain.REAL,
  dimension,
  length );
configcomplex.DataOffset = 3; 
configcomplex.DataStride = 2;
configcomplex.InPlace = true;

Code Example – VB FFT

Dim Dimension As Integer = 1
Dim Length As Integer = 4
Dim Config As New FFTConfiguration(
  FFTDirection.FORWARD,
  FFTPrecision.DOUBLE,
  FFTDomain.REAL,
  Dimension,
  Length)
ConfigComplex.DataOffset = 3
ConfigComplex.DataStride = 2
ConfigComplex.InPlace = True

2.  Build a DoubleGeneral1DFFT instance from the configuration:

Code Example – C# FFT

var fft = new DoubleGeneral1DFFT( ref config );

Code Example – VB FFT

Dim FFT As New DoubleGeneral1DFFT(Config)

3. Create an array to hold the result, and compute the FFT:

Code Example – C# FFT

var result = new double[4];
fft.FFT( signal, ref result );
   Chapter 10.   Fourier Transforms, Convolution and Correlation 107



Code Example – VB FFT

Dim Result(4) As Double
FFT.FFT(Signal, Result)

Class DoubleGeneral1DFFT is intended for advanced users. If the provided 
configuration does not correctly match the layout and type of the input signal data, 
exceptions and erroneous outputs will result.

10.2 Convolution and Correlation

Convolution is used to linearly filter a signal The convolution z(n) of two discrete 
input sequences x(n) and y(n) is defined as:

Mathematically, the two convolved vectors, x and y, can be interchanged without 
changing the convolution result, z. In practice, however, one vector, called the 
convolution kernel, is often much shorter than the other and is typically used in 
many convolution operations against different data sets. The kernel can be thought 
of as a moving window scanned across the data vector. The output value is the 
weighted sum of the data within the window multiplied by the kernel. Where 
necessary, the sum is computed by padding the edges of the data with zeros. If the 
data is of length m and the kernel is of length n, then the output is of length m+n-1.

Correlation is used to characterize the statistical similarity between two signals. The 
operation is very similar to convolution, in that correlation uses two signals to 
produce a third signal, called the cross-correlation, or, if a signal is correlated with 
itself, the autocorrelation. The correlation is defined as:

NMath provides classes for performing linear convolutions on real and complex 
1D data. The API is 

Convolution and Correlation Classes

The classes that perform 1D convolution and correlation in NMath are named 
<Type>1DConvolution and <Type>1DCorrelation, respectively, where <Type> is 
Float, Double, FloatComplex, or DoubleComplex. For example, class 
Double1DConvolution performs convolutions of two 1D sequences of double-
precision floating point values.

z k  x j y k j– 
j
=

z k  x j y k j+ 
j
=
108   NMath User’s Guide



Creating Convolution and Correlation Instances

Convolution and correlation instances are constructed by specifying the kernel and 
the length of the data vector. For example, this code constructs a 
Double1DConvolution for a kernel of length 5, representing a moving average, 
and data vector of length 1024: 

Code Example – C# FFT

var kernel = new DoubleVector( ".2 .2 .2 .2 .2" );
int dataLength = 1024;
Double1DConvolution conv =
  new Double1DConvolution( kernel, dataLength );

Code Example – VB FFT

Dim Kernel As New DoubleVector(".2 .2 .2 .2 .2")
Dim DataLength = 1024
Dim Conv As New Double1DConvolution(Kernel, DataLength)

The kernel can be supplied either using an NMath vector or an array. For an 
NMath vector, a kernel offset and stride can be specified on the vector instance. 
For an array, a separate integer kernel offset and stride may be passed to the 
constructor:

Code Example – C# FFT

var kernel = new DoubleVector( "-1 .2 -1 .2 -1 .2" );
int kernelOffset = 1;
int kernelStride = 2;
int dataLength = 1024;
var corr = new Double1DCorrelation( kernel, kernelOffset, 
  kernelStride, dataLength );

Code Example – VB FFT

Dim Kernel As New DoubleVector("-1 .2 -1 .2 -1 .2")
Dim KernelOffset = 1
Dim KernelStride = 2
Dim DataLength = 1024
Dim Corr As New Double1DCorrelation(Kernel, KernelOffset, 
  KernelStride, DataLength)

Convolution and Correlation Properties

Once constructed, an NMath convolution or correlation object provides the 
following read-only properties:

 KernelLength gets the length of the kernel.

 DataLength gets the expected convolution or correlation data length.
   Chapter 10.   Fourier Transforms, Convolution and Correlation 109



 Length gets the length of the output convolution or correlation. The output 
length equals DataLength + KernelLength - 1.

Computing Convolutions and Correlations

The Convolve() method computes the convolution and the Correlate() method 
computes the correlation between the stored kernel, and a given data vector. For 
example:

Code Example – C# FFT

var data = new FloatVector( 500, new RandGenUniform() );
FloatVector result = corr.Correlate( data );

Code Example – VB FFT

Dim Data As New FloatVector(500, New RandGenUniform())
Dim Result As FloatVector = Corr.Correlate(Data)

An InvalidArgumentException is raised if the length of the given data does not 
match the data length previously specified in the constructor.

If you are performing multiple convolutions or correlations using the same 
object—within a loop, for example—you can reuse the same pre-allocated vector to 
hold the result:

Code Example – C# FFT

var data = new FloatVector( 500, new RandGenUniform() );
var result = new FloatVector( corr.Length );
corr.Correlate( data, ref result );

Code Example – VB FFT

Dim Data As New FloatVector(500, New RandGenUniform())
Dim Result As New FloatVector(Corr.Length)
Corr.Correlate(Data, Result)

Windowing Options

The Convolve() and Correlate() methods compute the full result, with length  
DataLength + KernelLength - 1. Boundary values, where the kernel partially 
overlaps the data, are computed by padding the edges of the data with zeros. The 
TrimConvolution() and TrimCorrelation() methods creates a clipped view 
into a given result, using the specified Windowing option:

 Windowing.Unwindowed (the default) retrieves the full result.

 Windowing.CenterWindow clips the result to the length of the data, shifted 
to the center.
110   NMath User’s Guide



 Windowing.FullKernelOverlap returns the data portion that entirely 
overlaps the kernel.

For instance:

Code Example – C# FFT

DoubleVector result = conv.Convolve( data );
DoubleVector trimmed = conv.TrimConvolution( result, 
  CorrelationBase.Windowing.FullKernelOverlap );

Code Example – VB FFT

Dim Result As DoubleVector = Conv.Convolve(Data)
Dim Trimmed As DoubleVector = Conv.TrimConvolution(result, 
  CorrelationBase.Windowing.FullKernelOverlap)

No data is copied. The returned vector is a view into the same data referenced by 
the given result.
   Chapter 10.   Fourier Transforms, Convolution and Correlation 111



112   NMath User’s Guide



CHAPTER 11.  
DISCRETE WAVELET TRANSFORMS

A wavelet is a wave-like oscillation, which integrates to zero and is well-localized in 
time. A discrete wavelet transform (DWT) is any wavelet transform for which the 
wavelets are discretely sampled. DWT captures both frequency and location 
information, an important advantage over FFT (Chapter 10).

DWTs have found engineering applications in computer vision, pattern 
recognition, signal filtering and perhaps most widely in signal and image 
compression. In 2000 the ISO JPEG committee proposed a new JPEG2000 image 
compression standard that is based on the wavelet transform using two 
Daubechies wavelets. This standard made the relatively new image decomposition 
algorithm ubiquitous on desktops around the world.

NMath provides classes for performing DWT using most common wavelet 
families, including Harr, Daubechies, Symlet, Best Localized, and Coiflet. Custom 
wavelets can also be created. DWT classes support both single step forward and 
reverse DWTs, and multilevel signal deconstruction and reconstruction. Details 
thresholding at any level and threshold calculations are also supported.

11.1 Creating Wavelets

NMath provides classes for creating wavelet objects: FloatWavelet and 
DoubleWavelet. Each derives from an abstract Wavelet base class.

Wavelets are constructed by specifying the wavelet family, using a value from the 
Wavelet.Wavelets enum. Fives types of built-in wavelets are supported: Harr, 
Daubechies, Least Asymmetric, Best Localized, and Coiflet. Built-in wavelets are 
identified by short name: the first letter abbreviates the wavelet family name, and 
the number that follows indicates the wavelet length. For example, this code 
builds a single-precision Coiflet wavelet of length 4:

Code Example – C# Wavelet

var wavelet = new FloatWavelet( Wavelet.Wavelets.C4 );

Code Example – VB Wavelet

Dim WaveletInstance As New FloatWavelet(Wavelet.Wavelets.C4)
   Chapter 11.   Discrete Wavelet Transforms 113



Custom wavelets can also be created by passing in the wavelet's low and high pass 
decimation filter values. The wavelet class then imposes the wavelet's symmetry 
properties to compute the reconstruction filters.

For example, this code builds a custom reverse bi-orthogonal wavelet:

Code Example – C# Custom Wavelet

var low = new double[] {0.0, 0.0, 0.7071068, 0.7071068, 0.0, 0.0};
var high = new double[] {0.0883883, 0.0883883, -0.7071068, 
                         0.7071068, -0.0883883, -0.0883883};
var wavelet = new DoubleWavelet( low, high );

Code Example – VB Custom Wavelet

Dim Low = New Double() {0.0, 0.0, 0.7071068, 0.7071068, 0.0, 0.0}
Dim High = New Double() {0.0883883, 0.0883883, -0.7071068, 
                         0.7071068, -0.0883883, -0.0883883}
Dim WaveletInstance As New DoubleWavelet(Low, High)

After creating a wavelet object, you can access various properties of the wavelet:

 FamilyName gets the wavelet family name (long-form), or Custom in the 
case of a custom wavelet.

 ShortName gets the wavelet name abbreviation. 

 Length gets the length of the wavelet.

 HighDecFilter gets the high-pass decimation filter values.

 LowDecFilter gets the low-pass decimation filter values. 

 HighRecFilter gets the high-pass reconstruction filter values.

 LowRecFilter gets the low-pass reconstruction filter values.

11.2 Computing Discrete Wavelet Transforms

As with Fourier analysis (Chapter 10), there are three basic steps to filtering signals 
using wavelets:

 Decompose the signal using the DWT.

 Filter the signal in the wavelet space using thresholding.

 Invert the filtered signal to reconstruct the original, now filtered signal, 
using the inverse DWT.
114   NMath User’s Guide



The filtering of signals using wavelets is based on the idea that as the DWT 
decomposes the signal into details and approximation parts, at some scale the 
details contain mostly insignificant noise and can be removed or zeroed out using 
thresholding without affecting the signal.

In NMath, classes FloatDWT and DoubleDWT perform discrete wavelet 
transforms. Both derive from the DiscreteWaveletTransform abstract base class. 
DWT classes support both single step forward and reverse DWTs and multilevel 
signal deconstruction and reconstruction.

Instances of DWT types are constructed from signal data and a wavelet instance 
(Section 11.1). For example:

Code Example – C# DWT

var data = new DoubleVector( 26, new RandGenNormal( 1.0, 1.0 ) );
var wavelet = new DoubleWavelet( Wavelet.Wavelets.D2 );
var dwt = new DoubleDWT( data.DataBlock.Data, wavelet );

Code Example – VB DWT

Dim Data As New DoubleVector(26, New RandGenNormal(1.0, 1.0))
Dim WaveletInstance As New DoubleWavelet(Wavelet.Wavelets.D2)
Dim DWT As New DoubleDWT(Data.DataBlock.Data, waveletInstance)

An edge management mode can also be specified using values from the 
DiscreteWaveletTransform.WaveletMode enum. The default value is 
WaveletMode.PeriodicPadding.

Single Step DWT

For convenience, DWT classes provide DWT() and IDWT() methods for performing 
single-step forward and reverse DWTs. For example, this code performs a single-
step deconstruction and reconstruction.

Code Example – C# Single-Step DWT

// Decompose signal with DWT
double[] approx;
double[] details;
dwt.DWT( data.DataBlock.Data, out approx, out details );

// Rebuild the signal
double[] signal = dwt.IDWT( approx, details );

Code Example – VB Single-Step DWT

' Decompose signal with DWT
Dim Approx() As Double
Dim Details() As Double
DWT.DWT(Data.DataBlock.Data, Approx, Details)
   Chapter 11.   Discrete Wavelet Transforms 115



' Rebuild the signal
Dim Signal As Double() = DWT.IDWT(Approx, Details)

Multilevel DWT

The Decompose() method performs a multilevel discrete wavelet decomposition at 
a specified level. For instance:

Code Example – C# Multilevel DWT

dwt.Decompose( 5 );

Code Example – VB Multilevel DWT

DWT.Decompose(5)

MaximumDecompLevel() provides the maximum number of DWT decompositions 
possible based on the signal and wavelet lengths. CurrentDecompLevel() 
provides the current maximum level to which this signal has been decomposed. 

The Reconstruct() method performs a multilevel discrete wavelet reconstruction 
at a specified level. A signal decomposition must be first completed. If no level is 
specified, a complete reconstruction is performed. For example, this code rebuilds 
the signal to level 2:

Code Example – C# Multilevel DWT

double[] reconstructedData2 = dwt.Reconstruct( 2 );

Code Example – VB Multilevel DWT

Dim ReconstructedData2() As Double = DWT.Reconstruct(2)

This code rebuilds the signal to level 1—the original (filtered) signal.

Code Example – C# Multilevel DWT

double[] reconstructedData1 = dwt.Reconstruct();

Code Example – VB Multilevel DWT

Dim ReconstructedData1() As Double = DWT.Reconstruct()

Accessing the Coefficients

After a signal decomposition is completed, the coefficient vectors can be accessed. 
The WaveletCoefficients() method takes the wavelet coefficient type, either 
details or approximation, and the detail level desired, starting with level 1 and 
continuing to the maximum level of decomposition completed (similar to 
MATLAB's wrcoef function). Depending on the length of the wavelet and signal 
116   NMath User’s Guide



vector the approximations may have an extra element at the end of the vector due 
to the IDWT.

Code Example – C# Wavelet Coefficients

var approx = dwt.WaveletCoefficients( 
  DiscreteWaveletTransform.WaveletCoefficientType.Details, 2 );

Code Example – VB Wavelet Coefficients

Dim Approx() As Double = DWT.WaveletCoefficients(
  DiscreteWaveletTransform.WaveletCoefficientType.Details, 2)

Threshold Calculations

ComputeThreshold() finds a single threshold for a given thresholding method 
and decomposition level. Four different thresholding methods are supported: 
Universal, UniversalMAD, Sure, and Hybrid (also known as SureShrink). 

For example, this code computes the Universal threshold at level 1:

Code Example – C# Wavelet Threshold Calculation

double lambdaU = dwt.ComputeThreshold( 
  DiscreteWaveletTransform.ThresholdMethod.Universal, 1 );

Code Example – VB Wavelet Threshold Calculation

Dim LambdaU As Double = DWT.ComputeThreshold(
  DiscreteWaveletTransform.ThresholdMethod.Universal, 1)

Thresholding

NMath supports details thresholding at any level.

ThresholdAllLevels() thresholds all levels of detail in the current signal 
decomposition. The method accepts a thresholding policy from the 
DiscreteWaveletTransform.ThresholdPolicy enum, and a vector of threshold 
values, with the first value applied to level 1, the second applied to level 2, and so 
on. The length of the threshold vector must be at least the depth of the current 
decomposition as indicated by CurrentDecompLevel().

For example, this code thresholds all detail levels using the same threshold with a 
Soft policy:

Code Example – C# Wavelet Thresholding

dwt.ThresholdAllLevels( 
  DiscreteWaveletTransform.ThresholdPolicy.Soft,
  new double[] { lambdaU, lambdaU, lambdaU, lambdaU, lambdaU } );
   Chapter 11.   Discrete Wavelet Transforms 117



Code Example – VB Wavelet Thresholding

DWT.ThresholdAllLevels(
  DiscreteWaveletTransform.ThresholdPolicy.Soft,
  New Double() {LambdaU, LambdaU, LambdaU, LambdaU, LambdaU})

ThresholdLevel() thresholds the specified details level in the current signal 
decomposition.
118   NMath User’s Guide



CHAPTER 12.  
HISTOGRAMS

In NMath, instances of the Histogram class construct and maintain a histogram of 
input data. Input data is sorted into bins, and a count is kept of how many data 
points fall into each bin.

12.1 Creating Histograms

The Histogram class provides various methods for defining the bins into which 
input data will be sorted. For example, you can create a histogram with a specified 
number of equal-sized bins spanning specified maximum and minimum values. 
Thus, this code creates a histogram with 10 equal-sized bins spanning 0.0 to 
100.0:

Code Example – C# histogram

var hist = new Histogram( 10, 0.0, 100.0 );

Code Example – VB histogram

Dim Hist As New Histogram(10, 0.0, 100.0)

The first n-1 bins are closed with respect to the lower bound, but open with respect 
to the upper bound. For instance, in the histogram created above, the first bin 
includes 0.0 but excludes 10.0, the second bin includes 10.0 but excludes 20.0, 
and so forth. The final bin is closed with respect to both upper and lower bounds. 
Thus, in the code above, the last bin includes both 90.0 and 100.0.

If you do not wish to create equal-sized bins, you can create a Histogram from a 
vector of bin boundaries. Bin boundaries must be strictly monotonically 
increasing; that is, binBoundares[i] must be strictly less than 
binBoundaries[i+1] for each i. For example, this constructs a histogram with 3 
unequal-sized bins spanning 0.0 to 100.0:

Code Example – C# histogram

var v = new DoubleVector( “0.0 25.0 75.0 100.0” );
var hist = new Histogram( v );

Code Example – VB histogram

Dim V As New DoubleVector("0.0 25.0 75.0 100.0")
Dim Hist As New Histogram(V)
   Chapter 12.   Histograms 119



Again, the first n-1 bins are closed with respect to the lower bound, but open with 
respect to the upper bound. The final bin is closed with respect to both upper and 
lower bounds.

Finally, for complete control, you can create a Histogram from an array of Interval 
objects. An Interval represents a numeric interval with inclusive or exclusive 
lower and upper bounds. The Interval constructor accepts a lower and upper 
bound, plus a value from the Interval.Type enumeration indicated whether the 
interval is open or closed with respect to each boundary. Thus:

Code Example – C# histogram

// (0,10)
var i1 = new Interval(  0, 10, Interval.Type.OpenOpen );

// [0,10)
var i1 = new Interval(  0, 10, Interval.Type.ClosedOpen );

// (0,10]
var i1 = new Interval(  0, 10, Interval.Type.OpenClosed );

// [0,10]
var i1 = new Interval(  0, 10, Interval.Type.ClosedClosed );

Code Example – VB histogram

' (0,10)
Dim I1 As New Interval(0, 10, Interval.Type.OpenOpen)

' [0,10)
Dim I1 As New Interval(0, 10, Interval.Type.ClosedOpen)

' (0,10]
Dim I1 As New Interval(0, 10, Interval.Type.OpenClosed)

' [0,10]
Dim I1 As New Interval(0, 10, Interval.Type.ClosedClosed)

A Histogram can be created from an array of Interval objects. The intervals must 
be continuous and non-overlapping.

12.2 Adding Data to Histograms

The provided AddData() method adds a vector of data to a Histogram. The 
histogram bin count containing each given data point is updated. For example, this 
code constructs a vector of 100 random numbers from a normal distribution and 
adds the data to Histogram hist.
120   NMath User’s Guide



Code Example – C# histogram

double mean = 70.0;
double variance = 10.0;
var rng = new RandGenNormal( mean, variance );
var v = new DoubleVector( 100, rng );

hist.AddData( v );

Code Example – VB histogram

Dim Mean As Double = 70.0
Dim Variance As Double = 10.0
Dim RNG As New RandGenNormal(Mean, Variance)
Dim V As New DoubleVector(100, RNG)

Hist.AddData(V)

As a convenience, the Histogram class also provides a constructor that accepts the 
number of bins and a vector data. The constructed bins are of equal size and scaled 
with the maximum and minimum data. The counts in the histogram are initialized 
with the contents of the given vector. Thus:

Code Example – C# histogram

var hist = new Histogram( 20, v );

Code Example – VB histogram

Dim Hist As New Histogram(20, V)

Lastly, you can add a single data point to a histogram using an overload of the 
AddData() method that accepts a double:

Code Example – C# histogram

double d = 5.34;
hist.AddData( d );

Code Example – VB histogram

Dim D As Double = 5.34
Hist.AddData(D)

12.3 Value Operations of Histograms

The Histogram class has the following read-only properties:

 Bins gets the bin boundaries as an array of Interval objects.

 Counts gets the counts for each bin as an array of integers.
   Chapter 12.   Histograms 121



 NumBins gets the number of bins in the histogram.

 NumSmaller gets the number of data points that were smaller than the 
smallest bin boundary.

 NumLarger gets the number of data points that were larger than the largest 
bin boundary.

 Total gets the total number of data points added to the histogram.

Similarly, the Count() member function gets the bin count for a given bin. 
Reset() resets all bin counts (and NumSmaller and NumLarger) to zero; the 
number of bins and the bin boundaries remain unchanged.

PDF() computes the probability density function (PDF) for a specified value or bin, 
and CDF() computes the cumulative distribution function (CDF).

12.4 Displaying Histograms

The Histogram class provides two methods for displaying a histogram textually. 
The ToString() member function returns a formatted string representation of a 
histogram. If the bin boundaries are b0, b1, b2,...,bn-1, and the counts for 
these bins are c1, c2,...,cn, respectively, then ToString() returns a string with 
the following format:

[b0,b1)  :   c1
[b1,b2)  :   c2
[b2,b3)  :   c3
.
.
.
[bn-2,bn-1]: cn

The provided StemLeaf() method formats the contents of a histogram into a 
simple ASCII stem-leaf diagram with the following form:

[b0,b1):     *****c1
[b1,b2):     **********c2
[b2,b3):     ***************c3
.
.
.
[bn-2,bn-1]: *****cn

The number of asterisks represents the count for that bin minus one.
122   NMath User’s Guide



CHAPTER 13.  
CALCULUS

NMath provides classes for encapsulating functions of one variable, . Once 
constructed, function objects enable you to:

 evaluate a function at a given x-value or vector of x-values;

 integrate a function over a given interval;

 compute the derivative of a function at a given x-value;

 manipulate functions algebraically.

This chapter describes how to create and manipulate function objects.

13.1 Encapsulating Functions

Class OneVariableFunction encapsulates an arbitrary function, and works with 
other numerical classes to approximate integrals and derivatives. 

NOTE—Class Polynomial extends OneVariableFunction, and provides exact methods 
for integration and differentiation of polynomials, as well as various convenience func-
tions for creating and manipulating polynomials. This is the preferred class to use if 
your function is a polynomial. See Section 13.4 for more information.

Creating a Function of One Variable

A OneVariableFunction is constructed from a Func<double, double>, a function 
delegate that takes a single double parameter and returns a double.

For example, suppose you wish to encapsulate this function:

Code Example – C# calculus

public double MyFunction( double x )
{
  return Math.Sin( x ) + Math.Pow( x, 3 ) / Math.PI;
}

f x 
   Chapter 13.   Calculus 123



Code Example – VB calculus

Function MyFunction(X As Double) As Double
  Return Math.Sin(X) + Math.Pow(X, 3) / Math.PI
End Function

First, create a delegate for the MyFunction() method:

Code Example – C# calculus

var d = new Func<double, double>( MyFunction );

Code Example – VB calculus

Dim D As New Func(Of Double, Double)(AddressOf MyFunction)

Then construct a OneVariableFunction encapsulating the delegate:

Code Example – C# calculus

var f = new OneVariableFunction( d );

Code Example – VB calculus

Dim F As New OneVariableFunction(D)

A Func<double, double> delegate is also implicitly converted to a 
OneVariableFunction. Thus:

Code Example – C# calculus

OneVariableFunction f = d;

Code Example – VB calculus

OneVariableFunction f = d;

Properties of Functions

A OneVariableFunction object has the following properties:

 Function gets the encapsulated function delegate.

 Integrator gets and sets the integration object associated with the 
function (see Section 13.2).

 Differentiator gets and sets the differentiation object associated with the 
function (see Section 13.3).

Evaluating Functions

The Evaluate() method on OneVariableFunction evaluates a function at a given 
x-value. For instance, if f is a OneVariableFunction:
124   NMath User’s Guide



Code Example – C# calculus

double y = f.Evaluate( Math.PI );

Code Example – VB calculus

Dim Y As Double = F.Evaluate(Math.PI)

Evaluate() also accepts a vector of x-values, and returns a vector of y-values, such 
that y[i] = f( x[i] ). Thus, this code evaluates f at 100 points between 0 and 1:

Code Example – C# calculus

var x = new DoubleVector( 100, 0, 1.0/100 );
DoubleVector y = f.Evaluate( x );

Code Example – VB calculus

Dim X As New DoubleVector(100, 0, 1.0 / 100.0)
Dim Y As DoubleVector = F.Evaluate(X)

Finally, Evaluate() accepts another OneVariableFunction, and returns a new 
function encapsulating the composite. For example, if f encapsulates the function 

 and g encapsulates , you can create a new function that 
encapsulates  like so:

Code Example – C# calculus

OneVariableFunction composite = f.Evaluate( g );

Code Example – VB calculus

Dim Composite As OneVariableFunction = F.Evaluate(g)

Algebraic Manipulation of Functions

NMath provides overloaded arithmetic operators for functions with their 
conventional meanings for those .NET languages that support them, and 
equivalent named methods for those that do not. Table 10 lists the equivalent 
operators and methods.

Table 10 – Arithmetic operators

Operator Equivalent Named Method

+ Add()

- Subtract()

* Multiply()

f x  x sin= g x  x 1+=
f g x   x 1+ sin=
   Chapter 13.   Calculus 125



All binary operators and equivalent named methods work either with two 
functions, or with a function and a scalar. For example, this C# code uses the 
overloaded operators:

Code Example – C# calculus

OneVariableFunction g = f/2;
OneVariableFunction sum = f + g;
OneVariableFunction neg = -f;

This Visual Basic code uses the equivalent named methods:

Code Example – VB calculus

Dim G As OneVariableFunction = OneVariableFunction.Divide(F, 2)
Dim Sum As OneVariableFunction = OneVariableFunction.Add(F, g)
Dim Neg As OneVariableFunction = OneVariableFunction.Negate(F)

Finally, as a convenience, NMathFunctions provides a Pow() method that raises a 
function to a scalar power:

Code Example – C# calculus

OneVariableFunction g = NMathFunctions.Pow( f, 3.5 );

Code Example – VB calculus

Dim G As OneVariableFunction = NMathFunctions.Pow(F, 3.5)

13.2 Numerical Integration

Numerical integration, also called quadrature, computes an approximation of the 
integral of a function over some interval. There are many methods for numerically 
evaluating integrals. NMath provides two of the most widely used, general 
purpose families of methods: Romberg integration, and Gauss-Kronrod integration.

NOTE—Class Polynomial provides a method for constructing the exact antiderivative 
of a polynomial. See Section 13.4 for more information.

/ Divide()

Unary - Negate()

Table 10 – Arithmetic operators

Operator Equivalent Named Method
126   NMath User’s Guide



Computing Integrals

The Integrate() method on OneVariableFunction (Section 13.1) computes the 
integral of a function over a given interval. For example, if f is a 
OneVariableFunction, this code integrates f over the interval -1 to 1:

Code Example – C# calculus

double integral = f.Integrate( -1, 1 );

Code Example – VB calculus

Dim Integral As Double = F.Integrate(-1, 1)

NOTE—NMath does not directly support improper intervals; that is, it must be possi-
ble to evaluate the function at both the lower and upper bounds, and at any point in 
between (no singularities).

To perform integration, every OneVariableFunction has an IIntegrator object 
associated with it. NMath integration classes such as RombergIntegrator and 
GaussKronrodIntegrator implement the IIntegrator interface. The default 
integrator for a OneVariableFunction is an instance of RombergIntegrator, which 
may be changed using the Integrator property. Thus:

Code Example – C# calculus

f.Integrator = new GaussKronrodIntegrator();
double integral = f.Integrate( 0, Math.PI );

Code Example – VB calculus

F.Integrator = New GaussKronrodIntegrator()
Dim Integral As Double = F.Integrate(0, Math.PI)

You can also change the default IIntegrator associated with all instances of 
OneVariableFunction using the static DefaultIntegrator property. For instance:

Code Example – C# calculus

OneVariableFunction.DefaultIntegrator =
  new GaussKronrodIntegrator();

var d = new Func<double, double>( MyFunction );
var f = new OneVariableFunction( d );

double integral = f.Integrate( 0, 1 );  // uses Gauss-Kronrod

Code Example – VB calculus

OneVariableFunction.DefaultIntegrator = New 
GaussKronrodIntegrator()
   Chapter 13.   Calculus 127



Dim D As New Func(Of Double, Double)(AddressOf MyFunction)
Dim F As New OneVariableFunction(D)

Dim Integral As Double = f.Integrate(0, 1) ' uses Gauss-Kronrod 

Romberg Integration

In general, the class of methods known as Newton-Cotes formulas estimate the 
integral of a function over a given interval by dividing the interval into  panels, 
where k is called the order, estimating the integral within each panel, then summing 
the estimates. For instance, the trapezoidal rule approximates the function in each 
panel by a straight line between the end points. Simpson’s rule approximates the 
function in two adjacent panels by a quadratic function connecting the two outer 
points and the common midpoint. Higher-level methods are obtained by 
interpolating higher degree polynomial segments.

Because all methods evaluate the function at the same set of points, higher-level 
approximations can be derived from lower-level approximations. For example, it 
can be shown that a kth-order Simpson’s rule approximation can be derived from 
two trapezoidal rule approximations of order k and k-1. Similarly, a Boole’s rule 
approximation, which fits third-degree polynomials through the points associated 
with four-panel partitions of the interval, can be derived from two Simpson’s rule 
approximations of order k and k-1. In this way, all higher level approximations can 
be derived from a series of trapezoidal rule approximations.

This iterated application of trapezoidal rule approximations is known as Romberg 
integration. Romberg integration is a very powerful method for quickly and 
accurately integrating smooth functions.

In NMath, instances of class RombergIntegrator compute successive Romberg 
approximations of increasing order until the estimated error in the approximation 
is less than a specified error tolerance, or until the maximum order is reached. The 
default error tolerance is 1e-8, and the default maximum order is 20.

To perform integration, every OneVariableFunction has an IIntegrator object 
associated with it, which is used by the Integrate() method to compute integrals. 
The default IIntegrator for a OneVariableFunction is an instance of 
RombergIntegrator. For example, assuming f is a OneVariableFunction, this code 
uses the default RombergIntegrator to integrate over the interval -1 to 1:

Code Example – C# calculus

double estimate = f.Integrate( -1, 1);

Code Example – VB calculus

Dim Estimate As Double = f.Integrate(-1, 1)

The underlying IIntegrator can be accessed using the Integrator property.

2
k

128   NMath User’s Guide



In some cases, you may wish to create a RombergIntegrator yourself. This gives 
you more control over the integration process, and allows you to reuse a 
customized integrator to integrate several functions, or one function over several 
intervals. Thus, this code instantiates a RombergIntegrator, uses the provided 
Tolerance property to change the error tolerance and the MaximumOrder property 
to change the maximum order, then calls the Integrate() method on 
RombergIntegrator to integrate functions f and g:

Code Example – C# calculus

var rom = new RombergIntegrator();
rom.Tolerance = 1e-6;
rom.MaximumOrder = 16;
double integralF = rom.Integrate( f, -1, 1);
double integralG = rom.Integrate( g, 0, 2 * Math.PI );

Code Example – VB calculus

Dim Rom As New RombergIntegrator()
Rom.Tolerance = "1e-6"
Rom.MaximumOrder = 16
Dim IntegralF As Double = Rom.Integrate(f, -1, 1)
Dim IntegralG As Double = Rom.Integrate(g, 0, 2 * Math.PI)

To compute a Romberg estimate of a specific order, k, you can also set the 
MaximumOrder to k and the Tolerance to a negative value. This code configures 
the RombergIntegrator to compute an 8th-order approximation: 

Code Example – C# calculus

var rom = new RombergIntegrator();
rom.Tolerance = -1;
rom.MaximumOrder = 8;
double estimate = rom.Integrate( f, -1, 1);

Code Example – VB calculus

Dim Rom = New RombergIntegrator()
Rom.Tolerance = -1
Rom.MaximumOrder = 8
Dim Estimate As Double = Rom.Integrate(f, -1, 1)

After computing an estimate, a RombergIntegrator holds a record of the iteration 
process. Read-only properties are provided for accessing this information:

 RombergEstimate gets the Romberg estimate for the integral, as returned 
by the Integrate() method.

 RombergErrorEstimate gets an estimate of the error in the Romberg 
estimate of the integral just computed.

 ToleranceMet returns true if the estimate of the error in the Romberg 
approximation just computed is less than or equal to the tolerance; 
   Chapter 13.   Calculus 129



otherwise, false. (Integration ends either when the estimated error in the 
approximation is less than tolerance, or when the maximum order is 
reached.)

 Order gets the order of the Romberg approximation just computed.

 TrapeziodEstimate gets the estimate for the integral yielded by the 
compound trapeziod rule where the number of panels is equal to the order 
of the Romberg estimate.

 SimpsonEstimate gets the estimate for the integral yielded by the 
compound Simpson's rule where the number of panels is equal to the order 
of the Romberg estimate. (Note: Returns 0 if Order = 0.)

 Tableau gets the entire DoubleMatrix of successive approximations 
computed while computing a Romberg estimate. The rows are the order of 
approximation. The columns are the level of approximation. The first 
column contains the trapezoidal approximations, the second column the 
Simpson’s rule approximations, the third column the Boole’s rule 
approximations, and so on, up to the Order of the approximation just 
computed.

Thus, this code retrieves the Boole’s rule approximation:

Code Example – C# calculus

var rom = new RombergIntegrator();
double integral = rom.Integrate( f, 0, 1);
int order = rom.Order;
DoubleMatrix tableau = rom.Tableau;

double boole;
if ( order >= 2 )
{
  boole = tableau[ order, 2 ];
}

Code Example – VB calculus

Dim Rom As New RombergIntegrator()
Dim Integral As Double = Rom.Integrate(f, 0, 1)
Dim Order As Integer = Rom.Order
Dim Tableau As DoubleMatrix = Rom.Tableau

Dim Boole As Double
If Order >= 2 Then
  Boole = Tableau(Order, 2)
End If

Gauss-Kronrod Integration
130   NMath User’s Guide



Gaussian integration estimates an integral by evaluating the function at non-equally 
spaced points over the interval. The method attempts to pick optimal points at 
which to evaluate the function, and furthermore to weight the contribution of each 
point. Gauss-Kronrod integration is an adaptive Gaussian quadrature method in 
which the function is evaluated at special points known as Kronrod points. The 
Gauss-Kronrod method is especially suited for non-singular oscillating integrands.

NMath includes Gauss-Kronrod classes for different numbers of Kronrod points 
( , beginning with a Gauss 10-point rule):

 GaussKronrod21Integrator approximates integrals using the Gauss 
10-point and the Kronrod 21-point rule.

 GaussKronrod43Integrator approximates integrals using the Gauss 
21-point and the Kronrod 43-point rule.

 GaussKronrod87Integrator approximates integrals using the Gauss 
43-point and the Kronrod 87-point rule.

Finally, the automatic GaussKronrodIntegrator class uses Gauss-Kronrod rules 
with increasing number of points. Approximation ends when the relative error is 
less than the tolerance scaled by the integration result, or when the maximum 
number of points is reached. The default error tolerance is 1e-7; the default 
maximum number of points is 87. Unless you have reason to believe in advance 
that a particular Gauss-Kronrod rule is optimal for your function, it is 
recommended that you use the automatic integrator.

By default, OneVariableFunction objects use RombergIntegrator objects to 
compute integrals, but this may be changed using the Integrator property. For 
instance:

Code Example – C# calculus

f.Integrator = new GaussKronrodIntegrator();
double integral = f.Integrate( 0, Math.PI );

Code Example – VB calculus

F.Integrator = New GaussKronrodIntegrator()
Dim Integral As Double = F.Integrate(0, Math.PI)

This code specifically uses the GaussKronrod43Integrator, rather than the 
automatic GaussKronrodIntegrator:

Code Example – C# calculus

f.Integrator = new GaussKronrod43Integrator();
double integral = f.Integrate( -1, 1 );

Code Example – VB calculus

F.Integrator = New GaussKronrod43Integrator()

2n 1+
   Chapter 13.   Calculus 131



Dim Integral As Double = F.Integrate(-1, 1)

In some cases you may wish to create a Gauss-Kronrod integrator yourself. This 
gives you more control over the integration process, and allows you to reuse a 
customized integrator to integrate several functions, or one function over several 
intervals. Thus, this code instantiates a GaussKronrodIntegrator, uses the 
provided Tolerance property to change the error tolerance, then calls the 
Integrate() method on GaussKronrodIntegrator to integrate functions f and g:

Code Example – C# calculus

var gk = new GaussKronrodIntegrator();
gk.Tolerance = 1e-6;
double integralF = gk.Integrate( f, -1, 1);
double integralG = gk.Integrate( g, 0, 2 * Math.PI );

Code Example – VB calculus

Dim GK As New GaussKronrodIntegrator()
GK.Tolerance = "1e-6"
Dim IntegralF As Double = GK.Integrate(f, -1, 1)
Dim IntegralG As Double = GK.Integrate(g, 0, 2 * Math.PI)

Read-only properties are provided for accessing information about an integral 
approximation, once it has been computed: 

 RelativeErrorEstimate gets an estimate of the relative error for the 
integral approximation.

 ToleranceMet gets a boolean value indicating whether or not the relative 
error for the integral approximation is less than the tolerance scaled by the 
integration result.

 PreviousEstimate gets the integral approximation calculated using the 
previous rule—for example, the Gauss 10-point rule for a 
GaussKronrod21Integrator, the Kronrod 21-point rule for a 
GaussKronrod43Integrator, and so forth.

For instance, this code checks whether the error tolerance was met before 
proceeding:

Code Example – C# calculus

var gk = new GaussKronrodIntegrator();
gk.Tolerance = 1e-6;
double integral = gk.Integrate( f, -1, 1 );

if ( gk.ToleranceMet )
{
  // Do something here...
}

132   NMath User’s Guide



Code Example – VB calculus

Dim GK As New GaussKronrodIntegrator()
GK.Tolerance = "1e-6"
Dim Integral As Double = GK.Integrate(f, -1, 1)

If GK.ToleranceMet Then
  ' Do something here...
End If

13.3 Differentiation

The Differentiate() method on OneVariableFunction (Section 13.1) computes 
the derivative of a function at a given x-value. For example, if f is 
OneVariableFunction, this code estimates the derivative at 0:

Code Example – C# calculus

double d = f.Differentiate( 0 );

Code Example – VB calculus

Dim D As Double = F.Differentiate(0)

NOTE—Class Polynomial provides a method for constructing the exact derivative of a 
polynomial. See Section 13.4 for more information.

To perform differentiation, every OneVariableFunction has an IDifferentiator 
object associated with it. NMath provides class RiddersDifferentiator, which 
computes the derivative of a given function at a given x-value by Ridders’ method 
of polynomial extrapolation, and implements the IDifferentiator interface.

Extrapolations of higher and higher order are produced. Iteration stops when 
either the estimated error is less than a specified error tolerance, the error estimate 
is significantly worse than the previous order, or the maximum order is reached.

The default IDifferentiator for a OneVariableFunction is an instance of 
RiddersDifferentiator. To achieve more control over how differentiation is 
performed, you can instantiate your own RiddersDifferentiator. For instance, this 
code uses the Tolerance property to set the error tolerance to a non-default value, 
and the MaximumOrder property to set the maximum order, then calls the 
Differentiate() method to differentiate function f at :

Code Example – C# calculus

var ridders = new RiddersDifferentiator();
ridders.Tolerance = 1e-6;
ridders.MaximumOrder = 20;
double d = ridders.Differentiate( f, Math.PI );
   Chapter 13.   Calculus 133



Code Example – VB calculus

Dim Ridders As New RiddersDifferentiator()
Ridders.Tolerance = "1e-6"
Ridders.MaximumOrder = 20
Dim D As Double = Ridders.Differentiate(F, Math.PI)

Setting the error tolerance to a value less than zero ensures that the Ridders 
differentiation is of the maximum order:

Code Example – C# calculus

var ridders = new RiddersDifferentiator();
ridders.Tolerance = -1;
double d = ridders.Differentiate( f, 1 );

Code Example – VB calculus

Dim Ridders As New RiddersDifferentiator()
Ridders.Tolerance = -1
Dim D As Double = Ridders.Differentiate(F, 1)

Read-only properties are provided for accessing information about a derivative 
approximation, once it has been computed: 

 ErrorEstimate gets an estimate of the error of the derivative just 
computed.

 Order gets the order of the final polynomial extrapolation.

 ToleranceMet gets a boolean value indicating whether or not the error  
estimate for the derivative approximation is less than the tolerance.

 Tableau gets a matrix of successive approximations produced while 
computing the derivative. Successive columns in the matrix contain higher 
orders of extrapolation; successive rows decreasing step size.

For instance, this code checks whether the error tolerance was met before 
proceeding:

Code Example – C# calculus

var ridders = new RiddersDifferentiator();
double d = ridders.Differentiate( f, Math.PI );

if ( ridders.ToleranceMet ) {
  // Do something here...

}

Code Example – VB calculus

Dim Ridders As New RiddersDifferentiator()
Dim D As Double = ridders.Differentiate(F, Math.PI)
134   NMath User’s Guide



If Ridders.ToleranceMet Then
  ' Do something here...
End If

13.4 Polynomials

Class Polynomial extends OneVariableFunction (Section 13.1). Rather than 
encapsulating an arbitrary function delegate, Polynomial represents a polynomial 
by its coefficients, arranged in ascending order—that is, a vector  such 
that:

Thus, the polynomial  is represented as a DoubleVector of length 5 
with elements “3 1 -2 0 5”.

Creating Polynomials

A Polynomial instance can be constructed in two ways. If you know the exact form 
of the polynomial, simply pass in the vector of coefficients:

Code Example – C# polynomials

var coef = new DoubleVector( “1 0 2“);    // 2x^2 + 1
var p = new Polynomial( coef );

Code Example – VB polynomials

Dim Coef As New DoubleVector("1 0 2")    ' 2x^2 + 1
Dim P As New Polynomial(Coef)

Alternatively, you can interpolate a polynomial through a set of points. If the 
number of points is n, then the constructed polynomial will have degree n - 1 and 
pass through the interpolation points. For example, this code interpolates the 
polynomial  through the points (1,6), (2,11), and (3,20):

Code Example – C# polynomials

var x = new DoubleVector( “1 2 3”);
var y = new DoubleVector( “6 11 20” );
var p = new Polynomial( x, y );

Code Example – VB polynomials

Dim X As New DoubleVector("1 2 3")
Dim Y As New DoubleVector("6 11 20")
Dim P As New Polynomial(X, Y)

a0 a1  an  

f x  a0x
0

a1x
1  anx

n
+ + +=

5x
4

2x
2

– x 3+ +

2x
2

x– 5+
   Chapter 13.   Calculus 135



You can also construct a Polynomial instance from a vector of x-values and a 
OneVariableFunction evaluated at each x:

Code Example – C# polynomials

var f = new Func<double, double>( myFunction );
var x = new DoubleVector( 10, 1, 1 );
var p = new Polynomial( x, f );

Code Example – VB polynomials

Dim F As New Func(Of Double, Double)(AddressOf myFunction)
Dim X As New DoubleVector(10, 1, 1)
Dim P As New Polynomial(X, F)

Properties of Polynomials

Class Polynomial inherits Function, Integrator, and Differentiator 
properties from OneVariableFunction (Section 13.1). Additionally, Polynomial 
provides these properties:

 Coeff gets and sets the vector of coefficients.

 Degree gets the degree of the polynomial. 

The degree is the order of the highest non-zero coefficient. Therefore, the degree 
may be less than the length of the underlying coefficient vector, as returned for 
example by Coeff.Length. The Reduce() method is provided for removing 
trailing zeros from the coefficient vector.

Evaluating Polynomials

Class Polynomial inherits the Evaluate() method from OneVariableFunction. 
This method evaluates a polynomial at a given x-value, or vector of x-values. Thus:

Code Example – C# polynomials

var coeff = new DoubleVector( "6 -1 5 0 3 -2" );
var p = new Polynomial( coeff );

double y = p.Evaluate( 1.25 );

Code Example – VB polynomials

Dim Coeff As New DoubleVector("6 -1 5 0 3 -2")
Dim P As New Polynomial(Coeff)

Dim Y As Double = P.Evaluate(1.25)
136   NMath User’s Guide



Algebraic Manipulation of Polynomials

Because a Polynomial is-a OneVariableFunction, all of the overloaded arithmetic 
operators and equivalent named methods described in Section 13.1 accept 
polynomials. For example, this code adds a Polymomial to a 
OneVariableFunction to create a new OneVariableFunction:

Code Example – C# polynomials

var coeff = new DoubleVector( "1 4 -1 1 2 -3" );
var p = new Polynomial( coeff );

var d = new Func<double, double>( MyFunction );
var f = new OneVariableFunction( d );

OneVariableFunction g = p + f;

Code Example – VB polynomials

Dim Coeff As New DoubleVector("1 4 -1 1 2 -3")
Dim P As New Polynomial(Coeff)

Dim D As New Func(Of Double, Double)(AddressOf MyFunction)
Dim F As New OneVariableFunction(D)

Dim G As Func(Of Double, Double) = P + F

Additionally, class Polynomial provides overloads of the arithmetic operators and 
named methods. These operators and methods work either with two polynomials, 
or with a polynomial and a scalar. They operate directly on the underlying 
vector(s) of coefficients, and therefore return instances of Polynomial. For 
example:

Code Example – C# polynomials

var coeff = new DoubleVector( "-11 3 1 1 0 -1 2" );
var p = new Polynomial( coeff );
Polynomial p2 = p/2;
Polynomial p3 = p + p2;

Code Example – VB polynomials

Dim Coeff As New DoubleVector("-11 3 1 1 0 -1 2")
Dim P As New Polynomial(Coeff)
Dim P2 As Polynomial = P / 2.0
Dim P3 As Polynomial = P + P2

NOTE—You can divide one Polynomial by another, but the result is a 
OneVariableFunction rather than a Polynomial, since the quotient is a rational func-
tion, and not necessarily a polynomial.
   Chapter 13.   Calculus 137



Integration 

Class Polynomial inherits the Integrate() method from OneVariableFunction 
(Section 13.2), which computes the integral of the current function over a given 
interval. Polynomial also extends the interface to include an AntiDerivative() 
method that returns a new polynomial encapsulating the antiderivative (indefinite 
integral) of the current polynomial. For example:

Code Example – C# polynomials

var p = new Polynomial( new DoubleVector( "5 3 0 2" ) );
double integral = p.Integrate( -1, 1 ); 
Polynomial i = p.AntiDerivative();

Code Example – VB polynomials

Dim P As New Polynomial(New DoubleVector("5 3 0 2"))
Dim Integral As Double = P.Integrate(-1, 1)
Dim I As Polynomial = P.AntiDerivative()

In constructing the antiderivative, the constant of integration is assumed to be 
zero.

Each Polynomial object has a PolynomialIntegrator associated with it, which 
implements the IIntegrator interface. Because the antiderivative of a polynomial 
can be easily constructed, PolynomialIntegrator simply constructs the 
antiderivative and evaluates it at the lower and upper bounds. This gives the exact 
integral. 

NOTE—You can, of course, set the IIntegrator associated with a Polynomial to a non-
default value, such as a Romberg numerical integrator. But since this would only com-
pute an approximation of the integral, there would be little point.

Differentiation 

Class Polynomial inherits both Differentiate() and Derivative() methods 
from OneVariableFunction (Section 13.3). Differentiate() returns the 
derivative of the current function at a given x-value. Derivative() is overridden 
to return a new polynomial that is the first derivative of the current polynomial. 
Thus:

Code Example – C# polynomials

var coeff = new DoubleVector( "1 -2 3" );
var p = new Polynomial( coeff );
Polynomial der = p.Derivative();  // der.Coeff = “-2 6”

Code Example – VB polynomials

Dim Coeff As New DoubleVector("1 -2 3")
138   NMath User’s Guide



Dim P As New Polynomial(Doeff)
Dim Der As Polynomial = P.Derivative()  ' Der.Coeff = "-2 6"

Each Polynomial object has a PolynomialDifferentiator associated with it, which 
implements the IDifferentiator interface. Because the derivative of a polynomial 
can be easily constructed, PolynomialDifferentiator simply constructs the first 
derivative and evaluates it at the given x-value. This gives the exact derivative. 

NOTE—You can, of course, set the Differentiator associated with a polynomial to a 
non-default value, such as a Ridders numerical differentiator. But again, as this would 
only compute an approximation of the derivative, there would be little point.

13.5 Function Interpolation

Abstract class TabulatedFunction extends OneVariableFunction (Section 13.1). 
Rather than encapsulating an arbitrary function delegate, TabulatedFunction 
holds paired vectors of known x- and y-values. The function can be evaluated at 
arbitrary points using derived function interpolation classes. As a 
OneVariableFunction, a TabulatedFunction can be manipulated algebraically. 
Numerical integrals and derivatives can also be computed.

A TabulatedFunction type is constructed from paired vectors of known x- and y-
values. The values for x must be in strictly increasing order. Class 
TabulatedFunction inherits Function, Integrator, and Differentiator 
properties from OneVariableFunction (Section 13.1). Additionally, 
TabulatedFunction provides these properties:

 X gets the vector of x-values represented by the function.

 Y gets the vector of y-values represented by the function.

 NumberOfTabulatedValues gets the number of tabulated values.

The X and Y properties return a copy of the tabulated data. Therefore, modifying 
the returned vectors does not change the TabulatedFunction.

To change the tabulated values represented by a TabulatedFunction, use the 
SetTabulatedValues() method. Provided GetX(), SetX(), GetY(), and SetY() 
methods also enable you to get and set individual tabulated values, or a range of 
values.

Class TabulatedFunction inherits the Evaluate() method from 
OneVariableFunction. This method evaluates the interpolated function at a given 
x-value, or vector of x-values. 
   Chapter 13.   Calculus 139



Linear Spline Interpolation

Class LinearSpline extends TabulatedFunction and represents a function whose 
values are determined by linear interpolation between tabulated values. For 
example:

Code Example – C# linear spline interpolation

var xValues = new DoubleVector(10, 0, 1);
DoubleVector yValues = xValues * xValues;
var ls = new LinearSpline( xValues, yValues );
double yInterpolated = ls.Evaluate( 3.5 );

Code Example – VB linear spline interpolation

Dim XValues As New DoubleVector(10, 0, 1)
Dim YValues = XValues * XValues
Dim LS As New LinearSpline(XValues, YValues)
Dim YInterpolated = LS.Evaluate(3.5)

Evaluating x-values outside the range of tabulated values returns the last know y-
value. In the example above, ls.Evaluate( 9.5 ) == ls.Evaluate( 9 ).

Cubic Spline Interpolation

Abstract class CubicSpline extends TabulatedFunction and represents a function 
whose values are determined by cubic spline interpolation between the tabulated 
values. NMath provides two concrete implementations of CubicSpline: 
NaturalCubicSpline and ClampedCubicSpline. The natural cubic spline is a cubic 
spline where the second derivative of the interpolating function is required to be 
zero at the left and right endpoints. The clamped cubic spline is a cubic spline where 
the first derivative of the interpolating function is specified at the left and right 
endpoints.

For example, this code creates a NaturalCubicSpline to resample at a fixed 
sampling interval a cubic spline fit constructed from data with a variable sampling 
interval:

Code Example – C# cubic spline interpolation

var x = new DoubleVector( “1.0 1.3 1.4 1.8 2.0”);
var y = new DoubleVector( “2.4 4.6 4.7 2.3 1.0” );

var s = new NaturalCubicSpline( x, y );

var xx = new DoubleVector( “1.0 1.25 1.5 1.75 2.0”);
DoubleVector yy = s.Evaluate( xx );

Code Example – VB cubic spline interpolation

Dim X As New DoubleVector("1.0 1.3 1.4 1.8 2.0")
140   NMath User’s Guide



Dim Y As New DoubleVector("2.4 4.6 4.7 2.3 1.0")

Dim S As New NaturalCubicSpline(X, Y)

Dim XX As New DoubleVector("1.0 1.25 1.5 1.75 2.0")
Dim YY As DoubleVector = S.Evaluate(XX)

This code creates a ClampedCubicSpline that enforces endslopes of zero for the 
cubic spline fit:

Code Example – C# cubic spline interpolation

var s = new ClampedCubicSpline( x, y, 0, 0 );

Code Example – VB cubic spline interpolation

Dim S As New ClampedCubicSpline(X, Y, 0, 0)

Class ClampedCubicSpline provides LeftEndSlope and RightEndSlope 
properties for getting and setting the clamped values, and method 
SetEndSlopes() for modifying them together.

Evaluating x-values outside the range of tabulated values in a 
NaturalCubicSpline returns the last know y-value. In a ClampedCubicSpline, the 
last fitted cubic is used, or a linear extrapolation is performed in the case of only 2 
or 3 tabulated vaules.

Smooth Splines

Class SmoothCubicSpline derives from TabulatedFunction. The API is the same 
as for other cubic spline classes, with the addition of a smoothing factor, P. The 
smoothing factor takes values in the range 0 <= p <= 1, where 0 results in zero 
curvature (linear interpolation), and 1 results to a conventional cubic spline.

Creating Your Own Interpolation Classes

The NMath interpolation class framework is easily extensible. To create your own 
interpolation class, simply extend TabulatedFunction. Specify a delegate function 
of type Func<double, double> for the instance variable function in the base 
class OneVariableFunction. This delegate computes and returns values for 
arbitrary x-values.

In addition, deriving classes may override the virtual method 
ProcessTabulatedValues(). This method is invoked by TabulatedFunction 
instances whenever the tabulated values are changed.
   Chapter 13.   Calculus 141



142   NMath User’s Guide



CHAPTER 14.  
SIGNAL PROCESSING

NMath provides classes for processing 1D signal data, including

 filtering, using MovingWindowFilter or SavitzkyGolayFilter;

 peak finding, using PeakFinderSavitzkyGolay or PeakFinderRuleBased.

This chapter describes how to create and manipulate signal processing objects.

14.1 Moving Window Filtering

Class MovingWindowFilter replaces data points f(i) with a linear combination, 
g(i), of the data points immediately to the left and right of f(i), based on a given set 
of coefficients, c, to use in the linear combination. The neighboring points are 
determined by the number of points to the left, nL, and the number of points to the 
right, nR:

MovingWindowFilter extends class CorrelationFilter which provides basic 
correlation services.

Creating Moving Window Filter Objects

A MovingWindowFilter instance is constructed from the number of points to the 
left and right of the input point, and the coefficients of the linear combination.

For example, this code constructs an asymmetric moving window filter of length 5:

Code Example – C# signal filtering

int numberLeft = 1;
int numberRight = 3;
var filterCoefficients = new DoubleVector(5, 0.20); 
var filter = new MovingWindowFilter( numberLeft, numberRight, 
  filterCoefficients );

Code Example – VB signal filtering

Dim NumberLeft = 1

g i  c n f i n+ 

n n– L=

nR

=
   Chapter 14.   Signal Processing 143



Dim NumberRight = 3
Dim FilterCoefficients As New DoubleVector(5, 0.2)
Dim Filter As New MovingWindowFilter(NumberLeft, NumberRight, 
  FilterCoefficients)

An InvalidArgumentException is raised if the length of the coefficient vector is 
not equal to numberLeft + numberRight + 1.

Static class methods are provided for generating coefficient vectors of three 
common types:

 MovingAverageCoefficients() constructs a coefficient vector that 
implements a moving average filter.

 ExponentiallyWeightedMovingAverageCoefficients() constructs a 
coefficient vector of exponentially weighted moving average (EWMA) 
coefficients of the specified length. As the number of EWMA coefficients 
increases, the filter captures at most %86.47 of the total weight due to the 
finite length of the filter. The filter length n and the exponential weight  
are related by .

 SavitzkyGolayCoefficients() constructs a coefficient vector that 
implements a Savitzky-Golay smoothing filter (also known as least-
squares, or DIgital Smoothing POlynomial, DISPO). The filter coefficients 
are chosen such that the filtered point is the value of an approximating 
polynomial of the specified order, typically quadratic or quartic. The 
polynomial is fit using a least squares algorithm.

For example, the following code constructs a moving average filter to replace each 
input data point with the average of it's value and the surrounding points:

Code Example – C# signal filtering

int numberLeft = 4;
int numberRight = 5;
DoubleVector filterCoefficients = 
  MovingWindowFilter.MovingAverageCoefficients( numberLeft, 
    numberRight );
var filter = new MovingWindowFilter( numberLeft, numberRight, 
  filterCoefficients );

Code Example – VB signal filtering

Dim NumberLeft = 4
Dim NumberRight = 5
Dim FilterCoefficients As DoubleVector = 
  MovingWindowFilter.MovingAverageCoefficients(NumberLeft, 
    NumberRight)
Dim Filter As New MovingWindowFilter(NumberLeft, NumberRight, 
  FilterCoefficients)


 2 n 1+ =
144   NMath User’s Guide



This code creates a Savitzky-Golay filter that replaces each input data point with 
the value of a fourth degree polynomial fit through the input value and it's 
surrounding points:

Code Example – C# signal filtering

int numberLeft = 3;
int numberRight = 3;
int degree = 4;
DoubleVector filterCoefficients =
  MovingWindowFilter.SavitzkyGolayCoefficients( numberLeft, 
    numberRight, degree );
var filter = new MovingWindowFilter( numberLeft, numberRight, 
 filterCoefficients );

Code Example – VB signal filtering

Dim NumberLeft = 3
Dim NumberRight = 3
Dim Degree = 4
Dim FilterCoefficients As DoubleVector =
  MovingWindowFilter.SavitzkyGolayCoefficients(NumberLeft,
    NumberRight, Degree)
Dim Filter As New MovingWindowFilter(NumberLeft, NumberRight, 
  FilterCoefficients)

This code creates an exponential moving average filter of length 18:

Code Example – C# signal filtering

int n = 18;
DoubleVector filterCoefficients = 
 MovingWindowFilter.ExponentiallyWeightedMovingAverageCoefficients(  
n ); 

var EWMAfilter = new MovingWindowFilter( 0, 
  coef.filterCoefficients - 1, filterCoefficients );

Code Example – VB signal filtering

Dim N = 18
Dim FilterCoefficients As DoubleVector =
   
 MovingWindowFilter.ExponentiallyWeightedMovingAverageCoefficients(
  N)

Dim EWMAfilter As New MovingWindowFilter(0,
  Coef.FilterCoefficients - 1, filterCoefficients)

After construction, the SetFilterParameters() method can be used to reset the 
filter parameters on a filter instance:
   Chapter 14.   Signal Processing 145



Code Example – C# signal filtering

filter.SetFilterParameters( numberLeft, numberRight, 
  filterCoefficients );

Code Example – VB signal filtering

Filter.SetFilterParameters(NumberLeft, NumberRight, 
  FilterCoefficients)

Moving Window Filter Properties

Once constructed, a MovingWindowFilter object provides the following read-only 
properties:

 NumberLeft gets the number of points to the left for the filter window.

 NumberRight gets the number of points to the right for the filter window.

 WindowWidth gets the width of the moving window (equal to NumberLeft 
+ NumberRight + 1).

 NumberOfCoefficients gets the number of filter coefficients (equal to 
WindowWidth).

 Coefficients gets the vector of filter coefficients.

Filtering Data

The Filter() method on MovingWindowFilter applies a filter to a given data set 
using the specified boundary option.

The MovingWindowFilter.BoundaryOption enumeration specifies options for 
handling the boundaries in a moving window filter, where the filter does not 
complete overlap with the data:

 BoundaryOption.PadWithZeros adds NumberLeft zeros to the beginning 
of the data to be filtered and NumberRight zeros to end.

 BoundaryOption.DoNotFilterBoundaryPoints specifies that the first 
NumberLeft and the last NumberRight data will not be filtered.

For example, the following code constructs a noisy cosine signal, and then filters 
the data:

Code Example – C# signal filtering

var rng = new RandGenNormal();
var noisySignal = new DoubleVector( length );
for ( int i = 0; i < length; i++ )
146   NMath User’s Guide



{
  noisySignal[i] = Math.Cos( .2*i ) + rng.Next();
}

DoubleVector filteredSignal = filter.Filter( noisySignal, 
  MovingWindowFilter.BoundaryOption.PadWithZeros );

Code Example – VB signal filtering

Dim RNG As New RandGenNormal()
Dim NoisySignal As New DoubleVector(Length)
For I As Integer = 0 To Length - 1
  NoisySignal(I) = Math.Cos(0.2 * I) + RNG.Next()
Next

Dim FilteredSignal As DoubleVector = Filter.Filter(NoisySignal,
  MovingWindowFilter.BoundaryOption.PadWithZeros)

14.2 Savitzky-Golay Filtering

Class SavitzkyGolayFilter is a correlation filter specialized for filtering with 
Savitzky-Golay coefficients. Unlike MovingWindowFilter (Section 14.1), 
SavitzkyGolayFilter has additional boundary options for better edge continuity.

SavitzkyGolayFilter uses class SavitzkyGolay to generate the Savitzky-Golay 
filter coefficients for smoothing data, or computing smoothed derivatives, and 
extends class CorrelationFilter which provides basic correlation services.

Creating Savitzky-Golay Filter Objects

A SavitzkyGolayFilter instance is constructed from the number of points to the 
left and right of the input point, and the degree of polynomial used to fit data. 
Either the data or a derivative of the data can be smoothed.

For example, this code builds a Savitzky-Golay filter with a window width of 7, 
and a 4th degree smoothing polynomial:

Code Example – C# Savitzky-Golay

int numberLeft = 3;
int numberRight = 3;
int degree = 4;
SavitzkyGolayFilter sgf =
  new SavitzkyGolayFilter(numberLeft, numberRight, degree);

Code Example – VB Savitzky-Golay

Dim NumberLeft = 3
   Chapter 14.   Signal Processing 147



Dim NumberRight = 3
Dim Degree = 4
Dim SGF As New SavitzkyGolayFilter(NumberLeft, NumberRight, Degree)

This code creates a Savitzky-Golay filter for smoothing the first derivative using a 
5th degree polynomial:

Code Example – C# Savitsky-Golay

int numberLeft = 3;
int numberRight = 3;
int degree = 5;
int derivativeOrder = 1;

var sgf = new SavitzkyGolayFilter(numberLeft, 
  numberRight, degree, derivativeOrder);

Code Example – VB Savitzky-Golay

Dim NumberLeft = 3
Dim NumberRight = 3
Dim Degree = 5
Dim DerivativeOrder = 1

Dim SGF As New SavitzkyGolayFilter(NumberLeft, NumberRight, Degree, 
  DerivativeOrder)

Savitzky-Golay Filter Properties

Once constructed, a SavitzkyGolayFilter object provides the following read-only 
properties:

 NumberLeft gets the number of points to the left for the filter window.

 NumberRight gets the number of points to the right for the filter window.

 WindowWidth gets the width of the moving window (equal to NumberLeft 
+ NumberRight + 1).

Filtering Data

The Filter() method on SavitzkyGolayFilter applies a filter to a given data set:

Code Example – C# Savitsky-Golay

DoubleVector filteredSignal = filter.Filter( noisySignal );

Code Example – VB Savitzky-Golay

Dim FilteredSignal As DoubleVector = Filter.Filter(NoisySignal)
148   NMath User’s Guide



A boundary option may also be specified using the  
SavitzkyGolayFilter.SavitzyGolayBoundaryOption enumeration, which 
provides options for handling the boundaries in a Savitzky-Golay filter, where the 
filter does not completely overlap with the data:

 SavitzyGolayBoundaryOption.PadWithZeros adds NumberLeft zeros to 
the beginning of the data to be filtered and NumberRight zeros to end.

 SavitzyGolayBoundaryOption.DoNotFilterBoundaryPoints specifies 
that the first NumberLeft and the last NumberRight data will not be filtered.

 SavitzyGolayBoundaryOption.ShiftFilterCenter (the default) uses the 
Savitzky-Golay smoothing of the same order of the filter to smooth the 
boundaries.  The filter width, and polynomial order is kept fixed, while the 
filter centerpoint is shifted toward the boundaries.    

 SavitzyGolayBoundaryOption.ShrinkFilterWidth uses the Savitzky-
Golay smoothing of the same order of the filter to smooth the ends points.  
The polynomial order is kept fix, and the filter width is shrunk as the filter 
center approaches the data bounday.  

For instance:

Code Example – C# Savitsky-Golay

DoubleVector filteredSignal = filter.Filter( noisySignal, 
  SavitzyGolayBoundaryOption.PadWithZeros );

Code Example – VB Savitzky-Golay

Dim FilteredSignal As DoubleVector = Filter.Filter(NoisySignal, 
  SavitzyGolayBoundaryOption.PadWithZeros)

14.3 Savitzky-Golay Peak Finding

Class PeakFinderSavitzkyGolay uses smooth Savitzky-Golay derivatives to find 
peaks in data. A peak is defined as a smoothed derivative zero crossing.

PeakFinderSavitzkyGolay extends PeakFinderBase, the abstract base class for all 
peak finding algorithms, and an enumerable collection of all found peaks.

Creating Savitzky-Golay Peak Finders

A PeakFinderSavitzkyGolay instance is constructed from a vector of data, a 
window width, and the degree of polynomial used to fit the data. For instance, this 
code builds a data set from a sinc() function, then constructs a peak finder with a 
width of 6, and 4th degree smoothing polynomial:
   Chapter 14.   Signal Processing 149



Code Example – C# peak finding

var x = new DoubleVector(5000, 0.01, 0.1);
DoubleVector data = NMathFunctions.Sin(x) / x;
PeakFinderSavitzkyGolay pf =
  new PeakFinderSavitzkyGolay(data, 6, 4);

Code Example – VB peak finding

Dim X As New DoubleVector(5000, 0.01, 0.1)
Dim Data As DoubleVector = NMathFunctions.Sin(X) / X
Dim PF As New PeakFinderSavitzkyGolay(Data, 6, 4)

The constructor parameters must satisfy the following rules:

 The window width must be less than the length of the data.

 The polynomial degree must be less than the window width.

Typically, the degree of the smoothing polynomial is between 3 and 5.

Savitzky-Golay Peak Finder Results

Once you’ve constructed a PeakFinderSavitzkyGolay object, the LocatePeaks() 
method finds all peak abscissae and their smoothed ordinates in current data set:

Code Example – C# peak finding

pf.LocatePeaks();

Code Example – VB peak finding

PF.LocatePeaks()

The provided indexer on PeakFinderSavitzkyGolay gets each peak as an instance 
of struct Extrema. Property NumberPeaks gets the total number of peaks found. For 
example, this code dump all peaks to the console:

Code Example – C# peak finding

for (int i = 0; i < pf.NumberPeaks; i++)
{
  Extrema peak = pf[i];
  Console.WriteLine("Found peak at = ({0},{1})", peak.X, peak.Y);
}

Code Example – VB peak finding

For I As Integer = 0 To PF.NumberPeaks - 1
  Dim Peak As Extrema = PF(I)
  Console.WriteLine("Found peak at = ({0},{1})", Peak.X, Peak.Y)
Next
150   NMath User’s Guide



Advanced Savitzky-Golay Peak Finder Properties

Additional properties on PeakFinderSavitzkyGolay control the set of peaks that 
are found by the LocatePeaks() method:

 SlopeSelectivity gets and sets the slope selectivity. The selectivity of the 
peak finder can be reduced by increasing the SlopeSelectivity. If 
SlopeSelectivity is set to 0 (default), all found peaks are reported.  

 AbscisaInterval gets and sets the abscissa interval for the data.  This is 
used to scale the derivatives to the correct units. For proper scaling of the 
peak abscissa locations, set AbscissaInterval to the data sample interval.

 RootFindingTolerance gets and sets the error tolerance for the underlying 
RiddersRootFinder.  The default is 0.00001.

For instance:

Code Example – C# peak finding

pf.AbscissaInterval = 0.1;
pf.SlopeSelectivity = 0;
pf.LocatePeaks();

Code Example – VB peak finding

PF.AbscissaInterval = 0.1
PF.SlopeSelectivity = 0
PF.LocatePeaks()

14.4 Rule-Based Peak Finding

Class PeakFinderRuleBased finds peaks subject to rules about peak height and 
peak separation. A peak is defined as a point which is higher that both neighbors 
or infinity. Non-infinite end points are excluded as a peak. This class is analogous 
to MATLAB's findpeaks() function.

Creating Rule-Based Peak Finders

A PeakFinderRuleBased instance is constructed from a vector of data.

Code Example – C# rule-based peak finding

var x = new DoubleVector(5000, 0.01, 0.1);
DoubleVector data = NMathFunctions.Sin(x) / x;
var pf = new PeakFinderRuleBased( data );
   Chapter 14.   Signal Processing 151



Code Example – VB rule-based peak finding

Dim X As New DoubleVector(5000, 0.01, 0.1)
Dim Data As DoubleVector = NMathFunctions.Sin(X) / X
Dim PF As New PeakFinderRuleBased(Data)

Adding Rules

Peak finding rule types are specified with the PeakFinderRuleBased.Rules 
enumeration.

 Rules.MinHeight

Removes peaks that have an amplitude less than a specified amount.

 Rules.Threshold

Find peaks that are at least a specified amount higher than their neighbor-
ing samples.

Rules are added using the AddRule() method, and removed using RemoveRule(). 
Only one rule of each type is allowed. After updating the rule list, call either 
LocatePeaks() or LocatePeakIndices() to update the peak inventory.

For example, this rule finds all peaks with an amplitude greater than 1.5.

Code Example – C# rule-based peak finding

pf.AddRule( PeakFinderRuleBased.Rules.MinHeight, 1.5 );
pf.LocatePeaks();

Code Example – VB rule-based peak finding

PF.AddRule( PeakFinderRuleBased.Rules.MinHeight, 1.5 );
PF.LocatePeaks();

If a Rules.MinHeight rule was already specified, it is removed before adding the 
new rule.

Rule-Based Peak Finder Results

The provided indexer on PeakFinderRuleBased gets each peak as an instance of 
struct Extrema. Property NumberPeaks gets the total number of peaks found. For 
example, this code dump all peaks to the console:

Code Example – C# peak finding

for (int i = 0; i < pf.NumberPeaks; i++)
{
  Extrema peak = pf[i];
  Console.WriteLine("Found peak at = ({0},{1})", peak.X, peak.Y);
152   NMath User’s Guide



}

Code Example – VB peak finding

For I As Integer = 0 To PF.NumberPeaks - 1
  Dim Peak As Extrema = PF(I)
  Console.WriteLine("Found peak at = ({0},{1})", Peak.X, Peak.Y)

Next
   Chapter 14.   Signal Processing 153



154   NMath User’s Guide



CHAPTER 15.  
SPECIAL FUNCTIONS

NMath provides class SpecialFunctions for functions such factorial, binomial, the 
gamma function and related functions, Bessel functions, elliptic integrals, and 
many more. These functions cover many of the most commonly needed functions 
in physics and engineering.

15.1 Special Functions

Class SpecialFunctions provides the special functions shown in Table 1.

Table 11 – NMath Special Functions

Function Description

Airy() The Airy and Bairy functions are the two solu-
tions of the differential equation y''(x) = 
xy.

BesselI0() Modified Bessel function of the first kind, order 
zero.

BesselI1() Modified Bessel function of the first kind, first 
order.

BesselIv() Modified Bessel function of the first kind, non-
integer order.

BesselJ0() Bessel function of the first kind, order zero.

BesselJ1() Bessel function of the first kind, first order.

BesselJn() Bessel function of the first kind, arbitrary inte-
ger order.

BesselJv() Bessel function of the first kind, non-integer 
order.

BesselK0() Modified Bessel function of the second kind, 
order zero.
   Chapter 15.   Special Functions 155



BesselK1() Modified Bessel function of the second kind, 
order one.

BesselKn() Modified Bessel function of the second kind, 
arbitrary integer order.

BesselY0() Bessel function of the second kind, order zero.

BesselY1() Bessel function of the second kind, order one.

BesselYn() Bessel function of the second kind of integer 
order.

BesselYv() Bessel function of the second kind, non-integer 
order.

Beta() The beta function (also known as the Eulerian 
integral of the first kind): Beta(a, b) = 
Gamma(a) * Gamma(b) / Gamma(a+b).

Binomial() The binomial coefficient (n choose k)—the 
number of ways of picking k unordered out-
comes from n possibilities.

BinomialLn() The natural log of the binomial coefficient.

Cn() Jacobian elliptic function Cn() for real, pure 
imaginary, or complex arguments.

Digamma() The digamma, or psi, function, defined as 
Gamma'(z)/Gamma(z).

Ei() Exponential integral.

EllipJ() The real valued Jacobi elliptic functions.

EllipticE() The complete elliptic integral of the second 
kind.

EllipticF() The incomplete elliptic integral of the first kind.

EllipticK() The complete elliptic integral, K(m), of the first 
kind.

EulerGamma A constant, also known as the Euler-Macheroni 
constant. Famously, rationality unknown.

Table 11 – NMath Special Functions

Function Description
156   NMath User’s Guide



Using these special functions in your code is easy.

Code Example – C# special functions

// Compute the Jacobi function Sn() with a complex argument.
var cmplx = new DoubleComplex( 0.1, 3.3 );
DoubleComplex sn = SpecialFunctions.Sn( cmplx, .3 );  

// Compute the elliptic integral, K(m)
double ei = SpecialFunctions.EllipticK( 0.432 );

Code Example – VB special functions

' Compute the Jacobi function Sn() with a complex argument.
Dim Complex As New DoubleComplex( 0.1, 3.3 )
Dim SN as DoubleComplex = SpecialFunctions( Complex, 0.3 )

Factorial() Factorial.  The number of ways that n objects 
can be permuted.

FactorialLn() The natural log factorial of n, ln(n!).

Gamma() The gamma function.

GammaLn() The natural log of the gamma function.

GammaReciprocal() The reciprocal of the gamma function.

HarmonicNumber() The harmonic number, Hn, is a truncated sum 
of the harmonic series.

Hypergeometric1F1() The confluent hypergeometric series of the 
first kind.

Hypergeometric2F1() The Gauss or generalized hypergeometric 
function.

IncompleteBeta() The incomplete beta function().

IncompleteGamma() The incomplete gamma integral.

IncompleteGammaComplement() The complemented incomplete gamma integral.

PolyLogarithm() The polylogarithm, Li_n(x).

Sn() The Jacobian elliptic function Sn() for real, pure 
imaginary, or complex arguments.

Zeta() The Riemann zeta function.

Table 11 – NMath Special Functions

Function Description
   Chapter 15.   Special Functions 157



' Compute the elliptic integral, K(m)
Dim EI as Double = SpecialFunctions.EllipticK( 0.432 )
158   NMath User’s Guide



PART III - MATRIX ANALYSIS
      161



162   NMath User’s Guide



CHAPTER 16.  
MATRIX FUNCTIONS

The CenterSpace.NMath.Core namespace provides the following matrix and 
linear algebra functionality:

 Structured sparse matrix classes, including triangular, symmetric, 
Hermitian, banded, tridiagonal, symmetric banded, and Hermitian 
banded.

 Functions for converting between general matrices and structured sparse 
matrix types.

 Functions for transposing structured sparse matrices, computing inner 
products, and calculating matrix norms.

 Classes for factoring structured sparse matrices, including LU factorization 
for banded and tridiagonal matrices, Bunch-Kaufman factorization for 
symmetric and Hermitian matrices, and Cholesky decomposition for 
symmetric and Hermitian positive definite matrices. Once constructed, 
matrix factorizations can be used to solve linear systems and compute 
determinants, inverses, and condition numbers.

 General sparse vector and matrix classes, and matrix factorizations.

 Orthogonal decomposition classes for general matrices, including QR 
decomposition and singular value decomposition (SVD).

 Advanced least squares factorization classes for general matrices, including 
Cholesky, QR, and SVD.

 Classes for solving symmetric, Hermitian, and nonsymmetric eigenvalue 
problems.

To avoid using fully qualified names, preface your code with an appropriate 
namespace statement:

Code Example – C#

using CenterSpace.NMath.Core;

Code Example – VB

imports CenterSpace.NMath.Core
   Chapter 16.   Matrix Functions 159



160   NMath User’s Guide



CHAPTER 17.  
STRUCTURED SPARSE MATRIX TYPES

NMath provides a wide variety of structured sparse matrix types, including 
triangular, symmetric, Hermitian, banded, tridiagonal, symmetric banded, and 
Hermitian banded.

A sparse matrix is a matrix with only a small number of nonzero elements. A 
structured sparse matrix is one in which the zero elements (or elements contributing 
no new information) are distributed according to some pattern. By exploiting this 
pattern, structured sparse matrices can be manipulated more efficiently than 
general matrices, since all of the elements do not need to be stored.

This chapter describes the NMath structured sparse matrix types, and the storage 
schemes they use. See Chapter 19 for general sparse matrix classes.

17.1 Lower Triangular Matrices

A lower triangular matrix is a square matrix with all elements above the main 
diagonal equal to zero. That is,  for . For example, this is a 4 x 4 lower 
triangular matrix:

Lower triangular matrices often arise at an intermediate stage in solving systems 
of equations and inverting matrices.

aij 0= i j

3 0 0 0

2 1– 0 0

1 2– 2 0

1 3 4 2
   Chapter 17.   Structured Sparse Matrix Types 161



NMath provides lower triangular matrix classes for four datatypes: single- and 
double-precision floating point numbers, and single- and double-precision 
complex numbers. The classnames are FloatLowerTriMatrix, 
DoubleLowerTriMatrix, FloatComplexLowerTriMatrix, and 
DoubleComplexLowerTriMatrix.

For efficiency, zero elements above the main diagonal are not stored. Instead, 
matrix values are stored in a vector row by row. For example, the following 5 x 5 
lower triangular matrix:

is stored in a data vector as:

v = [ a00 a10 a11 a20 a21 a22 a30 a31 a32 a33 a40 a41 a42 a43 a44 ] 

In general, the relationship between matrix and vector indices is:

A[i,j] = v[i(i+1)/2 + j]

17.2 Upper Triangular Matrices

An upper triangular matrix is a square matrix with all elements below the main 
diagonal equal to zero. That is,  for . For example, this is a 4 x 4 upper 
triangular matrix:

Like lower triangular matrices, upper triangular matrices often arise at an 
intermediate stage in solving systems of equations and inverting matrices.

A

a00 0 0 0 0

a10 a11 0 0 0

a20 a21 a22 0 0

a30 a31 a32 a33 0

a40 a41 a42 a43 a44

=

aij 0= i j

2 0 1 1

0 1– 2– 3

0 0 1 4

0 0 0 2
162   NMath User’s Guide



NMath provides upper triangular matrix classes for four datatypes: single- and 
double-precision floating point numbers, and single- and double-precision 
complex numbers. The classnames are FloatUpperTriMatrix, 
DoubleUpperTriMatrix, FloatComplexUpperTriMatrix, and 
DoubleComplexUpperTriMatrix.

For efficiency, zero elements below the main diagonal are not stored. Instead, 
matrix values are stored in a vector column by column. For example, the following 
5 x 5 upper triangular matrix:

is stored in a data vector as:

v = [ a00 a01 a11 a02 a12 a22 a03 a13 a23 a33 a04 a14 a24 a34 a44 ] 

In general, the relationship between matrix and vector indices is:

A[i,j] = v[i + j(j+1)/2]

17.3 Symmetric Matrices

A symmetric matrix is a square matrix that satisfies  where  denotes the 
transpose of . That is,  for all . For example, this is a 4 x 4 symmetric 
matrix:

Symmetric matrices are often used to represent quadratic forms.

A

a00 a01 a02 a03 a04

0 a11 a12 a13 a14

0 0 a22 a23 a24

0 0 0 a33 a34

0 0 0 0 a44

=

A A
T

= A
T

A aij aji= i j,

2 0 1 1

0 1– 2– 3

1 2– 0 4

1 3 4 2
   Chapter 17.   Structured Sparse Matrix Types 163



NMath provides symmetric matrix classes for single- and double-precision 
floating point numbers. The classnames are FloatSymmetricMatrix and 
DoubleSymmetricMatrix. Hermitian matrices are a generalization of symmetric 
matrices for complex types (Section 17.4).

For efficiency, only the upper triangle is stored. The storage scheme is the same as 
for an upper triangular matrix (Section 17.2).

17.4 Hermitian Matrices

A Hermitian matrix is a square matrix which satisfies  where  denotes 
the conjugate transpose of . That is,  for all , where  denotes the 
complex conjugate. (The conjugate of a complex number  is defined as .) 
For example, this is a 4 x 4 Hermitian matrix:

According to the strict definition of a Hermitian matrix, the diagonal elements 
must be real numbers, since  only for real numbers, while other elements 
may be complex. NMath relaxes this requirement and permits complex elements 
on the diagonal. The provided MakeDiagonalReal() method sets the imaginary 
parts on the main diagonal to zero, thereby meeting the strict definition of a 
Hermitian matrix.

NMath provides Hermitian matrix classes for single- and double-precision 
complex numbers. The classnames are FloatHermitianMatrix and 
DoubleHermitianMatrix. A symmetric matrix is a special case of a Hermitian 
matrix where all the elements are real (Section 17.3).

For efficiency, only the upper triangle is stored. The storage scheme is the same as 
for an upper triangular matrix (Section 17.2).

17.5 Banded Matrices

A banded matrix is a matrix that has all its non-zero entries near the diagonal. 
Entries farther above the diagonal than the upper bandwidth, or farther below the 
diagonal than the lower bandwidth, are defined to be zero. That is, if  is the upper 

A A
T

= A
T

A aij aji= i j, z
a bi+ a bi–

1– 1 i– 1 2i+ i–

1 i+ 3 2– 3 2i–

1 2i– 2– 0 4

i 3 2i+ 4 2

a a=

ub
164   NMath User’s Guide



bandwidth, and  is the lower bandwidth, then  whenever  or 
.

For example, this is a 7 x 7 banded matrix with upper bandwidth 1 and lower 
bandwidth 3:

 

NMath provides banded matrix classes for four datatypes: single- and double-
precision floating point numbers, and single- and double-precision complex 
numbers. The classnames are FloatBandMatrix, DoubleBandMatrix, 
FloatComplexBandMatrix, and DoubleComplexBandMatrix.

For efficiency, zero elements outside the bandwidth are not stored. Instead, matrix 
values are stored in a vector column by column. Blank entries are inserted in the 
data vector so that the each column takes up the same number of elements, 

, in the vector. For example, the following 8 x 8 matrix with an upper 
bandwidth of 2 and a lower bandwidth of 1:

lb aij 0= j i ub–
i j lb–

A

1 2– 0 0 0 0 0

1 1– 3 0 0 0 0

2 5 0 0 0 0 0

0 4– 2– 1 4 0 0

0 2 2 1 3 1 0

0 0 1– 2 3– 0 2

0 0 0 3 3 1– 1

=

ub lb 1++

A

a00 a01 a02 0 0 0 0 0

a10 a11 a12 a13 0 0 0 0

0 a21 a22 a23 a24 0 0 0

0 0 a32 a33 a34 a35 0 0

0 0 0 a43 a44 a45 a46 0

0 0 0 0 a54 a55 a56 a57

0 0 0 0 0 a65 a66 a67

0 0 0 0 0 0 a76 a77

=

   Chapter 17.   Structured Sparse Matrix Types 165



is stored in a data vector as:

v = [x   x   a00 a10 
     x   a01 a11 a21
     a02 a12 a22 a32 
     a13 a23 a33 a43 
     a24 a34 a44 a54 
     a35 a45 a55 a65 
     a46 a56 a66 a76 
     a57 a67 a77 x  ]     

where x denotes an unused location.

17.6 Tridiagonal Matrices

A tridiagonal matrix is a matrix which has all its non-zero entries on the main 
diagonal, the superdiagonal, and the subdiagonal. That is,  whenever 

 or . For example, this is a 5 x 5 tridiagonal matrix: 

Tridiagonal matrices often occur in one-dimensional problems and at an 
intermediate stage in the process of finding eigenvalues.

NMath provides tridiagonal matrix classes for four datatypes: single- and double-
precision floating point numbers, and single- and double-precision complex 
numbers. The classnames are FloatTriDiagMatrix, DoubleTriDiagMatrix, 
FloatComplexTriDiagMatrix, and DoubleComplexTriDiagMatrix.

For efficiency, zero elements outside the main diagonal, superdiagonal, and 
subdiagonal are not stored. A tridiagonal matrix is a special case of a banded 
matrix where the upper and lower bandwidths are one, and the storage scheme is 
the same as for a banded matrix (Section 17.5).

aij 0=
j i 1– i j 1–

A

1 2– 0 0 0

1 1– 3 0 0

0 5 0 1– 0

0 0 2– 1 4

0 0 0 1 3

=

166   NMath User’s Guide



17.7 Symmetric Banded Matrices

A symmetric banded matrix is a symmetric matrix (Section 17.3) that has all its 
non-zero entries near the diagonal. Entries farther away from the diagonal than the 
half bandwidth are defined to be zero. That is, if  is the half bandwidth, then 

 whenever  or . For example, this is a 5 x 5 symmetric 
banded matrix with a half bandwidth of 1: 

Symmetric banded matrices often arise in one-dimensional finite element 
problems.

NMath provides symmetric banded matrix classes for single- and double-
precision floating point numbers. The classnames are FloatSymBandMatrix and 
DoubleSymBandMatrix. Hermitian banded matrices are a generalization of 
symmetric banded matrices for complex types (Section 17.8).

For efficiency, the lower triangular part of the matrix and zero elements outside the 
bandwidth are not stored. Instead, matrix values are stored in a vector column by 
column. Blank entries are inserted in the data vector so that the each column takes 
up the same number of elements, , in the vector. For example, the following 8 
x 8 matrix with a half bandwidth of 2:

hb
aij 0= j i hb– i j hb–

A

1 2– 0 0 0

2– 1– 3 0 0

0 3 0 1– 0

0 0 1– 1 4

0 0 0 4 3

=

hb 1+

A

a00 a01 a02 0 0 0 0 0

a10 a11 a12 a13 0 0 0 0

a20 a21 a22 a23 a24 0 0 0

0 a31 a32 a33 a34 a35 0 0

0 0 a42 a43 a44 a45 a46 0

0 0 0 a53 a54 a55 a56 a57

0 0 0 0 a64 a65 a66 a67

0 0 0 0 0 a75 a76 a77

=

   Chapter 17.   Structured Sparse Matrix Types 167



is stored in a data vector as:

v = [x   x   a00   
     x   a01 a11
     a02 a12 a22
     a13 a23 a33
     a24 a34 a44
     a35 a45 a55
     a46 a56 a66
     a57 a67 a77 ]

where x denotes an unused location.

17.8 Hermitian Banded Matrices

A Hermitian banded matrix is a Hermitian matrix (Section 17.4) that has all its 
non-zero entries near the diagonal. Entries farther away from the diagonal than the 
half bandwidth are defined to be zero. That is, if  is the half bandwidth, then 

 whenever  or . For example, this is a 5 x 5 Hermitian 
banded matrix with a half bandwidth of 1: 

According to the strict definition of a Hermitian matrix, the diagonal elements 
must be real numbers, since  only for real numbers), while other elements 
may be complex. NMath relaxes this requirement and permits complex elements 
on the diagonal. The provided MakeDiagonalReal() method sets the imaginary 
parts on the main diagonal to zero, thereby meeting the strict definition of a 
Hermitian matrix.

NMath provides Hermitian banded matrix classes for single- and double-precision 
complex numbers. The classnames are FloatHermitianBandMatrix and 
DoubleHermitianBandMatrix. A symmetric banded matrix is a special case of a 
Hermitian banded matrix where all the elements are real (Section 17.7).

For efficiency, the lower triangular part of the matrix and zero elements outside the 
bandwidth are not stored. The storage scheme is the same as for a symmetric 
banded matrix (Section 17.7).

hb
aij 0= j i hb– i j hb–

A

1 2i 0 0 0

2i– 1– 3 i– 0 0

0 3 i+ 0 1 5i– 0

0 0 1 5i+ 1 4

0 0 0 4 3

=

a a=
168   NMath User’s Guide



CHAPTER 18.  
USING THE STRUCTURED SPARSE MATRIX 
CLASSES

NMath provides a variety of functions that take the structured sparse matrix types 
described in Chapter 17 as arguments. Methods are provided either as member 
functions on the matrix classes, or as static methods on class MatrixFunctions.

As a general rule, NMath only provides functions that preserve the shape of the 
structured sparse matrices. In some cases, this means that functions provided for 
the general matrix classes are not provided for the structured sparse matrix classes. 
For example, NMath does not generally provide trigonometric and transcendental 
functions for structured sparse matrix types. Such functions may change unstored 
zero values to non-zero values, thus changing a structured sparse matrix type into 
a general matrix. 

If you want to apply an arbitrary function to all elements of a structured sparse 
matrix, including unstored zero values, you can always convert the matrix to a 
general matrix first. A ToGeneralMatrix() method is provided for this purpose. 
Alternatively, to apply an arbitrary function only to stored values, you can apply 
the function to the underlying data vector. Both techniques are described in more 
detail in Section 18.7.

This chapter describes how to create and manipulate the NMath structured sparse 
matrix types.

18.1 Creating Matrices

This section describes how to create instances of the structured sparse matrix 
classes.

Creating Default Matrices

You can construct default structured sparse matrices by supplying the necessary 
parameters to describe the matrix shape, as shown in Table 12. All stored values 
are initialized to zero.
   Chapter 18.   Using The Structured Sparse Matrix Classes 169



Square matrix types are characterized by their order--that is, the number of rows 
and columns. For example, a matrix of order 3 is a 3 x 3 matrix. Thus, this code 
creates a default 5 x 5 Hermitian matrix of double-precision complex numbers:

Code Example – C# matrix

var A = new DoubleHermitianMatrix( 5 );

Code Example – VB matrix

Dim A As New DoubleHermitianMatrix(5)

Constructors for rectangular matrix types accept separate row and column shape 
parameters. For example:

Code Example – C# matrix

var A = new DoubleTriDiagMatrix ( 3, 5 );

Code Example – VB matrix

Dim A As New DoubleTriDiagMatrix(3, 5)

Constructors for banded matrix types also accept bandwidth parameters that 
describe the width of the banded region. Thus, the following code creates a 4 x 5 
FloatComplexBandMatrix with a lower bandwidth of 1 and an upper bandwidth of 2:

Code Example – C# matrix

var A = new FloatComplexMatrix( 4, 5, 1, 2 );

Table 12 – Structured sparse matrix shape parameters

Matrix Type Shape Parameters

Lower Triangular Order

Upper Triangular Order

Symmetric Order

Hermitian Order

Banded Rows, Columns, Lower Bandwidth, Upper Bandwidth

TriDiagonal Rows, Columns

Symmetric Banded Order, Half Bandwidth

Hermitian Banded Order, Half Bandwidth
170   NMath User’s Guide



Code Example – VB matrix

Dim A As New FloatComplexMatrix(4, 5, 1.0F, 2.0F)

This creates an 8 x 8 FloatSymBandMatrix with a half bandwidth of 2:

Code Example – C# matrix

var A = new FloatSymBandMatrix( 8, 2 );

Code Example – VB matrix

Dim A As New FloatSymBandMatrix(8, 2)

Once you’ve constructed a default matrix, you can set individual values using the 
provided indexers (Section 18.2). In some case, methods are also provided that 
return vector views of the underlying data, which can also be used to set matrix 
values (Section 18.5).

Creating Sparse Matrices from General Matrices

You can construct all NMath structured sparse matrix types from general matrix 
types. Such constructors extract the appropriate values from the general matrix. 
Data is copied.

For example, this code constructs a FloatUpperTriMatrix instance by extracting 
the upper triangular region of a square general matrix:

Code Example – C# matrix

var genMat = new FloatMatrix( 5, 5, 0, 1 );
var A = new FloatUpperTriMatrix( genMat );

Code Example – VB matrix

Dim GenMat As New FloatMatrix(5, 5, 0.0F, 1.0F)
Dim A As New FloatUpperTriMatrix(GenMat)

Constructors for square matrix types, such as upper triangular matrices, throw a 
MatrixNotSquareException if the given general matrix is not square. 
Alternatively, you can pass in a non-square general matrix and specify the order of 
the square submatrix to extract. Thus, this code creates a 3 x 3 
DoubleSymmetricMatrix by extracting the upper triangular region of the 3 x 3 
leading submatrix from the given 4 x 6 general matrix:

Code Example – C# matrix

var genMat = new DoubleMatrix( 4, 6, 0, 0.25 );
var A = new DoubleSymmetricMatrix( A, 3 );

Code Example – VB matrix

Dim GenMat As New DoubleMatrix(4, 6, 0.0, 0.25)
   Chapter 18.   Using The Structured Sparse Matrix Classes 171



Dim A As New DoubleSymmetricMatrix(A, 3)

An IndexOutOfRangeException is raised if the given order specifies a submatrix 
that is out of bounds.

Banded matrix types can also be constructed from general matrices by specifying 
the desired bandwidth. For instance, the following code extracts the values 
required to construct a Hermitian banded matrix with a half bandwidth of 3 from 
the given general matrix:

Code Example – C# matrix

var incr = new DoubleComplex( 1, 0.25 );
var genMat = new DoubleComplexMatrix( 12, 12, 0, incr );
var A = new DoubleHermitianBandMatrix( A, 3 );

Code Example – VB matrix

Dim Incr As New DoubleComplex(1.0, 0.25)
Dim GenMat As New DoubleComplexMatrix(12, 12, 0.0, Incr)
Dim A As New DoubleHermitianBandMatrix(A, 3)

Creating Sparse Matrices from Other Sparse Matrices

Some structured sparse matrix types can be constructed from other structured 
sparse matrices. For example, a tridiagonal matrix is really a special case of a 
banded matrix with lower and upper bandwidth equal to 1. Therefore, banded 
matrices can be constructed from tridiagonal matrices, and vice versa. For example:

Code Example – C# matrix

int rows = 8, cols = 8, ub = 0, lb = 2;
var data = new FloatVector( (ub+lb+1)*cols, 1, 1 );
var A = new FloatBandMatrix( data, rows, cols, lb, ub );
var B = new FloatTriDiagMatrix( A );

Code Example – VB matrix

Dim Rows As Integer = 8
Dim Cols As Integer = 8
Dim UB As Integer = 0
Dim LB As Integer = 2
Dim Data As New FloatVector((UB + LB + 1) * Cols, 1.0F, 1.0F)
Dim A As New FloatBandMatrix(Data, Rows, Cols, LB, UB)
Dim B As New FloatTriDiagMatrix(A)

Similarly, you can construct banded matrices from symmetric or Hermitian 
banded matrices, or triangular matrices from symmetric or Hermitian matrices, 
and vice versa.
172   NMath User’s Guide



Creating Sparse Matrices from a Data Vector

You can construct all NMath structured sparse matrix types from an appropriate 
data vector and shape parameters. The vector storage scheme used by each 
structured sparse matrix type is described in Chapter 17. For example, you could 
create this 4 x 4 symmetric matrix:

like this: 

Code Example – C# matrix

var data = new DoubleVector( 10, 0, 1 );
var A = new DoubleSymmetricMatrix( data, 4 );

Code Example – VB matrix

Dim Data As New DoubleVector(10, 0.0, 1.0)
Dim A As New DoubleSymmetricMatrix(Data, 4)

Similarly, you could create this 5 x 7 banded matrix with an upper bandwidth of 1 
and a lower bandwidth of 0:

using this code:

Code Example – C# matrix

var data = new FloatVector( 14, 1 );
var A = new FloatBandMatrix( data, 5, 7, 0, 1 );

Code Example – VB matrix

Dim Data As New FloatVector(14, 1.0F)
Dim A As New FloatBandMatrix(Data, 5, 7, 0, 1)

0 1 3 6

0 2 4 7

0 0 5 8

0 0 0 9

1 1 0 0 0 0 0

0 1 1 0 0 0 0

0 0 1 1 0 0 0

0 0 0 1 1 0 0

0 0 0 0 1 1 0
   Chapter 18.   Using The Structured Sparse Matrix Classes 173



Implicit Conversion

NMath provides implicit conversion operators for the structured sparse matrix 
classes. Single-precision types are implicitly promoted to double-precision types, 
and real types are implicitly promoted to complex types, as shown in Figure 4. An 
arrow indicates implicit promotion.

Figure 4 – Implicit conversion for matrix data types

For example, Figure 5 shows the pattern for implicit conversion among the 
tridiagonal types.

Figure 5 – Implicit conversion for tridiagonal matrices

Copying Matrices

The NMath structured sparse matrix classes provide three copy methods:

 Clone() returns a deep copy of a matrix. Data is copied; each matrix 
references different data.

 ShallowCopy() returns a shallow copy of a matrix. Data is not copied; both 
matrices reference the same data.

 DeepenThisCopy() copies the data viewed by a matrix to new data block. 
This guarantees that there is only one reference to the underlying data, and 
that this data is in contiguous storage.

For instance:

Code Example – C# matrix

var A = new FloatUpperTriMatrix( 5 );
174   NMath User’s Guide



FloatUpperTriMatrix B = A.ShallowCopy();

B[0,0] = 1;   // A[0,0] == B[0,0]
B.DeepenThisCopy();
B[0,0] = 2;   // A[0,0] != B[0,0]

Code Example – VB matrix

Dim A As New FloatUpperTriMatrix(5)
Dim B As FloatUpperTriMatrix = A.ShallowCopy()

B(0, 0) = 1   ' A[0,0] == B[0,0]
B.DeepenThisCopy()
B(0, 0) = 2   ' A[0,0] != B[0,0]

18.2 Value Operations on Matrices

The NMath structured sparse matrix classes have read-only properties for all 
shape parameters, and for the underlying data vector:

On square matrix types, the Rows and Cols properties simply return the order. On 
banded types, the Bandwidth property returns the total bandwidth. For general 
banded matrices, the total bandwidth is LowerBandwidth + UpperBandwidth + 

Table 13 – Structured sparse matrix shape parameters

Matrix Type Read-Only Properties

Lower Triangular Order, Rows, Cols, DataVector

Upper Triangular Order, Rows, Cols, DataVector

Symmetric Order, Rows, Cols, DataVector

Hermitian Order, Rows, Cols, DataVector

Banded Rows, Cols, LowerBandwidth, UpperBandwidth, Bandwidth, 
DataVector

TriDiagonal Rows, Cols, DataVector

Symmetric Banded Order, Rows, Cols, HalfBandwidth, Bandwidth, DataVector

Hermitian Banded Order, Rows, Cols, HalfBandwidth, Bandwidth, DataVector
   Chapter 18.   Using The Structured Sparse Matrix Classes 175



1; for symmetric and Hermitian banded types, the total bandwidth is 2 * 
HalfBandwidth + 1.

For example, if A is a FloatHermitianBandMatrix instance:

Code Example – C# matrix

int order = A.Order;
int cols = A.Cols;               // cols == order
int rows = A.Rows;               // rows == order
int halfband = A.HalfBandwidth
int band = A.Bandwidth           // band = 2 * halfband + 1
FloatComplexVector data = A.DataVector;

Code Example – VB matrix

Dim Order As Integer = A.Order
Dim Cols As Integer = A.Cols             ' cols == order
Dim Rows As Integer = A.Rows             ' rows == order
Dim HalfBand As Integer = A.HalfBandwidth
Dim band As Integer = A.Bandwidth        ' band = 2 * halfband + 1
Dim Data As FloatComplexVector = A.DataVector

Accessing and Modifying Matrix Values

The matrix classes provide standard indexers for getting and setting element value 
at a specified row and column position in a matrix. Thus, A[i,j] always returns 
the element in the ith row and jth column of matrix A’s view of the data.

NOTE—Indexing starts at 0.

Attempts to set zero elements outside the stored region to nonzero values raise a 
NonModifiableElementException. For instance:

Code Example – C# matrix

var A = new FloatComplexTriDiagMatrix( 8, 8 );
try
{
  A[7,0] = new FloatComplex( 1, -1 );
}
catch ( NonModifiableElementException )
{
  // Do something here
}

Code Example – VB matrix

Dim A As New FloatComplexTriDiagMatrix(8, 8)
Try
  A(7, 0) = New FloatComplex(1.0F, -1.0F)
Catch NonModifiableElementException
176   NMath User’s Guide



  ' Do something here
End Try

Symmetric matrices are in a different category than the other structured sparse 
matrix types, because unstored values are not constrained to be zero. Thus, even 
though only the upper triangular region is stored, you can “set” values in the 
lower triangular region. The corresponding value in the upper triangular region is 
changed. Thus:

Code Example – C# matrix

var A = new DoubleSymmetricMatrix( 12 );
Console.WriteLine( A[7,2] );  // "0"
Console.WriteLine( A[2,7] );  // "0"
A[7,2] = 1;
Console.WriteLine( A[7,2] );  // "1"
Console.WriteLine( A[2,7] );  // "1"

Code Example – VB matrix

Dim A As New DoubleSymmetricMatrix(12)
Console.WriteLine(A(7, 2))  ' "0"
Console.WriteLine(A(2, 7))  ' "0"
A(7, 2) = 1
Console.WriteLine(A(7, 2))  ' "1"
Console.WriteLine(A(2, 7))  ' "1"

Resizing a Matrix

The matrix classes provide Resize() methods for changing the size of a matrix 
after it has been created. Zeros are added or values are truncated as necessary. For 
instance:

Code Example – C# matrix

int order = 7;
var data =
  new DoubleComplexVector( ( order * ( order + 1 )) / 2,
  new RandGenMTwist() );
var A = new DoubleHermitianMatrix( data );

DoubleHermitianMatrix B2 = (DoubleHermitianMatrix)B.Clone();
B2.Resize( B.Order + 2 );

Code Example – VB matrix

Dim Order As Integer = 7
Dim Data As New DoubleComplexVector((Order * (Order + 1)) / 2,
  New RandGenMTwist())
Dim A As New DoubleHermitianMatrix(Data)
   Chapter 18.   Using The Structured Sparse Matrix Classes 177



Dim B2 As DoubleHermitianMatrix = CType(B.Clone(), 
  DoubleHermitianMatrix)
B.Resize(B.Order + 2)

18.3 Logical Operations on Matrices

Operator == tests for equality of two matrices, and returns true if both matrices 
have the same dimensions and all values are equal; otherwise, false. Following 
the convention of the .NET Framework, if both objects are null, they test equal. 

The comparison of the values for double-precision floating point and complex 
numbers is done using operator == for doubles; comparison of the values for single 
precision numbers is done using operator == for floats. Therefore, the values of the 
matrices must be exactly equal for this method to return true. Operator != returns 
the logical negation of ==.

The Equals() member function also tests for equality.

18.4 Arithmetic Operations on Matrices

NMath provides overloaded arithmetic operators for structured sparse matrices 
with their conventional meanings for those .NET languages that support them, 
and equivalent named methods for those that do not. Table 14 lists the equivalent 
operators and methods

.

All binary operators and equivalent named methods work either with two 
matrices, or with a matrix and a scalar.

NOTE—Matrices must have the same dimensions to be combined using the element-
wise operators. Otherwise, a MismatchedSizeException is raised.

Table 14 – Arithmetic operators

Operator Equivalent Named Method

+ Add()

- Subtract()

* Multiply()

/ Divide()

Unary - Negate()
178   NMath User’s Guide



For example, this C# code uses the overloaded operators:

Code Example – C# matrix

var genMat = new DoubleMatrix( 8, 8, 0, 1 );
var A = new DoubleBandMatrix( genMat, 4, 5, 1, 2 );
var B = new DoubleBandMatrix( genMat, 4, 5, 1, 1 );
double s = 2.25;

DoubleBandMatrix result = A + s*B;

Note that although the banded matrices must have the same dimensions, they do 
not need to have the same bandwidth.

This Visual Basic code uses the equivalent named methods:

Code Example – VB matrix

Dim genMat As new DoubleMatrix( 8, 8, 0, 1 )
Dim A As new DoubleBandMatrix( genMat, 4, 5, 1, 2 );
Dim B As new DoubleBandMatrix( genMat, 4, 5, 1, 1 );
Dim s As Double = 2.25;

Dim result As DoubleBandMatrix = _
   DoubleBandMatrix.Add(A, DoubleBandMatrix.Multiply(s, B));

18.5 Vector Views

Methods such as Row(), Column(), and Diagonal() return vector views of the 
data referenced by a general matrix. NMath does not generally provide such 
methods for structured sparse matrix types, because of the limitations on which 
elements in the matrix are modifiable.

The exception is the banded matrix types which provide a Diagonal() member 
function that returns a vector view of a diagonal of a matrix. If no diagonal is 
specified, a vector view of the main diagonal is returned. For example, this code 
increments every element along the main diagonal:

Code Example – C# matrix

var A = new FloatBandMatrix( 5, 5, 0, 0 );
A.Diagonal()++;

Code Example – VB matrix

Dim A As New FloatBandMatrix( 5, 5, 0, 0 )
A.Diagonal().Increment()
   Chapter 18.   Using The Structured Sparse Matrix Classes 179



18.6 Functions of Matrices

NMath provides a variety of functions that take structured sparse matrices as 
arguments.

Matrix Transposition 

The structured sparse matrix classes provide Transpose() member functions for 
calculating the transpose of a matrix: B[i,j] = A[j,i]. Class MatrixFunctions 
also provides a static Transpose() method that returns the transpose of a matrix. 
Data is copied. For instance:

Code Example – C# matrix

var A = new FloatTriDiagMatrix( 50, 50 );
A.Diagonal(1)++;    // increments the superdiagonal
A.Diagonal(-1)--;   // decrements the subdiagonal
FloatTriDiagMatrix B = A.Transpose();
FloatTriDiagMatrix C = MatrixFunctions.Transpose( A );   // B == C

Code Example – VB matrix

Dim A As New FloatTriDiagMatrix(50, 50)
A.Diagonal(1).Increment()    ' increments the superdiagonal
A.Diagonal(-1).Decrement()   ' decrements the subdiagonal
Dim B As FloatTriDiagMatrix = A.Transpose()
Dim C As FloatTriDiagMatrix = MatrixFunctions.Transpose(A) ' B == C

NOTE—By definition, a symmetric matrix is equal to its own transpose, so the Trans-
pose() method has no effect for these types.

Matrix Inner Products

Class MatrixFunctions provides the static Product() method for calculating the 
inner product of a matrix and a vector:

Code Example – C# matrix

var data = new DoubleVector( 10, 1, 1 );
var A = new DoubleSymmetricMatrix( data, 4 );
var x = new DoubleVector( 4, 1, 1 );
DoubleVector y = MatrixFunctions.Product( A, x );

Code Example – VB matrix

Dim Data As New DoubleVector(10, 1.0, 1.0)
Dim A As New DoubleSymmetricMatrix(Data, 4)
Dim X As New DoubleVector(4, 1.0, 1.0)
Dim Y As DoubleVector = MatrixFunctions.Product(A, X)
180   NMath User’s Guide



For banded matrices, additional overloads of the Product() method calculate the 
product of two matrices. For example:

Code Example – C# matrix

int rows = 8, cols = 6, lb = 2, ub = 1;
DoubleComplexVector data =
  new DoubleComplexVector( (ub+lb+1)*cols, 0, 1 );
DoubleComplexBandMatrix A =
  new DoubleComplexBandMatrix( data, rows, cols, lb, ub );
DoubleComplexBandMatrix B =
  new DoubleComplexBandMatrix( ++data, cols, cols, lb, ub );
DoubleComplexBandMatrix C =
  MatrixFunctions.Product( A, B );

Code Example – VB matrix

Dim Rows As Integer = 8
Dim Cols As Integer = 6
Dim LB As Integer = 2
Dim UB As Integer = 1
Dim Data As New DoubleComplexVector((UB + LB + 1) * Cols, 0, 1)
Dim A As New DoubleComplexBandMatrix(Data, Rows, Cols, LB, UB)
Dim B As New DoubleComplexBandMatrix(Data.Increment(), Cols, Cols, 
  LB, UB)
Dim C As DoubleComplexBandMatrix = MatrixFunctions.Product(A, B)

Also for banded matrices, the static TransposeProduct() method on 
NMathFunctions computes the matrix inner product of the transpose of a given 
matrix and a second matrix. Thus, assuming A and B are DoubleBandMatrix 
instances, this code calculates the inner product of the transpose of A with B:

Code Example – C# matrix

DoubleBandMatrix C = MatrixFunctions.TransposeProduct( A, B );

Code Example – VB matrix

Dim C As DoubleBandMatrix = MatrixFunctions.TransposeProduct(A, B)

Matrix Norms

MatrixFunctions provides static functions OneNorm() to compute the 1-norm (or 
largest column sum) of a matrix, and InfinityNorm() to compute the infinity-
norm (or largest row sum) of a matrix. For instance:

Code Example – C# matrix

var A = new DoubleMatrix( "3x3 [1 2 3  4 5 6  7 8 9]" );
double d1 = A.OneNorm();
double d2 = A.InfinityNorm();
   Chapter 18.   Using The Structured Sparse Matrix Classes 181



Code Example – VB matrix

Dim A As New DoubleMatrix("3x3 [1 2 3  4 5 6  7 8 9]")
Dim D1 As Double = A.OneNorm()
Dim D2 As Double = A.InfinityNorm()

The OneNorm() method has overloads for all structured sparse matrix types; 
InfinityNorm() only for banded and tridiagonal types.
182   NMath User’s Guide



Trigonometric and Transcendental Functions

In general, NMath does not provide trigonometric and transcendental functions 
for sparse matrix types. Such functions may change unstored zero values to non-
zero values, thus changing a sparse matrix type into a general matrix. If you want 
to apply a trigonometric or transcendental function to all elements of a sparse 
matrix, including unstored zero values, convert the matrix to a general matrix first, 
using the ToGeneralMatrix() method. Alternatively, to apply a trigonometric or 
transcendental function only to stored values, apply the function to the underlying 
data vector. These techniques are described in more detail in Section 18.7.

Symmetric matrices are in a different category than the other sparse matrix types, 
because unstored values are not constrained to be zero. Therefore, NMath extends 
standard trigonometric functions Acos(), Asin(), Atan(), Cos(), Cosh(), Sin(), 
Sinh(), Tan(), and Tanh() to take symmetric matrix arguments. Class 
MatrixFunctions provides these functions as static methods. For instance, this 
code construct a symmetric matrix whose contents are the cosines of another 
symmetric matrix:

Code Example – C# matrix

var genMat = new FloatMatrix( 10, 10, 0, Math.Pi/4 );
var A = new FloatSymmetricMatrix( genMat );
FloatSymmetricMatrix cosA = MatrixFunctions.Cos( A );

Code Example – VB matrix

Dim GenMat As New FloatMatrix(10, 10, 0.0F, Math.PI / 4.0F)
Dim A As New FloatSymmetricMatrix(GenMat)
Dim CosA As FloatSymmetricMatrix = MatrixFunctions.Cos(A)

The static Atan2() method takes two symmetric matrices and applies the two-
argument arc tangent function to corresponding pairs of elements.

MatrixFunctions also provides standard transcendental functions Log() and 
Log10() that take symmetric matrix arguments. 

Absolute Value

The static Abs() function on class MatrixFunctions applies the absolute value 
function to each element of a given matrix: 

Code Example – C# matrix

int order = 5, hb = 2;
var data = new DoubleComplexVector( "(0,0) (0,0) 
  (1,-2) (0,0) (2,-4) (3,-6) (4,-8) (5,-10) (6,-12) (7,-14) (8,-16) 
  (9,-18) (10,-20) (11,-22) (12,-24)" );
var A = new DoubleHermitianBandMatrix( data, order, hb );
DoubleSymBandMatrix B = MatrixFunctions.Abs( A );
   Chapter 18.   Using The Structured Sparse Matrix Classes 183



Code Example – VB matrix

Dim Order As Integer = 5
Dim HB As Integer = 2
Dim Data As New DoubleComplexVector("(0,0) (0,0) " & _
  "(1,-2) (0,0) (2,-4) (3,-6) (4,-8) (5,-10) (6,-12) (7,-14) " &
  "(8,-16) (9,-18) (10,-20) (11,-22) (12,-24)")
Dim A As New DoubleHermitianBandMatrix(Data, Order, HB)
Dim B As DoubleSymBandMatrix = MatrixFunctions.Abs(A)

Complex Matrix Functions

Static methods Real() and Imag() on class MatrixFunctions return the real and 
imaginary part of the elements of a matrix. If the elements of the given matrix are 
real, Real() simply returns the given matrix and Imag() returns a matrix of the 
same dimensions containing all zeros.

Static methods Arg() and Conj() on class MatrixFunctions return the arguments 
(or phases) and complex conjugates of the elements of a matrix. If the elements of 
the given matrix are real, both methods simply return the given matrix.

For instance: 

Code Example – C# matrix

var initValue = new FloatComplex( 1, -1.5F );
var increment = new FloatComplex( 1, 0.25F );
var getMat = new FloatComplexMatrix( 7, 6, initValue, increment );
var A = new FloatComplexTriDiagMatrix( getMat );

FloatTriDiagMatrix AImag = MatrixFunctions.Imag( A );

Code Example – VB matrix

Dim InitValue As New FloatComplex(1, -1.5F)
Dim Increment As New FloatComplex(1, 0.25F)
Dim GetMat As New FloatComplexMatrix(7, 6, InitValue, Increment)
Dim A As New FloatComplexTriDiagMatrix(GetMat)

Dim AImag As FloatTriDiagMatrix = MatrixFunctions.Imag(A)

18.7 Generic Functions

NMath provides convenience methods for applying unary and binary functions to 
elements of a general matrix. The Apply() method returns a new matrix whose 
contents are the result of applying a given function delegate to each element of the 
184   NMath User’s Guide



matrix. The Transform() method modifies a matrix object by applying the given 
function to each of its elements.

NMath, however, does not generally support applying arbitrary functions to 
structured sparse matrix types. As described in Section 18.6, such functions may 
change unstored zero values to non-zero values, thus changing a structured sparse 
matrix type into a general matrix. Again, the exception is the symmetric matrices 
which are in a different category than the other sparse matrix types, because 
unstored values are not constrained to be zero. Therefore, NMath provides 
Apply() and Transform() methods on these types. For example:

Code Example – C# matrix

int order = 9;
DoubleVector data =
  new DoubleVector(( order * ( order + 1 )) / 2,
  new RandGenMTwist() );
data -= 0.5;
var A = new DoubleSymmetricMatrix( order, data );
DoubleSymmetricMatrix B = A.Apply( NMathFunctions.SinFunc );
A.Transform( NMathFunctions.CosFunc );

Code Example – VB matrix

Dim Order As Integer = 9
Dim Data As New DoubleVector((Order * (Order + 1)) / 2,
  New RandGenMTwist())
Data -= 0.5
Dim A As New DoubleSymmetricMatrix(Order, Data)
Dim B As DoubleSymmetricMatrix = A.Apply(NMathFunctions.SinFunc)
A.Transform(NMathFunctions.CosFunc)

The code above creates a 9 x 9 symmetric matrix filled with random values 
between 0 and 1, then applies the sine function to create a new symmetric matrix 
containing the sines of the original values. Finally, the original matrix is 
transformed using the cosine function.

For structured sparse matrix types other than symmetric, there are two ways to 
apply an arbitrary function: convert the matrix to a general matrix and apply the 
function, or retrieve the underlying data vector and apply the function. The 
difference is whether the function is applied to all elements of the matrix, 
including unstored zero values, or just to the stored values.

For instance, this code converts an upper triangular matrix to a general matrix, 
then applies the cosine function to all elements of general matrix, including the 
zero values in the lower triangular region:
   Chapter 18.   Using The Structured Sparse Matrix Classes 185



Code Example – C# matrix

var data = new DoubleVector( 10, 0, Math.PI/4 );
var A = new DoubleUpperTriMatrix( data, 4 );

DoubleMatrix genMat = A.ToGeneralMatrix();
genMat.Transform( NMathFunctions.CosFunc );

Code Example – VB matrix

Dim Data As New DoubleVector(10, 0.0, Math.PI / 4.0)
Dim A As New DoubleUpperTriMatrix(Data, 4)

Dim GenMat As DoubleMatrix = A.ToGeneralMatrix()
GenMat.Transform(NMathFunctions.CosFunc)

NOTE—Data is copied when converting a structured sparse matrix to a general 
matrix.

In contrast, this code retrieves the underlying data vector from the upper 
triangular matrix, and transforms it using the cosine function, then creates a new 
upper triangular matrix using the new data:

Code Example – C# matrix

var data = new DoubleVector( 10, 0, Math.PI/4 );
var A = new DoubleUpperTriMatrix( data, 4 );

A.DataVector.Transform( NMathFunctions.CosFunc );

Code Example – VB matrix

Dim Data As New DoubleVector(10, 0.0, Math.PI / 4.0)
Dim A As New DoubleUpperTriMatrix(Data, 4)

A.DataVector.Transform(NMathFunctions.CosFunc)

In this case, the zeros in the lower triangular region have not been transformed, 
and the matrix remains an upper triangular matrix. No data was copied.
186   NMath User’s Guide



CHAPTER 19.  
GENERAL SPARSE VECTORS AND 
MATRICES

NMath provides classes for storing general sparse vector and matrix data. By 
storing only the non-zero values, the storage savings are significant. Unlike the 
structured sparse matrices described in Chapter 17, where the zero elements are 
distributed according to some pattern, general sparse matrices make no 
assumptions about the sparsity structure of the matrix.

NMath also provides classes for computing and storing factorizations of general 
sparse matrices. Once a factorization is constructed, it can be reused to solve for 
different right-hand sides.

This chapter describes the NMath general sparse vector and matrix classes.

19.1 Sparse Vectors

NMath provides four classes for storing sparse vectors:

 Class FloatSparseVector stores a sparse vector of float values.

 Class DoubleSparseVector stores a sparse vector of double values.

 Class FloatComplexSparseVector stores a sparse vector of FloatComplex 
values.

 Class DoubleComplexSparseVector stores a sparse vector of 
DoubleComplex values.

Only the non-zero elements are stored.

Storage Format

Class SparseVectorData stores sparse vector data, and is parameterized on the 
type, T, of values stored in the vector. The nonzero elements of the vector are 
stored in a resizable array of type T, and their corresponding indexes are stored in 
a separate, parallel array of integers.
   Chapter 19.   General Sparse Vectors and Matrices 187



For example, the vector

v = ( 0 0 1.15 0 3.14 0 0 -2.23 0 0 )

is stored as

values = ( 1.15, 3.14, -2.23 );
indices = ( 2, 4, 7 );

The sparse vector classes extend SparseVectorData.

Creating Sparse Vectors 

Instances of sparse vectors are created in two ways: by providing the necessary 
storage arrays to constructors, or by gathering data from a dense vector. For 
example, this code uses a FloatSparseVector constructor:

Code Example – C# sparse vector

var indices = new IndexArray( 1, 12, 2, 15 );
var values = new float[] { 2, 3.14, -4, -.6 };
var sv = new FloatSparseVector( values, indices );

Code Example – VB sparse vector

Dim Indices As New IndexArray(1, 12, 2, 15)
Dim Values = New Single() {2.0, 3.14, -4.0, -0.6}
Dim SV As New FloatSparseVector(Values, Indices)

This code uses the MatrixFunctions.Gather() method to create a 
DoubleSparseVector from the non-zero elements in a DoubleVector v:

Code Example – C# sparse vector

DoubleSparseVector sv = MatrixFunctions.Gather( v );

Code Example – VB sparse vector

Dim SV As DoubleSparseVector = MatrixFunctions.Gather(V)

You can also create a sparse vector by selecting specific elements from a dense 
vector. For instance, this code creates a sparse vector containing the specified 
values from v:

Code Example – C# sparse vector

DoubleSparseVector sv = MatrixFunctions.Gather( v, indices );

Code Example – VB sparse vector

Dim SV As DoubleSparseVector = MatrixFunctions.Gather(Y, Indices)
188   NMath User’s Guide



Accessing and Modifying Sparse Vector Values

The sparse vector classes inherit the following properties from SparseVectorData:

 Entries gets and set the array of non-zero entries.

 Indices gets and sets the array of indices of the non-zero elements.

 NumberNonZero gets and sets the number of non-zero elements.

The sparse vector classes also provide standard indexers for getting and setting 
individual element values.

Code Example – C# sparse vector

int nnz = 3;
var sv = new DoubleSparseVector( nnz );
sv[4] = 10;
sv[100] = 3;

Code Example – VB sparse vector

Dim NNZ As Integer = 3
Dim SV As New DoubleSparseVector(NNZ)
SV(4) = 10
SV(100) = 3

Operations on Sparse Vectors

Operator == tests for equality of two sparse vectors, and returns true if both 
vecrtors have the same nonzero elements; otherwise, false. Following the 
convention of the .NET Framework, if both objects are null, they test equal. 
Operator != returns the logical negation of ==. The Equals() member function 
also tests for equality.

NMath provides overloaded arithmetic operators for general sparse vectors with 
their conventional meanings for those .NET languages that support them, and 
equivalent named methods for those that do not. All binary operators and 
equivalent named methods work either with two vectors, or with a vector and a 
scalar.

Code Example – C# sparse vector

double a = 3.18;
var sv1 = new DoubleSparseVector( data, indices );
DoubleSparseVector sv2 = a * sv1;

Code Example – VB sparse vector

Dim A As Double = 3.18
Dim SV1 As New DoubleSparseVector(Data, Indices)
   Chapter 19.   General Sparse Vectors and Matrices 189



Dim SV2 As DoubleSparseVector = A * SV1

Sparse Vector Functions

The sparse vector classes provide the following member functions that operate on 
the elements of the vector:

 TwoNorm() computes the Euclidean norm of the elements of a sparse 
vector.

 Scale() scales each element in a sparse vector by the specified value.

MatrixFunctions also provides a variety of functions that take general sparse 
vectors as arguments:

 AbsSum calculates the sum of the absolute value of a given vector's 
elements.

 MaxAbsIndex calculates the index of the maximum absolute value a given 
the vector's elements.

 MinAbsIndex calculates the index of the minimum absolute value of a 
sparse vector's elements.

 Dot calculates the dot product of a sparse vector and a dense vector.

For example:

Code Example – C# sparse vector

double sumOfAbsValues = MatrixFunctions.AbsSum( sv );
double maxAbsValueIndex = MatrixFunctions.MaxAbsIndex( sv );

var w = new DoubleVector( 66, 1.2 );
double dot = MatrixFunctions.Dot( w, sv );

Code Example – VB sparse vector

Dim SumOfAbsValues As Double = MatrixFunctions.AbsSum(SV)
Dim MaxAbsValueIndex As Integer = MatrixFunctions.MaxAbsIndex(SV)

Dim W As New DoubleVector(66, 1.2)
Dim Dot As Double = MatrixFunctions.Dot(W, SV)

Creating Dense Vectors from Sparse Vectors

The MatrixFunctions.Scatter() method scatters the elements of a compressed 
sparse vector to a full storage vector. For example, this code constructs a dense 
190   NMath User’s Guide



vector from a sparse vector by specifying the length of the dense vector and 
scattering the nonzero values from the sparse vector into the dense vector:

Code Example – C# sparse vector

DoubleVector v = MatrixFunctions.Scatter( sv, 20 );

Code Example – VB sparse vector

Dim Y As DoubleVector = MatrixFunctions.Scatter(SV, 20)

19.2 Sparse Matrices

NMath provides the classes shown in Table 15 for storing general sparse matrices.

Only the non-zero elements are stored.

Storage Format

Class SparseMatrixData stores general sparse matrix data, and is parameterized 
on both the storage format used, and the type, T, of values stored in the vector. 
Storage formats implement the ISparseMatrixStorage interface. NMath currently 
provides only one implementation—class CompressedSparseRow, which stores 
sparse matrix data in compressed row format.

Table 15 – General sparse matrix classes

Class Description

FloatCsrSparseMatrix

DoubleCsrSparseMatrix

Store a general sparse matrix of float or 
double values.

FloatSymCsrSparseMatrix

DoubleSymCsrSparseMatrix

Extend basic CSR sparse matrix class for 
matrices symmetric about the diagonal.

FloatComplexCsrSparseMatrix

DoubleComplexCsrSparseMatrix

Store a general sparse matrix of FloatCom-
plex or DoubleComplex values.

FloatHermCsrSparseMatrix

DoubleHermCsrSparseMatrix

Extend basic complex CSR spare matrix 

class for matrices which satisfy , 

where  denotes the conjugate transpose 
of .

A A
T

=

A
T

A

   Chapter 19.   General Sparse Vectors and Matrices 191



The compressed row storage format (CSR) makes no assumptions about the 
sparsity structure of the matrix. CSR puts data into three arrays:

 an array of type T values containing the non-zero values of the matrix. The 
values are mapped into this array in row-major format.

 an integer column index array, where element i is the number of the 
column that contains the ith element of the values array.

 an integer row index array, where element j gives the index of the element 
in the values array that is the first non-zero element in the row j. As the row 
index array gives the location of the first non-zero element within a row, 
and the non-zero elements are stored consecutively, the number of non-
zero elements in the ith row is equal to the difference of rowIndex[i] and 
rowIndex[i+1]. To have this relationship hold for the last row of the 
matrix, an additional entry is added to the end of rowIndex. Its value is 
equal to the number of non-zero elements. This makes the rowIndex array 
one larger that the number of rows in the matrix.

NOTE—Indexing starts at 0. Each row in compressed sparse row format must contain 
at least one nonzero entry.

For example, the matrix 

     |  1 -1  0 -3  0 |
     | -2  5  0  0  0 |
 A = |  0  0  4  6  4 |
     | -4  0  2  7  0 |
     |  0  8  0  0 -5 |

is stored as 

values   = (1, -1, -3, -2, 5, 4, 6, 4, -4, 2, 7, 8, -5)
columns  = ( 0, 1, 3, 0, 1, 2, 3, 4, 0, 2, 3, 1, 4 )
rowIndex = ( 0, 3, 5, 8, 11, 13 )

Creating Sparse Matrices 

Instances of sparse matrix classes are created in a variety ways. They can be 
constructed from CompressedSparseRow objects containing the sparse data, like 
so:

Code Example – C# sparse matrix

var values = new double[4] { 1, 2, 3, 4 };
int[] columns = new int[4] { 0, 2, 1, 0 };
int[] rowIndex = new int[4] { 0, 2, 3, 4 };
int cols = 3;
192   NMath User’s Guide



var sparseData = new CompressedSparseRow<double>( values, columns, 
  rowIndex, cols );

var sA = new DoubleCsrSparseMatrix( sparseData );

Code Example – VB sparse matrix

Dim Values = New Double() {1.0, 2.0, 3.0, 4.0}
Dim Columns = New Integer() {0, 2, 1, 0}
Dim RowIndex = New Integer() {0, 2, 3, 4}
Dim Cols As Integer = 3

Dim SparseData As New CompressedSparseRow(Of Double)(Values, 
  Columns, RowIndex, Cols)
Dim SA As New DoubleCsrSparseMatrix(SparseData)

Or they can be constructed from values stored as an IDictionary, where row-
column pair are the keys and the non-zero entries are the values:

Code Example – C# sparse matrix

var values = new Dictionary<IntPair, double>();
values.Add( new IntPair( 0, 0 ), 1 );
values.Add( new IntPair( 0, 2 ), 2 );
values.Add( new IntPair( 1, 2 ), 3 );
values.Add( new IntPair( 2, 1 ), 4 );

int cols = 3;
var sA = new DoubleCsrSparseMatrix( values, cols );

Code Example – VB sparse matrix

Dim Values As New Dictionary(Of IntPair, Double)()
Values.Add(New IntPair(0, 0), 1)
Values.Add(New IntPair(0, 2), 2)
Values.Add(New IntPair(1, 2), 3)
Values.Add(New IntPair(2, 1), 4)

Dim Cols As Integer = 3
Dim SA As New DoubleCsrSparseMatrix(Values, Cols)

As a convenience, class SparseMatrixBuilder implements the interface 
System.Collections.Generic.IDictionary{IntPair,T}, providing matrix-like 
row and column indexing for setting and retrieving values.

Code Example – C# sparse matrix

var smb = new SparseMatrixBuilder<double>();
smb[0,0] = 1;
smb[0,2] = 2;
smb[1,2] = 3;
smb[2,1] = 4;
   Chapter 19.   General Sparse Vectors and Matrices 193



int cols = 3;
var sA = new DoubleCsrSparseMatrix( smb, cols );

Code Example – VB sparse matrix

Dim SMB As New SparseMatrixBuilder(Of Double)()
SMB(0, 0) = 1
SMB(0, 2) = 2
SMB(1, 2) = 3
SMB(2, 1) = 4

Dim Cols = 3
Dim SA As New DoubleCsrSparseMatrix(SMB, Cols)

Lastly, sparse matrix can be generated from values in a dense matrix. This code 
uses the MatrixFunctions.ToSparseMatrix() method to create a 
DoubleCsrSparseMatrix from the non-zero elements in a DoubleMatrix A:

Code Example – C# sparse matrix

int maxNonzero = 500;
DoubleCsrSparseMatrix sA =
  MatrixFunctions.ToSparseMatrix( A, maxNonzero );

Code Example – VB sparse matrix

Dim MaxNonZero As Integer = 500
Dim SA As DoubleCsrSparseMatrix =
  MatrixFunctions.ToSparseMatrix(A, MaxNonZero)

Accessing and Modifying Sparse Matrix Values

Sparse matrix classes inherit the following properties from SparseMatrixData:

 Rows gets the number of rows in the matrix.

 Cols gets the number of columns in the matrix.    

 Data gets and sets the formatted data for the matrix as an 
ISparseMatrixStorage object.

The sparse matrix classes also provide standard indexers for getting and setting 
individual element values:

Code Example – C# sparse matrix

double x = sA[4, 100];

Code Example – VB sparse matrix

Dim X As Double = SA(4, 100)

NOTE—Attempts to set zero elements raise a NonModifiableElementException. 
194   NMath User’s Guide



Operations on Sparse Matrices

Operator == tests for equality of two sparse matrices, and returns true if both 
vecrtors have the same nonzero elements; otherwise, false. Following the 
convention of the .NET Framework, if both objects are null, they test equal. 
Operator != returns the logical negation of ==. The Equals() member function 
also tests for equality.

NMath provides overloaded arithmetic operators for general sparse matrices with 
their conventional meanings for those .NET languages that support them, and 
equivalent named methods for those that do not. All binary operators and 
equivalent named methods work either with two matrices, or with a matrix and a 
scalar.

Code Example – C# sparse matrix

double a = 3.18;
var sA1 = new DoubleCsrSparseMatrix( data );
DoubleCsrSparseMatrix sA2 = a * sA1;

Code Example – VB sparse matrix

Dim A As Double = 3.18
Dim SA1 As New DoubleCsrSparseMatrix(Data)
Dim SA2 As DoubleCsrSparseMatrix = A * SA1

Sparse Matrix Functions

The sparse matrix classes provide the Scale() function to scale each element in a 
sparse matrix by the specified value. MatrixFunctions also provides a variety of 
functions that take general sparse matrices as arguments:

 Product() computes the inner product of two sparse matrices, and returns 
the result as a sparse matrix.

 DenseProduct() computes the inner product of two sparse matrices, and 
returns the result as a dense matrix.

 TransposeProduct() computes the transpose inner product of two sparse 
matrices, and returns the result as a sparse matrix. 

 DenseTransposeProduct() computes the transpose inner product of two 
sparse matrices, and returns the result as a dense matrix.

For instance, if sA and sB are DoubleCsrSparseMatrix objects:

Code Example – C# sparse matrix

DoubleCsrSparseMatrix sC = MatrixFunctions.Product( sA, sB )
   Chapter 19.   General Sparse Vectors and Matrices 195



Code Example – VB sparse matrix

Dim SC As DoubleCsrSparseMatrix = MatrixFunctions.Product(SA, SB)

Creating Dense Matrices from Sparse Matrices

The MatrixFunctions.ToDenseMatrix() method copies the elements of a 
compressed sparse matrix to a full storage matrix. For example, this code creates a 
new dense matrix from DoubleCsrSparseMatrix sA:

Code Example – C# sparse matrix

DoubleMatrix A = MatrixFunctions.ToDenseMatrix( sA );

Code Example – VB sparse matrix

Dim A As DoubleMatrix = MatrixFunctions.ToDenseMatrix(SA)

19.3 Sparse Matrix Factorizations

NMath provides classes for computing and storing factorizations of general sparse 
matrices. Instances of the factorization classes calculate solutions to the equation 

 where A is a sparse matrix and B is a single vector, or multiple vectors.

Once a factorization is constructed, it can be reused to solve for different right-
hand sides.

Factorization Classes

The factorization classes associated with each general sparse matrix type are 
shown in Table 16. 

Table 16 – NMath general sparse matrix factorization classes

Matrix Classes Factorization Classes

FloatCsrSparseMatrix FloatSparseFact

FloatSymCsrSparseMatrix FloatSparseSymFact

FloatSparseSymPDFact

FloatComplexCsrSparseMatrix FloatComplexSparseFact

FloatHermCsrSparseMatrix FloatSparseHermFact

FloatSparseHermPDFact

Ax B=
196   NMath User’s Guide



Note that there are two factorization classes for symmetric and Hermitian types: 
one for indefinite matrices, and one for positive definite (PD) matrices.

SparseMatrixFact is the base class for sparse matrix factorizations, and is 
parameterized on the type, T, of values stored in the vector.

Creating Factorizations

You can create an instance of a factorization class by supplying the constructor 
with a matrix to factor. The following code creates a symmetric sparse matrix from 
the given data, then factors the matrix:

Code Example – C# sparse matrix factorization

var sA = new DoubleSymCsrSparseMatrix( sparseData);
var fact = new DoubleSparseSymFact( sA );

Code Example – VB sparse matrix factorization

Dim SA As New DoubleSymCsrSparseMatrix(SparseData)
Dim Fact As New DoubleSparseSymFact(SA)

You can also use an existing instance to factor other matrices with the provided 
Factor() method. Thus, if sB is another DoubleSymCsrSparseMatrix:

Code Example – C# sparse matrix factorization

fact.Factor( sB );

Code Example – VB sparse matrix factorization

Fact.Factor(SB)

The read-only ErrorStatus property gets an Error enumerated value. For 
example:

DoubleCsrSparseMatrix DoubleSparseFact

DoubleSymCsrSparseMatrix DoubleSparseSymFact

DoubleSparseSymPDFact

DoubleComplexCsrSparseMatrix DoubleComplexSparseFact

DoubleHermCsrSparseMatrix DoubleSparseHermFact

DoubleSparseHermPDFact

Table 16 – NMath general sparse matrix factorization classes

Matrix Classes Factorization Classes
   Chapter 19.   General Sparse Vectors and Matrices 197



Code Example – C# sparse matrix factorization

if ( fact.ErrorStatus == DoubleSparseSymFact.Error.NoError )
{
   // Do something here...
}

Code Example – VB sparse matrix factorization

If Fact.ErrorStatus = DoubleSparseSymFact.Error.NoError Then
  ' Do something here...
End If

Using Factorizations

Once a factorization is constructed from a matrix, it can be used to solve for 
different right hand sides. For instance, this code solves for one right-hand side:

Code Example – C# sparse matrix factorization

var b = new DoubleVector( 8, 1 );
DoubleVector x = fact.Solve( b );

Code Example – VB sparse matrix factorization

Dim B As New DoubleVector(8, 1)
Dim X As DoubleVector = Fact.Solve(B)

Similarly, you can use the Solve() method to solve for multiple right-hand sides. 
This code solves for 3 right-hand sides:

Code Example – C# sparse matrix factorization

int nrhs = 3;
var B = new DoubleMatrix( 8, nrhs, new RandGenBeta() );
DoubleMatrix X = fact.Solve( B );

Code Example – sparse matrix factorization

Dim NRHS As Integer = 3
Dim B As New DoubleMatrix(8, NRHS, New RandGenBeta())
Dim X As DoubleMatrix = Fact.Solve(B)

The right-hand sides are the columns of matrix B, and the corresponding solutions 
are the columns of matrix X.

NOTE—Be sure to check the ErrorStatus property on the factorization before calling 
Solve() to confirm that the factorization is valid.
198   NMath User’s Guide



CHAPTER 20.  
STRUCTURED SPARSE MATRIX 
FACTORIZATIONS

NMath provides classes for computing and storing factorizations of structured 
sparse matrices, including LU factorization for banded and tridiagonal matrices, 
Bunch-Kaufman factorization for symmetric and Hermitian matrices, and Cholesky 
factorization for symmetric and Hermitian positive definite matrices.

Once a factorization is constructed, it can be reused to solve for different right-
hand sides, and to compute inverses, determinants, and condition numbers. 
Similar static methods are also provided on class MatrixFunctions.

This chapter describes the NMath structured sparse matrix factorization classes, 
and how to construct and use them.

20.1 Factorization Classes

The factorization classes associated with each matrix type are shown in Table 17. 

Table 17 – NMath factorization classes

Matrix Classes Factorization Classes

<Type>SymmetricMatrix <Type>SymFact

<Type>SymPDFact

<Type>HermitianMatrix <Type>HermitianFact

<Type>HermitianPDFact

<Type>BandMatrix <Type>BandFact

<Type>TriDiagMatrix <Type>TriDiagFact

<Type>SymPDTriDiagFact

<Type>HermPDTriDiagFact

<Type>SymBandMatrix <Type>SymPDBandFact

<Type>HermitianBandMatrix <Type>HermitianPDBandFact
   Chapter 20.   Structured Sparse Matrix Factorizations 199



Note that lower and upper triangular types do not have factorization classes; these 
types are typically the result of factoring other matrices (for example, into the 
product of a lower and upper triangular matrix). Static methods for solving for 
different right-hand sides, and computing inverses, determinants, and condition 
numbers, are provided on class MatrixFunctions for triangular types.

Note also that NMath provides two factorization classes for symmetric and 
Hermitian types: one for indefinite matrices, and one for positive definite (PD) 
matrices. A symmetric matrix  is positive definite if there exists a nonsingular 
matrix  such that:

where  is the transpose of . A Hermitian matrix is positive definitive if there 
exists a nonsingular matrix  such that:

where  is the conjugate transpose of . Positive definite matrices arise 
frequently in statistical applications.

If you don’t know whether a particular symmetric or Hermitian matrix is positive 
definite, the easiest way to find out in NMath is to attempt to factor the matrix 
using the associated PD factorization class (Section 20.2). The read-only property 
IsPositiveDefinite returns true if the given matrix is positive definite and the 
factorization can be used to solve equations, compute determinants, inverses, and 
so on.

20.2 Creating Factorizations

You can create an instance of a factorization class by supplying the constructor 
with a matrix to factor. This code creates a 12 x 12 FloatBandMatrix, with upper 
bandwidth of 1 and lower bandwidth of 2 and values generated randomly from 
the interval -1 to 1, then factors the matrix using the FloatBandFact class 
constructor:

Code Example – C# matrix factorization

int rows = 12, cols = 12, ub = 1, lb = 2;
FloatVector data =
   new FloatVector( cols*(ub+lb+1), new RandGenUniform(-1, 1) );
FloatBandMatrix A =
   new FloatBandMatrix( data, rows, cols, lb, ub );

var F = new FloatBandFact( A );

A
B

A B
T

B=

B
T

B
B

A B
T

B=

B
T

B

200   NMath User’s Guide



Code Example – VB matrix factorization

Dim Rows As Integer = 12
Dim Cols As Integer = 12
Dim UB As Integer = 1
Dim LB As Integer = 2
Dim Data As New FloatVector(Cols * (UB + LB + 1),
  New RandGenUniform(-1.0, 1.0))
Dim A As New FloatBandMatrix(Data, Rows, Cols, LB, UB)

Dim F As New FloatBandFact(A)

You can also use an existing instance to factor other matrices with the provided 
Factor() method. Thus, if B is another FloatBandMatrix:

Code Example – C# matrix factorization

F.Factor( B );

Code Example – VB matrix factorization

F.Factor(B)

The read-only IsGood property gets a boolean value that is true if the matrix 
factorization succeeded and the factorization may be used to solve equations, 
compute determinants, inverses, and so on. Otherwise, it returns false. For 
example:

Code Example – C# matrix factorization

if ( F.IsGood ) 
{
   // Do something here...
}

Code Example – VB matrix factorization

If F.IsGood Then
  ' Do something here...
End If

Other read-only properties provide information about the matrix used to construct 
an factorization:

 Cols gets the number of columns of the factored matrix.

 Rows gets the number of rows of the factored matrix.

 On indefinite factorization classes, IsSingular returns true if the matrix 
was singular; otherwise, false.

 On positive definite factorization classes, IsPositiveDefinite returns 
true if the matrix was positive definite; otherwise, false.
   Chapter 20.   Structured Sparse Matrix Factorizations 201



20.3 Using Factorizations

Once a factorization is constructed from a matrix (see Section 20.2), it can be reused 
to solve for different right hand sides, and to compute inverses, determinants, and 
condition numbers. Static methods are also provided on MatrixFunctions to 
perform these functions without having to explicitly construct a factorization 
object.

Solving for Right-Hand Sides

You can use a factorization to solve for right-hand sides using the Solve() 
method. For instance, this code solves for one right-hand side:

Code Example – C# matrix factorization

var genMat = new DoubleMatrix(
  "5x5 [ 1.0000 0.5000 0.2500 0.1250 0.0625
         0.5000 1.0000 0.5000 0.2500 0.1250
         0.2500 0.5000 1.0000 0.5000 0.2500
         0.1250 0.2500 0.5000 1.0000 0.5000
         0.0625 0.1250 0.2500 0.5000 1.0000 ]" );
var A = new DoubleSymmetricMatrix( genMat );
var F = new DoubleSymPDFact( A );
var v = new DoubleVector( A.Order, new RandGenUniform(-1,1) );
DoubleVector x = F.Solve( v );

Code Example – VB matrix factorization

Dim GenMat As New DoubleMatrix(
  "5x5 [ 1.0000 0.5000 0.2500 0.1250 0.0625" &
        "0.5000 1.0000 0.5000 0.2500 0.1250" &
        "0.2500 0.5000 1.0000 0.5000 0.2500" &
        "0.1250 0.2500 0.5000 1.0000 0.5000" &
        "0.0625 0.1250 0.2500 0.5000 1.0000 ]")
Dim A As New DoubleSymmetricMatrix(GenMat)
Dim F As New DoubleSymPDFact(A)
Dim V As New DoubleVector(A.Order, New RandGenUniform(-1.0, 1.0))
Dim X As DoubleVector = F.Solve(V)

The returned vector x is the solution to the linear system Ax = v. Note that the 
length of vector v must be equal to the number of columns in the factored matrix A 
or a MismatchedSizeException is thrown.

To do the same thing without explicitly constructing a factorization object, you 
could do this:

Code Example – C# matrix factorization

DoubleVector x = MatrixFunctions.Solve( A, v, true );
202   NMath User’s Guide



Code Example – VB matrix factorization

Dim X As DoubleVector = MatrixFunctions.Solve(A, V, True)

The optional third, boolean parameter indicates that A is positive definite.

Similarly, you can use the Solve() method to solve for multiple right-hand sides. 
This code solves for 10 right-hand sides:

Code Example – C# matrix factorization

int rows = 8, cols = 8;
DoubleComplexVector data =
  new DoubleComplexVector( cols*3, new RandGenUniform(-1, 1) );
DoubleComplexTriDiagMatrix A =
  new DoubleComplexTriDiagMatrix( data, rows, cols );
var F = new DoubleComplexTriDiagFact( A );

var B =
  new DoubleComplexMatrix( A.Cols, 10, new RandGenUniform(-1,1) );
      
DoubleComplexMatrix X = F.Solve( B );

Code Example – VB matrix factorization

Dim Rows As Integer = 8
Dim Cols As Integer = 8
Dim Data As New DoubleComplexVector(Cols * 3,
  New RandGenUniform(-1.0, 1.0))
Dim A As New DoubleComplexTriDiagMatrix(Data, Rows, Cols)
Dim F As New DoubleComplexTriDiagFact(A)

Dim B As New DoubleComplexMatrix(A.Cols, 10,
  New RandGenUniform(-1.0, 1.0))

Dim X As DoubleComplexMatrix = F.Solve(B)

The returned matrix X is the solution to the linear system AX= B. That is, the right-
hand sides are the columns of B, and the solutions are the columns of X. Matrix B 
must have the same number of columns as the factored matrix A.

To do the same thing without explicitly constructing a factorization object, you 
could do this:

Code Example – C# matrix factorization

DoubleComplexMatrix X = MatrixFunctions.Solve( A, B );

Code Example – VB matrix factorization

Dim X As DoubleComplexMatrix = MatrixFunctions.Solve(A, B)
   Chapter 20.   Structured Sparse Matrix Factorizations 203



Computing Inverses, Determinants, and Condition 
Numbers

You can use a factorization to compute inverses using the Inverse() method, and 
determinants using the Determinant() method. For example:

Code Example – C# matrix factorization

int rows = 8, cols = 8;
var Lehmer = new FloatComplexMatrix( rows, cols );
for ( int i = 0; i < rows; ++i )
{
  for ( int j = 0; j < cols; ++j )
  {
    if ( j >= i )
    {
      Lehmer[i,j] = (float)(i+1)/(float)(j+1);
    }
  }
}
var A = new FloatHermitianMatrix( Lehmer );

var F = new FloatHermitianPDFact( A );
FloatHermitianMatrix AInv = F.Inverse();
FloatComplex det = F.Determinant();

Code Example – VB matrix factorization

Dim Rows As Integer = 8
Dim Cols As Integer = 8
Dim Lehmer As New FloatComplexMatrix(Rows, Cols)
For I As Integer = 0 To Rows - 1
  For J As Integer = 0 To Cols - 1
    If J >= I Then
      Lehmer(I, J) = CType(I + 1, Single) / CType(J + 1, Single)
    End If
  Next
Next

Dim A As New FloatHermitianMatrix(Lehmer)

Dim F As New FloatHermitianPDFact(A)
Dim AInv As FloatHermitianMatrix = F.Inverse()
Dim Det As FloatComplex = F.Determinant()

The ConditionNumber() method computes an estimate of the condition number 
in the one-norm. The condition number of a matrix A is: 

kappa = ||A|| ||AInv||

where AInv is the inverse of the matrix A. For instance:
204   NMath User’s Guide



Code Example – C# matrix factorization

DoubleMatrix genMat =
  new DoubleMatrix( 25, 25, new RandGenUniform( 0, 100 ) );
var A = new DoubleSymmetricMatrix( genMat );

var F = new DoubleSymFact( A );
double cond = F.ConditionNumber();

Code Example – VB matrix factorization

Dim GenMat As New DoubleMatrix(25, 25,
  New RandGenUniform(0.0, 100.0))
Dim A As New DoubleSymmetricMatrix(GenMat)

Dim F As New DoubleSymFact(A)
Dim Cond As Double = F.ConditionNumber()

NOTE—The ConditionNumber() method returns the reciprocal of the condition num-
ber, rho, where rho = 1/kappa.

Banded and tridiagonal factorization classes also provide an overload of the 
ConditionNumber() method that accepts a value from the NormType enumeration 
for specifying the matrix norm.

Thus, this code estimates the condition number in the infinity-norm:

Code Example – C# matrix factorization

int rows = 4, cols = 4;
FloatVector data =
   new FloatVector( cols*3, new RandGenUniform(-1, 1) );
var A = new FloatTriDiagMatrix( data, rows, cols );

var F = new FloatTriDiagFact( A );
float cond = F.ConditionNumber( NormType.InfinityNorm );

Code Example – VB matrix factorization

Dim Rows As Integer = 4
Dim Cols As Integer = 4
Dim Data As New FloatVector(Cols * 3,
  New RandGenUniform(-1.0, 1.0))
Dim A As New FloatTriDiagMatrix(Data, Rows, Cols)

Dim F As New FloatTriDiagFact(A)
Dim Cond As Single = F.ConditionNumber(NormType.InfinityNorm)

Inverses, determinants, and condition numbers can also be computed without 
explicitly constructing a factorization object by using static methods on 
MatrixFunctions. For instance:
   Chapter 20.   Structured Sparse Matrix Factorizations 205



Code Example – C# matrix factorization

DoubleMatrix genMat =
  new DoubleMatrix( 12, 12, new RandGenUniform( -1, 1 ) );
var A = new DoubleSymmetricMatrix( genMat );

DoubleSymmetricMatrix AInv = MatrixFunctions.Inverse( A );
double det = MatrixFunctions.Determinant( A );
double cond = MatrixFunctions.ConditionNumber( A );

Code Example – VB matrix factorization

Dim GenMat As New DoubleMatrix(12, 12,
  New RandGenUniform(-1.0, 1.0))
Dim A As New DoubleSymmetricMatrix(GenMat)

Dim AInv As DoubleSymmetricMatrix = MatrixFunctions.Inverse(A)
Dim Det As Double = MatrixFunctions.Determinant(A)
Dim Cond As Double = MatrixFunctions.ConditionNumber(A)
206   NMath User’s Guide



CHAPTER 21.  
LEAST SQUARES SOLUTIONS

NMath includes least squares classes for solving the overdetermined linear 
system:

In a linear model, a quantity y depends on one or more independent variables a1, 
a2,...,an such that y = x0 + x1a1 + ... + xnan. The goal of a least squares 
problem is to solve for the best values of x0,x1,...,xn. The least squares solution 
is the value of x that minimizes the residual vector ||Ax - y||.

NMath provides classes for:

 ordinary least squares (OLS)

 weighted least squares (WLS)

 iteratively reweighted least squares (IRLS)

This chapter describes the NMath least square classes, and how to construct and 
use them.

21.1 Ordinary Least Squares Methods

NMath includes least squares classes that compute solutions using various 
methods: Cholesky factorization, QR decomposition, and singular value 
decomposition. The interface is virtually identical for all least squares classes. 

Least Squares Using Cholesky Factorization

The Cholesky least squares classes solve least square problems by using the 
Cholesky factorization to solve the normal equations. The normal equations for the 
least squares problem  are:

where  denotes the transpose of a real matrix A or the conjugate transpose of a 
complex matrix A. If A has full rank, then  is symmetric positive definite—the 
converse is also true—and the Cholesky factorization may be used to solve the 
normal equations. This method will fail if the matrix A is rank deficient.

Ax y=

Ax y=

A*Ax A*y=

A*

A*A
   Chapter 21.   Least Squares Solutions 207



Finding least squares solutions using the normal equations is often the best 
method when speed is the only consideration.

Least Squares Using QR Decomposition

The QR decomposition least squares classes solve least squares problems by using 
a QR decomposition to find the minimal norm solution to the linear system 

. That is, they find the vector x that minimizes the 2-norm of the residual 
vector . Matrix A must have more rows than columns, and be of full rank.

Finding least squares solutions via QR decomposition is the “standard” method 
for least squares problems, and is recommended for general use.

Least Squares Using SVD

If the matrix A is close to rank-deficient, the QR decomposition method described 
above has less than ideal stability properties. In such cases, a method based on 
singular value decomposition is a better choice.

21.2 Creating Ordinary Least Squares Objects

NMath provides ordinary least squares classes for four datatypes: single- and 
double-precision floating point numbers, and single- and double-precision 
complex numbers. The classnames are shown in Table 18.

Table 18 – Ordinary least squares classes

Least Squares Method Classes

Cholesky FloatCholeskyLeastSq

DoubleCholeskyLeastSq

FloatComplexCholeskyLeastSq

DoubleComplexCholeskyLeastSq

Ax y=
Ax y–
208   NMath User’s Guide



Instances of the least squares classes are constructed from general matrices of the 
appropriate datatype. For example, this code creates a FloatCholeskyLeastSq 
from a FloatMatrix:

Code Example – C# least squares

FloatMatrix A = new FloatMatrix( "4x2[ 1 0  0 1  0 0  0 0 ]" );
FloatCholeskyLeastSq lsq = new FloatCholeskyLeastSq( A );

Code Example – VB least squares

Dim A As New FloatMatrix(“4x2[ 1 0 0 1 0 0 0 0]”)
Dim LSQ As New FloatCholeskyLeastSq(A)

QR and SVD least squares classes also provide constructor overloads that accept a 
tolerance value. The specified tolerance is used in computing the numerical rank of 
the matrix. For example, if  is the QR factorization of a matrix A, then 
elements on the main diagonal of R are considered to be zero if their absolute value 
is less than or equal to the tolerance. Similarly, in singular value decomposition, all 
singular values of the matrix A less than the tolerance are set to zero. Thus, this 
code sets all singular values less than 10-13 to zero:

Code Example – C# least squares

DoubleMatrix A = new DoubleMatrix( "4x2[ 1 0  0 1  0 0  0 0 ]" );
DoubleSVDLeastSq lsq = new DoubleSVDLeastSq( A, 1e-13 );

Code Example – VB least squares

Dim A As New DoubleMatrix( “4x2[1 0 0 1 0 0 0 0 ]” )
Dim LSQ As New DoubleSVDLeastSq( A, “1e-13” )

QR Decomposition FloatQRLeastSq

DoubleQRLeastSq

FloatComplexQRLeastSq

DoubleComplexQRLeastSq

SVD FloatSVDLeastSq

DoubleSVDLeastSq

FloatComplexSVDLeastSq

DoubleComplexSVDLeastSq

Table 18 – Ordinary least squares classes

Least Squares Method Classes

A QR=
   Chapter 21.   Least Squares Solutions 209



21.3 Using Ordinary Least Squares Objects

Once a least squares object has been constructed from a matrix (Section 21.2), it 
may be used to solve least squares problems, if the factorization or decomposition 
was successful.

Testing for Goodness

Read-only properties are provided for determining whether the decomposition 
method was successful. The SVD least squares classes provide a Fail property that 
returns true if the SVD algorithm failed to converge.

Other methods are guaranteed to complete, but the resultant object may still be 
unusable for solving least squares problems, if for example the original matrix A 
was not of full rank. All least squares classes therefore provide an IsGood property 
that returns true if the method succeeded and the decomposition can be used to 
solve least squares problems.

Solving Least Squares Problems

All least squares classes provide a Solve() method that accepts a vector y, and 
computes the solution to the least squares problem . For example:

Code Example – C# least squares

int rows = 6, cols = 3;
var rng = new RandGenUniform( -2, 2 );

DoubleMatrix A = GenerateData( rows, cols, rng );
var lsq = new DoubleCholeskyLeastSq( A );

var y = new DoubleVector( rows, rng );
if ( lsq.IsGood )
{
  DoubleVector x = lsq.Solve( y );
}

Code Example – VB least squares

Dim Rows As Integer = 6
Dim Cols As Integer = 3
Dim RNG As New RandGenUniform(-2, 2)

Dim A As DoubleMatrix = GenerateData(Rows, Cols, RNG)
Dim LSQ As New DoubleCholeskyLeastSq(A)

Dim Y As New DoubleVector(Rows, RNG)

Ax y=
210   NMath User’s Guide



If LSQ.IsGood Then
  Dim X As DoubleVector = LSQ.Solve(Y)
End If

Method ResidualVector() returns the residual vector ; 
ResidualNormSqr() computes the 2-norm squared of the residual vector. Finally, 
an existing least squares object can factor other matrices using the Factor() 
method.

Retrieving Information About the Original Matrix

Read-only properties are also provided for retrieving information about the 
original matrix A:

 Rows gets the number of rows.

 Cols gets the number of columns. 

 Rank (QR and SVD only) gets the numerical rank.

For example:

Code Example – C# least squares

var A = new DoubleComplexMatrix(
  "4x2[ (1,0) (0,0)  (0,0) (1,0)  (0,0) (0,0)  (0,0) (0,0) ]" );
var lsq = new DoubleComplexQRLeastSq( A );
int rank = lsq.Rank;

Code Example – VB least squares

Dim A As New DoubleComplexMatrix(
  "4x2[ (1,0) (0,0)  (0,0) (1,0)  (0,0) (0,0)  (0,0) (0,0) ]")
Dim LSQ As New DoubleComplexQRLeastSq(A)
Dim Rank As Integer = LSQ.Rank

21.4 Weighted Least Squares

NMath provides class DoubleCOWeightedLeastSq for solving weighted least 
squares (WLS) problems. WLS can modulate the importance of each observation in 
the final solution to correct for violations of the homoscedasticity assumption in 
ordinary least squares, to give less weight to outliers, or to give less weight to 
observations thought to be less reliable.

Ax y–
   Chapter 21.   Least Squares Solutions 211



DoubleCOWeightedLeastSq uses a complete orthogonal decomposition 
technique.2 The computed solution minimizes the 2-norm of the weighted residual 
vector

where D is a diagonal weight matrix whose diagonal consists of the weights.

Prerequisites on the matrix A are that it has more rows than columns, and is of full 
rank. Note that the algorithm satisfies an accuracy bound that is not affected by ill 
conditioning in the weight matrix D.

Instances of DoubleCOWeightedLeastSq are constructed from a matrix of 
observations and a vector of weights. For example:

Code Example – C# weighted least squares

var A = new DoubleMatrix( "5x2[1 2  1 3  1 6  1 10  1 7]" );
var weights = new DoubleVector( A.Rows, .2, .2 );
var wls = new DoubleCOWeightedLeastSq( A, weights );

Code Example – VB weighted least squares

Dim A As New DoubleMatrix("5x2[1 2  1 3  1 6  1 10  1 7]")
Dim Weights As New DoubleVector(A.Rows, 0.2, 0.2)
Dim WLS As New DoubleCOWeightedLeastSq(A, Weights)

In this case, the weights are arbitrary—observations are simply given increasingly 
higher weights.

DoubleCOWeightedLeastSq provides a Solve() method that accepts a vector y, 
and computes the solution:

Code Example – C# weighted least squares

var y = new DoubleVector( "[3 6 8 10 11]" );
var solution = wls.Solve( y );

Code Example – VB weighted least squares

Dim Y As New DoubleVector("[3 6 8 10 11]")
Dim Solution As DoubleVector = WLS.Solve(Y)

Other properties and methods on DoubleCOWeightedLeastSq include:

 Property A gets the original matrix of observations.

2Patricia D. Hough and Stephen A. Vavasis, "Complete Orthogonal Decomposition For Weighted Least 
Squares", SIAM J. Matrix Anal. Appl. 18, no. 2 (April 1997): 369-392

1

D
-------- Ax y– 
212   NMath User’s Guide



 ResidualVector() returns the residual vector .

 ResidualNormSqr() computes the 2-norm squared of the residual vector. 

 Factor() factors other matrices.

 Reweight() updates the weights.

NMath provides a selection of weighting functions for use in iteratively 
reweighted least squares (IRLS; Section 21.5). These functions can also be used to 
create weights for WLS. Typical weighting functions used in IRLS are a function of 
the adjusted residuals from the previous iteration. For example, this code 
computes an ordinary least squares solution, then uses the resulting residuals to 
solve the same problem using WLS, downweighting the outliers:

Code Example – C# weighted least squares

// compute ordinary least squares solution
var ols = new DoubleQRLeastSq( A );
DoubleVector olsSolution = ols.Solve( y );
DoubleVector olsResiduals = ols.ResidualVector( y );

// compute weights from residuals using bisquare function
var weights = new DoubleVector( residuals.Length );
IDoubleLeastSqWeightingFunction weightingFunction =
  new DoubleBisquareWeightingFunction( A );
weightingFunction.GetWeights( olsResiduals, ref weights );

// compute weighted least squares solution
var wls = new DoubleCOWeightedLeastSq( A, weights );
DoubleVector wlsSolution = wls.Solve( y );

Code Example – VB weighted least squares

' compute ordinary least squares solution
Dim OLS As New DoubleQRLeastSq(A)
Dim OLSSolution As DoubleVector = OLS.Solve(Y)
Dim OLSResiduals As DoubleVector = OLS.ResidualVector(Y)

' compute weights from residuals using bisquare function
Dim Weights As New DoubleVector(Residuals.Length)
Dim WeightingFunction As IDoubleLeastSqWeightingFunction =
  New DoubleBisquareWeightingFunction(A)
WeightingFunction.GetWeights(OLSResiduals, Weights)

' compute weighted least squares solution
Dim WLS As New DoubleCOWeightedLeastSq(A, Weights)
Dim WLSSolution As DoubleVector = WLS.Solve(Y)

Ax y–
   Chapter 21.   Least Squares Solutions 213



21.5 Iteratively Reweighted Least Squares

Iteratively reweighted least squares (IRLS) is an iterative minimization technique 
in which each step involves solving a standard weighted least squares 
(Section 21.4). New weights are computed at each iteration by applying a weighting 
function to the current residuals. The process terminates when either a specified 
convergence function returns true—typically when either the residuals or the 
solution are unchanged on successive iterations—or when a specified maximum 
number of iterations is reached.

NMath provides class DoubleIterativelyReweightedLeastSq for solving IRLS 
problems. The default weighting function is a bisquare weighting function, and 
the default convergence function returns true when the solutions do not change, 
within tolerance, on successive iterations. For instance:

Code Example – C# iteratively reweighted least squares

var irls = new DoubleIterativelyReweightedLeastSq();

Code Example – VB iteratively reweighted least squares

Dim IRLS As New DoubleIterativelyReweightedLeastSq()

Additional constructors enable you to specify the tolerance, the maximum number 
of iterations, and a weighting function (see below). Properties Tolerance, 
MaxIterations, and WeightsFunction are also provided for modifying these 
values post-construction.

The Solve() method solves the least squares problem  for x using the IRLS 
method:

Code Example – C# iteratively reweighted least squares

DoubleVector x = irls.Solve( A, y );

Code Example – VB iteratively reweighted least squares

Dim X As DoubleVector = IRLS.Solve(A, Y)

Property Residuals gets the residual vector from the most recent computation. 
Iterations gets the number of iterations performed. For instance:

Code Example – C# iteratively reweighted least squares

if ( irls.MaxIterationsMet ) {
  Console.WriteLine( 
    "The algorithm failed to converge in {0} iterations.",
    irls.MaxIterations
  );
}
else {

Ax y=
214   NMath User’s Guide



  Console.WriteLine(
    "Algorithm converged in {0} iterations.", irls.Iterations );
}

Code Example – VB iteratively reweighted least squares

If IRLS.MaxIterationsMet Then
  Console.WriteLine(
    "The algorithm failed to converge in {0} iterations.", 
    IRLS.MaxIterations)
Else
  Console.WriteLine(
    "Algorithm converged in {0} iterations.", IRLS.Iterations)
End If

Convergence Functions

The convergence function is called at the end of each iteration. If the function 
returns true, the algorithm is terminated; otherwise, iteration continues.

Convergence functions are specified as instances of delegate 
DoubleIterativelyReweightedLeastSq.ToleranceMetFunction:

Code Example – C# iteratively reweighted least squares

public delegate bool ToleranceMetFunction(
  double tolerance,
  DoubleVector lastSolution,
  DoubleVector currentSolution,
  DoubleVector lastResiduals,
  DoubleVector currentResiduals);

Code Example – VB iteratively reweighted least squares

Delegate Function ToleranceMetFunction(
  Tolerance As Double,
  LastSolution As DoubleVector,
  CurrentSolution As DoubleVector,
  LastResiduals As DoubleVector,
  CurrentResiduals As DoubleVector) As Boolean
   Chapter 21.   Least Squares Solutions 215



For example, this code encapsulates the user-defined function MyFunction as a 
DoubleIterativelyReweightedLeastSq.ToleranceMetFunction delegate:

Code Example – C# iteratively reweighted least squares

public static bool MyFunction(
  double tolerance,
  DoubleVector lastSolution,
  DoubleVector currentSolution,
  DoubleVector lastResiduals,
  DoubleVector currentResiduals )
{
  double a = 
    NMathFunctions.MaxAbsValue( currentResiduals - lastResiduals );
  double b = NMathFunctions.MaxAbsValue( currentResiduals ); 
  return ( a/b ) < tolerance;
}

public static
 DoubleIterativelyReweightedLeastSq.ToleranceMetFunction  
   residualsUnchanged =
    new DoubleIterativelyReweightedLeastSq.ToleranceMetFunction(  
      MyFunction );

Code Example – VB iteratively reweighted least squares

public Shared Function MyFunction( Tolerance As Double, , 
  LastSolution As DoubleVector, CurrentSolution As DoubleVector, 
  LastResiduals As DoubleVector, CurrentResiduals As DoubleVector) 
As Boolean
  Dim A As Double =
    NMathFunctions.MaxAbsValue(CurrentResiduals - LastResiduals)
  Dim B As Double = NMathFunctions.MaxAbsValue(CurrentResiduals)
  Return (A / B) < Tolerance
End Function

Property ConvergenceFunction can be used to get and set the convergence 
function on a DoubleIterativelyReweightedLeastSq instance:

Code Example – C# iteratively reweighted least squares

irls.ConvergenceFunction = residualsUnchanged;

Code Example – VB iteratively reweighted least squares

IRLS.ConvergenceFunction = ResidualsUnchanged
216   NMath User’s Guide



Weighting Functions

NMath provides a selection of least squares weighting functions. Typical 
weighting functions used in IRLS are a function of the adjusted residuals from the 
previous iteration. Abstract base class DoubleLeastSqWeightingFunction 
provides method AdjustedResiduals() for calculating the adjusted residuals 
according to the following formula:

where

 r’ is the adjusted residuals.

 r is the actual residuals. 

 t is a tuning constant by which the residuals are divided before computing 
weights. Decreasing the tuning constant increases the downweight 
assigned to large residuals, and increasing the tuning constant decreases 
the downweight assigned to large residuals. 

 h is the vector of leverage values that adjust the residuals by 
downweighting high-leverage data points, which have a large effect on the 
least squares fit. The leverage values are the main diagonal of the hat matrix

 s is an estimate of the standard deviation of the error term given by

where MAD is the median absolute deviation of the residuals from their 
median. The constant 0.6745 makes the estimate unbiased for the normal 
distribution.

DoubleLeastSqWeightingFunction also implements the 
IDoubleLeastSqWeightingFunction interface, which provides methods 
Initialize() for performing any needed initialization given the matrix A, and 
GetWeights() for computing weights from a given vector of residuals.

Two concrete implementations of DoubleLeastSqWeightingFunction are 
provided:

 DoubleBisquareWeightingFunction applies the bisquare weighting 
formula to a set of adjusted residuals:

r'
r

ts 1 h– 
-------------------------=

H A A'A  1–
A'=

s
MAD
0.6745
----------------=

wi
1 ri 2– 

2
ri 1

0 ri 1



=

   Chapter 21.   Least Squares Solutions 217



where r is the adjusted residuals computed by the AdjustedResidual() 
function on the base class DoubleLeastSqWeightingFunction.

 DoubleFairWeightingFunction applies the fair weighting formula to a set of 
adjusted residuals:

where r is the adjusted residuals computed by the AdjustedResidual() 
function on the base class DoubleLeastSqWeightingFunction.

The default weighting function used is the bisquare weighting function. This code 
constructs a DoubleIterativelyReweightedLeastSq instance using the fair 
weighting function:

Code Example – C# iteratively reweighted least squares

var weightingFunction = DoubleFairWeightingFunction();
var irls = new DoubleIterativelyReweightedLeastSq( 
weightingFunction );

Code Example – VB iteratively reweighted least squares

Dim WeightingFunction As IDoubleLeastSqWeightingFunction =
  New DoubleFairWeightingFunction()
Dim IRLS As New 
  DoubleIterativelyReweightedLeastSq(WeightingFunction)

The weighting function can also be changed on an existing 
DoubleIterativelyReweightedLeastSq object using the WeightsFunction 
property:

Code Example – C# iteratively reweighted least squares

irls.WeightsFunction = new DoubleFairWeightingFunction();

Code Example – C# iteratively reweighted least squares

IRLS.WeightsFunction = New DoubleFairWeightingFunction()

wi
1

1 ri+ 
--------------------=
218   NMath User’s Guide



CHAPTER 22.  
DECOMPOSITIONS

NMath includes decomposition classes for constructing and manipulating QR and 
singular value decompositions of the general matrix types. NMath also provides 
decomposition server classes that construct instances of the decomposition classes, 
allowing you greater control over how decomposition is performed.

For example, class DoubleQRDecomp computes the QR decomposition of a 
DoubleMatrix. By default, this decomposition class performs pivoting—that is, it 
may move columns in the input matrix to increase the robustness of the 
calculation. For control over how pivoting is performed, or to turn off pivoting 
altogether, the associated decomposition server class, DoubleQRDecompServer, 
may be used to create instances of DoubleQRDecomp with non-default 
decomposition parameters.

This chapter describes the NMath decomposition and decomposition server 
classes, and how to construct and use them.

22.1 QR Decompositions

A QR decomposition is a representation of a matrix A of the form:

where P is a permutation matrix, Q is orthogonal, and R is upper trapezoidal (or 
upper triangular if A has more rows than columns and full rank).

Creating QR Decompositions

NMath provides QR decomposition classes for four datatypes: single- and double-
precision floating point numbers, and single- and double-precision complex 
numbers. The classnames are FloatQRDecomp, DoubleQRDecomp, 
FloatComplexQRDecomp, and DoubleComplexQRDecomp.

Instances of the QR decomposition classes are constructed from general matrices 
of the appropriate datatype. For example, this code creates a FloatQRDecomp 
from a FloatMatrix:

Code Example – C# QR decomposition

var A =

AP QR=
   Chapter 22.   Decompositions 219



  new FloatMatrix( "5x3 [ 1 2 3  4 5 6  7 8 9  0 1 2  3 4 5 ]" );
var qr = new FloatQRDecomp( A );

Code Example – VB QR decomposition

Dim A As New FloatMatrix(
  "5x3 [ 1 2 3  4 5 6  7 8 9  0 1 2  3 4 5 ]")
Dim QR As New FloatQRDecomp(A)

By default, pivoting is done so that the entries along the diagonal of R are non-
increasing. For greater control, NMath provides QR decomposition server classes 
that create QR decomposition objects with non-default decomposition parameters. 
The classnames are FloatQRDecompServer, DoubleQRDecompServer, 
FloatComplexQRDecompServer, and DoubleComplexQRDecompServer.

The QR decomposition server classes all have the same interface:

 The Pivoting property sets whether or not pivoting is performed. By 
default, pivoting is true.

 The SetInitialColumn() method moves a given column to the beginning 
of AP before the computation, and fixes it in place during the computation.

 The SetFreeColumn() method allows a given column to be interchanged 
during the computation with any other free column. By default, all 
columns are free.

 The GetDecomp() method takes a matrix and returns a decomposition 
object using the current pivoting parameters.

For example, this code uses a DoubleComplexQRDecompServer to turn off 
pivoting:

Code Example – C# QR decomposition

var qrs = new DoubleComplexQRDecompServer();
qrs.Pivoting = false;

int rows = 10, cols = 3;
var A = new DoubleComplexMatrix( rows, cols,
  new RandGenUniform( -1, 1 ) );
DoubleComplexQRDecomp qr = qrs.GetDecomp( A );

Code Example – VB QR decomposition

Dim QRS As New DoubleComplexQRDecompServer()
QRS.Pivoting = False

Dim Rows As Integer = 10
Dim Cols As Integer = 3
Dim A As New DoubleComplexMatrix(Rows, Cols,
  New RandGenUniform(-1.0, 1.0))
Dim QR As DoubleComplexQRDecomp = QRS.GetDecomp(A)
220   NMath User’s Guide



This code moves column 7 to the beginning of AP before the computation, and fixes 
it in place during the computation:

Code Example – C# QR decomposition

var qrs = new DoubleQRDecompServer();
qrs.SetIntialColumn( 7 );

int rows = 20, cols = 12;
var A = new DoubleMatrix( rows, cols,
  new RandGenUniform(-1,1) );
DoubleQRDecomp qr = qrs.GetDecomp( A );

Code Example – VB QR decomposition

Dim QRS As New DoubleQRDecompServer()
QRS.SetIntialColumn(7)

Dim Rows As Integer = 20
Dim Cols As Integer = 12
Dim A As New DoubleMatrix(Rows, Cols,
  New RandGenUniform(-1.0, 1.0))
Dim QR As DoubleQRDecomp = QRS.GetDecomp(A)

Using QR Decompositions

Once a QR decomposition object has been constructed from a matrix, various read-
only properties are provided for retrieving the elements of the decomposition, and 
for retrieving information about the original matrix:

 P gets the permutation matrix.

 Q gets the orthogonal matrix.

 R gets the upper trapezoidal matrix.

 Rows gets the number of rows in the original matrix A.

 Cols gets the number of columns in the original matrix A. 

For example:

Code Example – C# QR decomposition

int rows = 10, cols = 3;
DoubleMatrix A =
  new DoubleMatrix( rows, cols, new RanGenUniform( 1, -1 ) );

var qr = new DoubleQRDecomp( A );
DoubleMatrix Q = qr.Q;
DoubleMatrix R = qr.R;
DoubleMatrix P = qr.P;
   Chapter 22.   Decompositions 221



Code Example – VB QR decomposition

Dim Rows As Integer = 10
Dim Cols As Integer = 3
Dim A As New DoubleMatrix(Rows, Cols,
  New RandGenUniform(-1.0, 1.0))

Dim QR As New DoubleQRDecomp(A)
Dim Q As DoubleMatrix = QR.Q
Dim R As DoubleMatrix = QR.R
Dim P As DoubleMatrix = QR.P

Methods are also provided for manipulating the component matrices P, Q, or R: 

 Px(), Qx(), and Rx() compute the inner product of a component matrix 
and a given vector.

 PTx(), QTx(), and RTx() compute the inner product of the transpose of a 
component matrix and a given vector, or conjugate transpose for complex 
types.

 QM() computes the inner product of the orthogonal matrix Q and a given 
matrix. QTM() uses the transpose of Q, or conjugate transpose for complex 
types.

 RInvx() computes the inner product of the inverse of the the upper 
trapezoidal matrix R and a given vector. RTInvx() uses the transpose of R, 
or conjugate transpose for complex types.

 RDiagonal() returns the main diagonal of the upper trapezoidal matrix R.

These methods are more efficient than retrieving a component matrix using the P, 
Q, and R properties and manipulating it yourself.

For example:

Code Example – C# QR decomposition

int rows = 12, cols = 20;
var A = new FloatComplexMatrix( rows, cols, rng );
var qr = new FloatComplexQRDecomp( A );
      
var x = new FloatComplexVector( qr.P.Cols, 1, 1 );
FloatComplexVector y = qr.Px( x );

Code Example – VB QR decomposition

Dim Rows As Integer = 12
Dim Cols As Integer = 20
Dim A As New FloatComplexMatrix(Rows, Cols, rng)
Dim QR As New FloatComplexQRDecomp(A)

Dim X As New FloatComplexVector(QR.P.Cols, 1, 1)
222   NMath User’s Guide



Dim Y As FloatComplexVector = QR.Px(X)

Reusing QR Decompositions

An existing decomposition object can be reused with another matrix using the 
Factor() method:

Code Example – C# QR decomposition

int rows = 10, cols = 3;
var rng = new RandGenUniform( -1, 1 );
var A = new FloatMatrix( rows, cols, rng );

var qr = new FloatQRDecomp( A );
FloatMatrix Q1 = qr.Q;
FloatMatrix R1 = qr.R;
FloatMatrix P1 = qr.P;

rows = 7;
cols = 7;
var B = new FloatMatrix( rows, cols, rng );

qr.Factor( B );
FloatMatrix Q2 = qr.Q;
FloatMatrix R2 = qr.R;
FloatMatrix P2 = qr.P;

Code Example – VB QR decomposition

Dim Rows As Integer = 10
Dim Cols As Integer = 3
Dim RNG As New RandGenUniform(-1.0, 1.0)
Dim A As New FloatMatrix(Rows, Cols, RNG)

Dim QR As New FloatQRDecomp(A)
Dim Q1 As FloatMatrix = QR.Q
Dim R1 As FloatMatrix = QR.R
Dim P1 As FloatMatrix = QR.P

Rows = 7
Cols = 7
Dim B As New FloatMatrix(Rows, Cols, RNG)

QR.Factor(B)
Dim Q2 As FloatMatrix = QR.Q
Dim R2 As FloatMatrix = QR.R
Dim P2 As FloatMatrix = QR.P
   Chapter 22.   Decompositions 223



22.2 Singular Value Decompositions

A singular value decomposition (SVD) is a representation of a matrix A of the 
form:

where U and V are orthogonal, S is diagonal, and V* denotes the transpose of a real 
matrix V or the conjugate transpose of a complex matrix V. The entries along the 
diagonal of S are the singular values. The columns of U are the left singular vectors, 
and the columns of V are the right singular vectors.

Creating Singular Value Decompositions

NMath provides singular value decomposition classes for four datatypes: single- 
and double-precision floating point numbers, and single- and double-precision 
complex numbers. The classnames are FloatSVDecomp, DoubleSVDecomp, 
FloatComplexSVDecomp, and DoubleComplexSVDecomp.

Instances of the singular value decomposition classes are constructed from general 
matrices of the appropriate datatype. For example, this code creates a 
DoubleSVDecomp from a DoubleMatrix:

Code Example – C# SVD

DoubleMatrix A =
  new DoubleMatrix( "4 x 3 [ 1 2 3  12 -2 6  -8 9 11  5 7 -1]" );
var svd = new DoubleSVDecomp( A );

Code Example – VB SVD

Dim A As New DoubleMatrix(
  "4 x 3 [ 1 2 3  12 -2 6  -8 9 11  5 7 -1]")
Dim SVD As New DoubleSVDecomp(A)

By default, the reduced singular value decomposition and all singular vectors are 
computed. For greater control, NMath provides singular value decomposition 
server classes that create singular value decomposition objects with non-default 
decomposition parameters. The classnames are FloatSVDecompServer, 
DoubleSVDecompServer, FloatComplexSVDecompServer, and 
DoubleComplexSVDecompServer.

The singular value decomposition server classes all have the same interface:

 The ComputeFull property gets and sets whether the full or reduced 
singular value decomposition is computed. (If matrix A is square, the full 
and reduced singular value decompositions are the same.)

A USV
*

=

224   NMath User’s Guide



 The ComputeLeftVectors property gets and sets whether or not the left 
singular vectors are computed.

 The ComputeRightVectors property gets and sets whether or not the right 
singular vectors are computed.

 The Tolerance property gets and sets the tolerance for truncating all 
singular values. Values less than the tolerance are set to zero.

 The GetDecomp() method takes a matrix and returns a singular value 
decomposition object using the current decomposition parameters.

For example, this code uses a FloatComplexSVDecompServer to turn off the 
computation of the singular vectors:

Code Example – C# SVD

var svds = new FloatComplexSVDecompServer();
svds.ComputeLeftVectors = false;
svds.ComputeRightVectors = false;

int rows = 10, cols = 10;
var A = new FloatComplexMatrix( rows, cols,
  new RandGenUniform( -1, 1 ) );
FloatComplexSVDecomp svd = svds.GetDecomp( A );

Code Example – VB SVD

Dim SVDS As New FloatComplexSVDecompServer()
SVDS.ComputeLeftVectors = False
SVDS.ComputeRightVectors = False

Dim Rows As Integer = 10
Dim Cols As Integer = 10
Dim A As New FloatComplexMatrix(Rows, Cols,
  New RandGenUniform(-1.0, 1.0))
Dim SVD As FloatComplexSVDecomp = SVDS.GetDecomp(A)

Using Singular Value Decompositions

Once a singular value decomposition object has been constructed from a matrix, 
various read-only properties are provided for retrieving the elements of the 
decomposition, and for retrieving information about the original matrix:

 LeftVectors gets the matrix whose columns are the left singular vectors.

 RightVectors gets the matrix whose columns are the right singular 
vectors.

 NumberLeftVectors gets the number of left singular vectors.
   Chapter 22.   Decompositions 225



 NumberRigthVectors gets the number of right singular vectors.

 SingularValues gets the singular values of this decomposition. The values 
are non-negative and arranged in decreasing order.

 Rank gets the rank of the original matrix A.

 Rows gets the number of rows in the original matrix A.

 Cols gets the number of columns in the original matrix A.

 Fail gets the status of the decomposition. The property returns true if the 
decomposition algorithm failed to converge; otherwise, false.

For instance:

Code Example – C# SVD

int rows = 5, cols = 5;
var A =
  new FloatMatrix( rows, cols, new RandGenUniform( 1, -1 ) );

var svd = new FloatSVDecomp( A );
FloatMatrix U = svd.LeftVectors;
FloatMatrix V = svd.RightVectors;
FloatVector s = svd.SingularValues;

Code Example – VB SVD

Dim Rows As Integer = 5
Dim Cols As Integer = 5
Dim A As New FloatMatrix(rows, cols,
  New RandGenUniform(-1.0, 1.0))

Dim SVD As New FloatSVDecomp(A)
Dim U As FloatMatrix = svd.LeftVectors
Dim Y As FloatMatrix = svd.RightVectors
Dim S As FloatVector = svd.SingularValues

Methods are also provided for retrieving individual singular vectors and singular 
values:

 LeftVector() returns a specified left singular vector.

 RightVector() returns a specified right singular vector.

 SingularValue() returns a specified singular value.

For example, this code returns the first singular value, which is equal to the 
Euclidean (L2) norm of the matrix A:

Code Example – C# SVD

int rows = 12, cols = 6;
226   NMath User’s Guide



var A = new DoubleComplexMatrix( rows, cols,
  new RandGenUniform( -1, 1) );

var svd = new DoubleComplexSVDecomp( A ); 
double l2 = svd.SingularValue( 0 );

Code Example – VB SVD

Dim Rows As Integer = 12
Dim Cols As Integer = 6
Dim A As New DoubleComplexMatrix(Rows, Cols,
  New RandGenUniform(-1.0, 1.0))

Dim SVD As New DoubleComplexSVDecomp(A)
Dim L2 As Double = SVD.SingularValue(0)

Lastly, a Truncate() method is provided that sets all singular values less than a 
given tolerance to zero. Corresponding singular vectors are also removed.

NOTE—This method can change the numerical rank of the matrix A, which is equal to 
the number of non-zero singular values.

Code Example – C# SVD

var A = new DoubleMatrix(
  "5x5[1 2 3 4 5  6 7 8 9 0  1 2 3 4 5  6 7 8 9 0  1 2 3 4 5]" );

var svd = new DoubleSVDecomp( A );
int fullRank = svd.Rank;       // == 5

svd.Truncate( 1e-14 );
int deficientRank = svd.Rank;  // == 2

Code Example – VB SVD

Dim A As New DoubleMatrix(
  "5x5[1 2 3 4 5  6 7 8 9 0  1 2 3 4 5  6 7 8 9 0  1 2 3 4 5]")

Dim SVD As New DoubleSVDecomp(A)
Dim FullRank As Integer = SVD.Rank       ' == 5

SVD.Truncate("1e-14")
Dim DeficientRanks As Integer = svd.Rank  ' == 2

Reusing Singular Value Decompositions

An existing decomposition object can be reused with another matrix using the 
Factor() method:

Code Example – C# SVD

int rows = 12, cols = 6;
   Chapter 22.   Decompositions 227



FloatMatrix A =
  new FloatMatrix( rows, cols, new RandGenUniform( -1, 1 ) );

var svd = new DoubleSVDecomp( A );
FloatVector svA = svd.SingularValues;

var B = new DoubleMatrix(
  "5x5[1 2 3 4 5  6 7 8 9 0  1 2 3 4 5  6 7 8 9 0  1 2 3 4 5]" );

svd.Factor( B );
FloatVector svB = svd.SingularValues;

Code Example – VB SVD

Dim Rows As Integer = 12
Dim Cols As Integer = 6
Dim A As New FloatMatrix(Rows, Cols, New RandGenUniform(-1.0, 1.0))

Dim SVD As New DoubleSVDecomp(A)
Dim SVA As FloatVector = SVD.SingularValues

Dim B As New DoubleMatrix(
  "5x5[1 2 3 4 5  6 7 8 9 0  1 2 3 4 5  6 7 8 9 0  1 2 3 4 5]")

SVD.Factor(B)
Dim SVB As FloatVector = svd.SingularValues
228   NMath User’s Guide



CHAPTER 23.  
EIGENVALUE PROBLEMS

NMath includes classes for solving symmetric, Hermitian, and nonsymmetric 
eigenvalue problems. The classical eigenvalue problem is defined as the solution 
to:

for a matrix , eigenvectors , and the diagonal matrix of eigenvalues . NMath 
also provides eigenvalue server classes that construct instances of the eigenvalue 
classes, allowing you greater control over how the eigenvalue decomposition is 
performed.

For example, class DoubleSymEigDecomp computes the eigenvalues and 
eigenvectors of a DoubleSymmetricMatrix. By default, this class computes both 
eigenvalues and eigenvectors. For more control, the associated decomposition 
server class, DoubleSymEigDecompServer, can be configured to compute 
eigenvalues only, or both eigenvalues and eigenvectors. In addition, the server can 
be configured to compute only the eigenvalues in a given range. A tolerance for 
the convergence of the algorithm may also be specified.

This chapter describes the NMath eigenvalue and eigenvalue server classes, and 
how to construct and use them.

23.1 Eigenvalue Classnames

NMath provides eigenvalue and eigenvalue server classes for the usual four 
datatypes (single- and double-precision floating point numbers, and single- and 
double-precision complex numbers), in both nonsymmetric and symmetric forms. 
The classnames are shown in Table 19.

AV V=

A V 
   Chapter 23.   EigenValue Problems 229



23.2 Using the Eigenvalue Classes

The NMath eigenvalue classes solve symmetric, Hermitian, and nonsymmetric 
eigenvalue problems.

Constructing Eigenvalue Objects

Instances of the eigenvalue classes are constructed from matrices of the 
appropriate type. For example, this code creates a FloatSymEigDecomp from a 
FloatSymmetricMatrix:

Code Example – C# eigenvalue decomposition

var A = new FloatMatrix( "4x4 [ 0 1.73205080756888 0 0
                                1.73205080756888 0 2 0 
                                0 2 0 1.73205080756888 
                                0 0 1.73205080756888 0 ]");
var Asym = new FloatSymmetricMatrix( A );
var eig = new FloatSymEigDecomp( Asym );

Code Example – VB eigenvalue decomposition

Dim A As New FloatMatrix("4x4 [ 0 1.73205080756888 0 0" & _
                               "1.73205080756888 0 2 0" & _
                               "0 2 0 1.73205080756888" & _
                               "0 0 1.73205080756888 0 ]")
Dim Asym As New FloatSymmetricMatrix(A)
Dim Eig As New FloatSymEigDecomp(Asym)

Table 19 – Eigenvalue classes

Nonsymmetric Symmetric/Hermitian

FloatEigDecomp
FloatEigDecompServer

FloatSymEigDecomp
FloatSymEigDecompServer

DoubleEigDecomp
DoubleEigDecompServer

DoubleSymEigDecomp
DoubleSymEigDecompServer

FloatComplexEigDecomp
FloatComplexEigDecompServer

FloatHermitianEigDecomp
FloatHermitianEigDecompServer

DoubleComplexEigDecomp
DoubleComplexEigDecompServer

DoubleHermitianEigDecomp
DoubleHermitianEigDecompServer
230   NMath User’s Guide



Similarly, if A is a DoubleHermitianMatrix, this code creates a 
DoubleHermitianEigDecomp object from A:

Code Example – C# eigenvalue decomposition

var eig = new DoubleHermitianEigDecomp( A );

Code Example – VB eigenvalue decomposition

Dim Eig As New DoubleHermitianEigDecomp(A)

Testing for Goodness

All eigenvalue classes provide an IsGood property that returns true if all the 
eigenvalues and eigenvectors were successfully computed:

Code Example – C# eigenvalue decomposition

var eig = new DoubleComplexEigDecomp( A );
if ( eig.IsGood )
{
  // Do something here...
}

Code Example – VB eigenvalue decomposition

Dim Eig As New DoubleComplexEigDecomp(A)
If Eig.IsGood Then
  ' Do something here...
End If

Retrieving Eigenvalues and Eigenvectors

All eigenvalue classes provide read-only properties and member functions for 
retrieving eigenvalues and eigenvectors.

 NumberOfEigenValues gets the number of eigenvalues computed.

 EigenValues gets the vector of computed eigenvalues. 

 EigenValue() returns the specified eigenvalue. 

 NumberOfLeftEigenVectors gets the number of left eigenvectors.

 LeftEigenVectors gets the matrix of left eigenvectors.

 LeftEigenVector() returns the specified left eigenvector.
   Chapter 23.   EigenValue Problems 231



 NumberOfRightEigenVectors gets the number of right eigenvectors.

 RightEigenVectors gets the matrix of right eigenvectors.

 RightEigenVector() returns the specified right eigenvector.

For example:

Code Example – C# eigenvalue decomposition

var decomp = new FloatEigDecomp( A );
Console.WriteLine( "Eigenvalues = " + decomp.EigenValues );
Console.WriteLine( "Left eigenvectors = " +
  decomp.LeftEigenVectors );
Console.WriteLine( "Right eigenvectors = " + 
  decomp.RightEigenVectors );

Code Example – VB eigenvalue decomposition

Dim Decomp As New FloatEigDecomp(A)
Console.WriteLine("Eigenvalues = {0}", Decomp.EigenValues)
Console.WriteLine("Left eigenvectors = {0}", 
  Decomp.LeftEigenVectors)
Console.WriteLine("Right eigenvectors = {0}", 
  Decomp.RightEigenVectors)

Retrieving Information About the Original Matrix

Read-only properties are also provided for retrieving information about the 
original matrix A:

 Rows gets the number of rows.

 Cols gets the number of columns. 

Reusing Eigenvalue Decompositions

An existing eigenvalue object can be reused with another matrix using the 
Factor() method:

Code Example – C# eigenvalue decomposition

var eig = new FloatSymEigDecomp( A );
if ( eig.IsGood )
{
  // Do something here...
}

232   NMath User’s Guide



eig.Factor( B );
if ( eig.IsGood )
{
  // Do something here...
}

Code Example – VB eigenvalue decomposition

Dim Eig As New FloatSymEigDecomp(A)
If Eig.IsGood Then
  ' Do something here...
End If

Eig.Factor(B)
If Eig.IsGood Then
  ' Do something here...
End If

23.3 Using the Eigenvalue Server Classes

The NMath eigenvalue server classes construct instances of the eigenvalue classes 
(Section 23.2), allowing you greater control over how the eigenvalue 
decomposition is performed. Servers can be configured to compute eigenvalues 
only, or both eigenvalues and eigenvectors. In addition, servers can be configured 
to compute only the eigenvalues in a given range. A tolerance for the convergence 
of the algorithm may also be specified.

Constructing Eigenvalue Servers

Instances of the eigenvalue server classes are constructed using a default 
constructor, then configured as desired. For example, this code creates a default 
DoubleSymEigDecompServer:

Code Example – C# eigenvalue decomposition

var server = new DoubleSymEigDecompServer();

Code Example – VB eigenvalue decomposition

Dim Server As New DoubleSymEigDecompServer()

Configuring Eigenvalue Servers

All eigenvalue server classes provide properties and member functions for 
configuring the server after construction:
   Chapter 23.   EigenValue Problems 233



 ComputeRightVectors gets and sets a boolean value indicating whether or 
not right eigenvectors should be computed (true by default).

 ComputeLeftVectors gets and sets a boolean value indicating whether or 
not left eigenvectors should be computed (true by default).

 ComputeAllEigenValues() configures a server to compute all 
eigenvalues.

 ComputeEigenValueRange() configures a server to compute only the 
eigenvalues in a specified range. Only eigenvalues that are greater than the 
given lower bound and less than or equal to the given upper bound are 
computed.

 Balance gets and sets the balance option, using a value from the 
BalanceOption enumeration: None, Permute, Scale, Both. Balancing a 
matrix means permuting the rows and columns to make the matrix more 
nearly upper triangular, and applying a diagonal similarity transformation 
to make the rows and columns closer in norm and the condition numbers 
of the eigenvalues and eigenvectors smaller.

 AbsTolerance gets and sets the absolute tolerance for each eigenvalue. An 
approximate eigenvalue is accepted as converged when it lies in an interval 
[a,b] of width less than or equal to AbsTolerance + epsilon * 
max(abs(a),abs(b)), where epsilon is machine precision. If 
AbsTolerance is set less than or equal to zero then epsilon * ||T|| is 
used, where T is the tridiagonal matrix obtained by reducing the 
decomposed matrix to tridiagonal form, and ||T|| is the one-norm of T.

NOTE—Eigenvalue ranges and tolerance are only provided for symmetric and Hermi-
tian eigenvalue server classes. For general matrices, eigenvalues may be complex, and 
hence non-orderable.

For example, this code creates a default DoubleSymEigDecompServer, then 
configures the object not to compute eigenvectors, and only to compute 
eigenvalues within a specified range:

Code Example – C# eigenvalue decomposition

var server = new FloatSymEigDecompServer();
server.ComputeLeftVectors = false;
server.ComputeRightVectors = false;
server.ComputeEigenValueRange( 0, 3 );

Code Example – VB eigenvalue decomposition

Dim Server As New FloatSymEigDecompServer()
Server.ComputeLeftVectors = False
Server.ComputeRightVectors = False
Server.ComputeEigenValueRange(0, 3)
234   NMath User’s Guide



Creating Eigenvalue Objects from a Server

Eigenvalue server objects are used to create instances of the associated eigenvalue 
class, using the Factor() method. For instance, this code creates a 
FloatEigDecomp object from a configured FloatEigDecompServer:

Code Example – C# eigenvalue decomposition

var eigServer = new FloatEigDecompServer(); 
eigServer.ComputeLeftVectors = false;
eigServer.ComputeRightVectors = false;
eigServer.Balance = BalanceOption.Permute;
FloatEigDecomp decomp = eigServer.Factor( A );

Code Example – VB eigenvalue decomposition

Dim EigServer As New FloatEigDecompServer()
eigServer.ComputeLeftVectors = False
eigServer.ComputeRightVectors = False
eigServer.Balance = BalanceOption.Permute
Dim Decomp = EigServer.Factor(A)
   Chapter 23.   EigenValue Problems 235



236   NMath User’s Guide



PART IV - ANALYSIS
      241



242   NMath User’s Guide



CHAPTER 24.  
THE ANALYSIS NAMESPACE

The CenterSpace.NMath.Core namespace provides the following analytical 
classes:

 Classes for minimizing univariate functions using golden section search 
and Brent’s method.

 Classes for minimizing multivariate functions using the downhill simplex 
method, Powell’s direction set method, the conjugate gradient method, and 
the variable metric (or quasi-Newton) method.

 Simulated annealing.

 Classes for linear programming (LP), non-linear programming (NLP), and 
quadratic programming (QP) using the Microsoft Solver Foundation.

 Least squares polynomial fitting.

 Nonlinear least squares minimization, curve fitting, and surface fitting.

 Classes for finding roots of univariate functions using the secant method, 
Ridders’ method, fzero method, and the Newton-Raphson method.

 Numerical methods for double integration of functions of two variables.

 Nonlinear least squares minimization using the Trust-Region method, a 
variant of the Levenberg-Marquardt method.

 Curve and surface fitting by nonlinear least squares.

 Solutions to first order initial value differential equations by the Runge-
Kutta method 

To avoid using fully qualified names, preface your code with an appropriate 
namespace statement:

Code Example – C#

using CenterSpace.NMath.Core;

Code Example – VB

Imports CenterSpace.NMath.Core
   Chapter 24.   The Analysis Namespace 237



238   NMath User’s Guide



CHAPTER 25.  
ENCAPSULATING MULTIVARIATE 
FUNCTIONS

The CenterSpace.NMath.Core namespace includes classes for encapsulating 
univariate functions, including base class OneVariableFunction, and derived 
types Polynomial and TabulatedFunction (Chapter 13). In addition, the 
MultiVariableFunction class encapsulates an arbitrary function of one or more 
variables, and works with other NMath classes to approximate integrals and 
minima.

This chapter describes how to create and manipulate MultiVariableFunction 
function objects.

25.1 Creating Multivariate Functions 

A MultiVariableFunction is constructed from a Func<DoubleVector, double>, a 
delegate that takes a single DoubleVector parameter and returns a double. For 
example, suppose you wish to encapsulate this function:

Code Example – C# multivariate functions

public double MyFunction( DoubleVector v )
{
     return ( NMathFunctions.Sum( v * v ) );
}

Code Example – VB multivariate functions

Function MyFunction(V As DoubleVector) As Double
  Return (NMathFunctions.Sum(V * V))
End Function

First, create a delegate for the MyFunction() method:

Code Example – C# multivariate functions

var d = new Func<DoubleVector, double>( MyFunction );

Code Example – VB multivariate functions

Dim D As New Func(Of DoubleVector, Double)(AddressOf MyFunction)
   Chapter 25.   Encapsulating Multivariate Functions 239



Then construct a MultiVariableFunction encapsulating the delegate:

Code Example – C# multivariate functions

var f = new MultiVariableFunction( d );

Code Example – VB multivariate functions

Dim F As New MultiVariableFunction(D)

A Func<DoubleVector, double> is also implicitly converted to a 
MultiVariableFunction. Thus:

Code Example – C# multivariate functions

MultiVariableFunction f = d;

Code Example – VB multivariate functions

Dim F = D

Class MultiVariableFunction provides a Function property that gets the 
encapsulated function delegate after construction.

25.2 Evaluating Multivariate Functions

The Evaluate() method on MultiVariableFunction evaluates a function at a 
given point. For instance, if f is a MultiVariableFunction of four variables:

Code Example – C# multivariate functions

var point = new DoubleVector( 0.0, 1.0, 0.0, -1.0 );
double z = f.Evaluate( point );

Code Example – VB multivariate functions

Dim Point As New DoubleVector(0.0, 1.0, 0.0, -1.0)
Dim Z As Double = F.Evaluate(Point)

25.3 Algebraic Manipulation of Multivariate 
Functions

NMath provides overloaded arithmetic operators for multivariate functions with 
their conventional meanings for those .NET languages that support them, and 
equivalent named methods for those that do not. Table 20 lists the equivalent 
operators and methods.
240   NMath User’s Guide



All binary operators and equivalent named methods work either with two 
functions, or with a function and a scalar. For example, this C# code uses the 
overloaded operators:

Code Example – C# multivariate functions

MultiVariableFunction g = f/2;
MultiVariableFunction sum = f + g;
MultiVariableFunction neg = -f;

This Visual Basic code uses the equivalent named methods:

Code Example – VB multivariate functions

Dim G = MultiVariableFunction.Divide(F, 2)
Dim Sum = MultiVariableFunction.Add(F, G)
Dim Neg = MultiVariableFunction.Negate(F)

Table 20 – Arithmetic operators

Operator Equivalent Named Method

+ Add()

- Subtract()

* Multiply()

/ Divide()

Unary - Negate()
   Chapter 25.   Encapsulating Multivariate Functions 241



242   NMath User’s Guide



CHAPTER 26.  
MINIMIZING UNIVARIATE FUNCTIONS

NMath provides classes for minimizing univariate functions using golden section 
search and Brent’s method. Minimization is the process of finding the value of the 
variable x within some interval where f(x) takes on a minimum value. (To 
maximize a function f, simply minimize -f.) 

All NMath minimization classes derive from the abstract base class 
MinimizerBase, which provides Tolerance and MaxIterations properties. In 
general, minimization stops when either the decrease in function value is less than 
the tolerance, or the maximum number of iterations is reached. Setting the error 
tolerance to less than zero ensures that the maximum number of iterations is 
always reached. After minimization, the following properties on MinimizerBase 
can be useful for gathering more information about the minimum just computed:

 Error gets the error associated with the mimimum just computed.

 ToleranceMet returns a boolean value indicating whether the minimum 
just computed stopped because the error tolerance was reached. 

 MaxIterationsMet returns a boolean value indicating whether the 
minimum just computed stopped because the maximum number of 
iterations was reached.

The univariate minimization classes also implement one of the following 
interfaces:

 Classes that implement the IOneVariableMinimizer interface require only 
function evaluations to minimize a function.

 Classes that implement the IOneVariableDMinimizer interface also 
require evaluations of the derivative of a function.

This chapter describes how to use the univariate minimizer classes.

26.1 Bracketing a Minimum

Minima of univariate functions must be bracketed before they can be isolated. A 
bracket is a triplet of points, xlower < xinterior < xupper, such that f(xinterior) < f(xlower) 
and f(xinterior) < f(xupper). These conditions ensure that there is some local minimum 
in the interval (xlower,xupper,).
   Chapter 26.   Minimizing Univariate Functions 243



If you know in advance that a local minimum falls within a given interval, you can 
simply call the NMath minimization routines using that interval. Before beginning 
minimization, the routine will search for an interior point that satisfies the 
bracketing condition.

Otherwise, construct a Bracket object. Beginning with a pair of points, Bracket 
searches in the downhill direction for a new pair of points that bracket a minimum 
of a function. For example, if function is a OneVariableFunction:

Code Example – C# minimization

var bracket = new Bracket( function, 0, 1 );

Code Example – VB minimization

Dim Bracket As New Bracket( MyFunction, 0, 1 )

Once constructed, a Bracket object provides the following properties:

 Function gets the function whose minimum is bracketed.

 Lower gets a lower bound on a minimum of the function.

 Upper gets an upper bound on a minimum of the function.

 Interior gets a point between the lower and upper bound such that 
xlower < xinterior < xupper, f(xinterior) < f(xlower), and f(xinterior) < f(xupper)

 FLower gets the function evaluated at the lower bound.

 FUpper gets the function evaluated at the upper bound.

 FInterior gets the function evaluated at the interior point.

26.2 Minimizing Functions Without Calculating 
the Derivative

NMath provides two classes that implement the IOneVariableMinimizer 
interface, and minimize a OneVariableFunction using only function evaluations:

 Class GoldenMinimizer performs a golden section search for a minimum of 
a function, by successively narrowing an interval know to contain a local 
minimum. The golden section search method is linearly convergent.

 Class BrentMinimizer uses Brent's Method to minimize a function. Brent's 
Method combines golden section search with parabolic interpolation. 
Parabolic interpolation fits a parabola through the current set of points, 
then uses the parabola to estimate the function's minimum. The faster 
244   NMath User’s Guide



parabolic interpolation is used wherever possible, but in steps where the 
projected minimum falls outside the interval, or when successive steps are 
becoming larger, Brent's Method resorts back to the slower golden section 
search. Brent's Method is quadratically convergent.

Instances of GoldenMinimizer and BrentMinimizer are constructed by specifying 
an error tolerance and a maximum number of iterations, or by accepting the 
defaults for these values. For example, this code constructs a GoldenMinimizer 
using the default tolerance and a maximum of 50 iterations:

Code Example – C# minimization

int maxIter = 50;
var minimizer = new GoldenMinimizer( maxIter );

Code Example – VB minimization

Dim MaxIter As Integer = 50
Dim Minimizer As New GoldenMinimizer(MaxIter)

Instances of GoldenMinimizer and BrentMinimizer provide Minimize() 
methods for minimizing a given function within a given interval. Overloads of 
Minimize() accept a bounding Interval, a Bracket, or a triplet of points satisfying 
the bracketing conditions (Section 26.1). For example, the function

has a minimum at 1.0. To compute the minimum, first encapsulate the function:

Code Example – C# minimization

public static double MyFunction( double x )
{
  return Math.Pow( x - 1, 4 );
}

var f = new OneVariableFunction(
  new Func<double, double>( MyFunction ) );

Code Example – VB minimization

Public Shared Function MyFunction(X As Double) As Double
  Return Math.Pow(X - 1, 4)
End Function

Dim F As New OneVariableFunction(
  New Func(Of Double, Double)(AddressOf MyFunction))

This code finds a minimum of f in the interval (0,2) using golden section search:

Code Example – C# minimization

var minimizer = new GoldenMinimizer();

y x 1– 4=
   Chapter 26.   Minimizing Univariate Functions 245



int lower = 0;
int upper = 2;
double min = minimizer.Minimize( f, lower, upper );

Code Example – VB minimization

Dim Minimizer As New GoldenMinimizer()
Dim Lower As Integer = 0
Dim Upper As Integer = 2
Dim Min As Double = Minimizer.Minimize(F, Lower, Upper)

This code first constructs a Bracket starting from (0,10), then finds a minimum of 
f using Brent’s Method:

Code Example – C# minimization

double tol = 1e-9;
int maxIter = 25;
var minimizer = new BrentMinimizer( tol, maxIter );
var bracket = new Bracket( f, 0, 10 );
double min = minimizer.Minimize( bracket );

Code Example – VB minimization

Dim Tol As Double = "1e-9"
Dim MaxIter As Integer = 25
Dim Minimizer As New BrentMinimizer(Tol, MaxIter)
Dim Bracket As New Bracket(F, 0, 10)
Dim Min As Double = Minimizer.Minimize(Bracket)

26.3 Minimizing Derivable Functions

Class DBrentMinimizer implements the IOneVariableDMinimizer interface and 
minimizes a univariate function using Brent's Method in combination with 
evaluations of the first derivative. As described in Section 26.2, Brent's Method uses 
parabolic interpolation to fit a parabola through the current bracketing triplet, then 
uses the parabola to estimate the function's minimum. Class DBrentMinimizer 
uses the sign of the derivative at the central point of the bracketing triplet to decide 
which region should be used for the next test point.

Like GoldenMinimizer and BrentMinimizer (Section 26.2), instances of 
DBrentMinimizer are constructed by specifying an error tolerance and a 
maximum number of iterations, or by accepting the defaults for these values. This 
code constructs a DBrentMinimizer using the default error tolerance and 
maximum number of iterations:

Code Example – C# minimization

var minimizer = new DBrentMinimizer();
246   NMath User’s Guide



Code Example – VB minimization

Dim Minimizer As New DBrentMinimizer()

This code uses an error tolerance of 10-4 and a maximum of 50 iterations:

Code Example – C# minimization

double tol = 1e-4
int maxIter = 50;
var minimizer = new DBrentMinimizer( tol, maxIter );

Code Example – VB minimization

Dim Tol As Double = 0.0001
Dim MaxIter As Integer = 50
Dim Minimizer As New DBrentMinimizer(Tol, MaxIter)

Once you have constructed a DBrentMinimizer instance, you can use the 
Minimize() method to minimize a given function within a given interval. 
Overloads of Minimize() accept a bounding Interval, a Bracket, or a triplet of 
points satisfying the bracketing conditions (Section 26.1). Because 
DBrentMinimizer uses evaluations of the first derivative of the function, you 
must also supply a OneVariableFunction encapsulating the derivative. For 
example, the function:

has a minimum at 5.0. To compute the minimum, first encapsulate the function 
and its derivative:

Code Example – C# minimization

public static double MyFunction( double x )
{
  return ( ( x - 5 ) * ( x - 5 ) );
}

public static double MyFunctionPrime( double x )
{
  return ( 2 * x ) - 10;
}

var f = new OneVariableFunction(
  new Func<double, double>( MyFunction ) );
var df = new OneVariableFunction(
  new Func<double, double>( MyFunctionPrime ) );

Code Example – VB minimization

Public Shared Function MyFunction(X As Double) As Double
  Return ((x - 5) * (x - 5))
End Function

y x 5– 2=
   Chapter 26.   Minimizing Univariate Functions 247



Public Shared Function MyFunctionPrime(X As Double) As Double
  Return (2 * X) - 10
End Function
  
Dim F As New OneVariableFunction(
  New Func(Of Double, Double)(AddressOf MyFunction))
Dim DF As New OneVariableFunction(
  New Func(Of Double, Double)(AddressOf MyFunctionPrime))

This code then constructs a Bracket starting from (1,2), and computes the 
minimum:

Code Example – C# minimization

var minimizer = new DBrentMinimizer();
var bracket = new Bracket( f, 1, 2 );
double min = minimizer.Minimize( bracket, df );

Code Example – VB minimization

Dim Minimizer As New DBrentMinimizer()
Dim Bracket As New Bracket(F, 1, 2)
Dim Min As Double = Minimizer.Minimize(Bracket, DF)
248   NMath User’s Guide



CHAPTER 27.  
MINIMIZING MULTIVARIATE FUNCTIONS 

NMath provides classes for minimizing multivariate functions using the downhill 
simplex method, Powell’s direction set method, the conjugate gradient method, 
and the variable metric (or quasi-Newton) method.

Like the univariate minimization classes described in Chapter 26, the multivariate 
minimization classes derive from the abstract base class MinimizerBase, which 
provides Tolerance and MaxIterations properties. In general, minimization 
stops when either the decrease in function value is less than the tolerance, or the 
maximum number of iterations is reached.

The multivariate minimization classes also implement one of the following 
interfaces:

 Classes that implement the IMultiVariableMinimizer interface require 
only function evaluations to minimize a function.

 Classes that implement the IMultiVariableDMinimizer interface also 
require evaluations of the derivative of a function.

This chapter describes how to use the multivariate minimizer classes.

27.1 Minimizing Functions Without Calculating 
the Derivative

NMath provides two classes that implement the IMultiVariableMinimizer 
interface, and minimize a MultiVariableFunction using only function evaluations 
(derivative calculations are not required):

 Class DownhillSimplexMinimizer minimizes a multivariate function 
using the downhill simplex method of Nelder and Mead.3 A simplex in 
n-dimensions consists of n+1 distinct vertices. The method involves 
moving the simplex downhill, or if that is not possible, shrinking its size. 
The method is not highly efficient, and is appropriate only for small 
numbers of variables (usually fewer than 6), but is very robust. Powell's 
Method is faster in most applications (see below).

3J. A. Nelder and R. Mead (1965), "A Simplex Method for Function Minimization," Computer Journal, 
Vol. 7, p. 308-313.
   Chapter 27.   Minimizing Multivariate Functions 249



 Class PowellMinimizer minimizes a multivariate function using Powell's 
Method. Powell's Method is a member of the family of direction set 
optimization methods, each of which is based on a series of one-
dimensional line minimizations. The methods differ in how they choose the 
next dimension at each stage from among a current set of candidates. 
Powell's Method begins with a set of N linearly independent, mutually 
conjugate directions, and at each stage discards the direction in which the 
function made its largest decrease, to avoid a buildup of linear dependence. 
Brent’s Method (Section 26.2) is used for the successive line minimizations.

Instances of DownhillSimplexMinimizer and PowellMinimizer are constructed 
by specifying an error tolerance and a maximum number of iterations, or by 
accepting the defaults for these values. For example, this code constructs a 
PowellMinimizer using the default tolerance and a maximum of 20 iterations:

Code Example – C# minimization

int maxIter = 20;
var minimizer = new PowellMinimizer( maxIter );

Code Example – VB minimization

Dim MaxIter As Integer = 20
Dim Minimizer As New PowellMinimizer(MaxIter)

Class DownhillSimplexMinimizer and PowellMinimizer implement the 
IMultiVariableMinimizer interface, which provides a single Minimize() method 
that takes a MultiVariableFunction to minimize, and a starting point. For instance, 
if f is an encapsulated multivariate function (Chapter 25) of three variables, this 
code minimizes the function using the downhill simplex method, starting at the 
origin:

Code Example – C# minimization

var minimizer = new DownhillSimplexMinimizer();
var start = new DoubleVector( 0.0, 0.0, 0.0 );
DoubleVector min = minimizer.Minimize( f, start );

Code Example – VB minimization

Dim Minimizer As New DownhillSimplexMinimizer()
Dim Start As New DoubleVector(0.0, 0.0, 0.0)
Dim Min As DoubleVector = Minimizer.Minimize(F, Start)

Both DownhillSimplexMinimizer and PowellMinimizer provide additional 
overloads of Minimize() that allow you more control over the initial conditions. 
The downhill simplex method, for example, begins with an initial simplex 
consisting of n+1 distinct vertices. If you provide only a starting point, as 
illustrated above, a starting simplex is constructed by adding 1.0 in each 
dimension. For example, in two dimensions the simplex is a triangle. If the starting 
point is (x0, x1), the remaining vertices of the starting simplex will be (x0+1, x1) and 
250   NMath User’s Guide



(x0, x1+1). Overloads of the Minimize() method allow you to specify the amount 
added in each dimension from the starting point when constructing the initial 
simplex, or simply to specify the initial simplex itself.

Similarly, Powell’s Method begins with an initial direction set, a set of N linearly 
independent, mutually conjugate directions. An overload of Minimize() enables 
you to specify the initial direction set. If you provide only a starting point to the 
Minimize() method, as illustrated above, the starting direction set is simply the 
unit vectors.

27.2 Minimizing Derivable Functions

NMath provides two classes that implement the IMultiVariableDMinimizer 
interface, and minimize a MultiVariableFunction using function evaluations and 
derivative calculations:

 Class ConjugateGradientMinimizer minimizes a multivariate function 
using the Polak-Ribiere variant of the Fletcher-Reeves conjugate gradient 
method. Gradients are calculated using the partial derivatives, then chosen 
based on a direction that is conjugate to the old gradient and, insofar as 
possible, to all previous directions traversed.

 Class VariableMetricMinimizer minimizes a multivariate function using 
the Broyden-Fletcher-Goldfarb-Shanno variable metric (or quasi-Newton) 
method. Variable metric methods are very similar to conjugate gradient 
methods—both calculate gradients using the partial derivatives. Storage is 
less efficient (order N2 storage, versus order a few times N), but since 
variable metric methods predate conjugate gradient methods, they are still 
widely used.

Like all NMath minimizers, instances of ConjugateGradientMinimizer and 
VariableMetricMinimizer are constructed by specifying an error tolerance and a 
maximum number of iterations, or by accepting the defaults for these values. For 
example, this code constructs a VariableMetricMinimizer using a tolerance or 10-
5 and a maximum of 20 iterations:

Code Example – C# minimization

double tol = 1e-5;
int maxIter = 20;
VariableMetricMinimizer minimizer =
  new VariableMetricMinimizer( tol, maxIter );

Code Example – VB minimization

Dim Tol As Double = "1e-5"
Dim MaxIter As Integer = 20
   Chapter 27.   Minimizing Multivariate Functions 251



Dim Minimizer As New VariableMetricMinimizer(Tol, MaxIter)

Class ConjugateGradientMinimizer and VariableMetricMinimizer implement 
the IMultiVariableDMinimizer interface, which provides a single Minimize() 
method with the following signature:

Code Example – C# minimization

DoubleVector Minimize( MultiVariableFunction f, 
                       MultiVariableFunction[] df,
                       DoubleVector x );

Code Example – VB minimization

Minimize(F As MultiVariableFunction,
         DF As MultiVariableFunction(),
         X as DoubleVector) As DoubleVector

where f is the function to minimize, df is an array of partial derivatives, and x is 
the start point.

For instance, given the following function and partial derivatives:

Code Example – C# minimization

protected static double MyFunction( DoubleVector v )
{
  return ( ( v[0] - 5.0 ) * ( v[0] - 5.0 ) ) +
         ( ( v[1] + 3.0 ) * ( v[1] + 3.0 ) );
}

protected static double MyFunctionDx( DoubleVector v )
{
  return ( 2 * v[0] ) - 10;
}

protected static double MyFunctionDy( DoubleVector v )
{
  return ( 2 * v[1] ) + 6;
}

Code Example – VB minimization

Protected Shared Function MyFunction(V As DoubleVector) As Double
  Return ((V(0) - 5.0) * (V(0) - 5.0)) +
         ((V(1) + 3.0) * (V(1) + 3.0))
End Function

Protected Shared Function Dx(V As DoubleVector) As Double
  Return (2 * V(0)) - 10
End Function

Protected Shared Function Dy(V As DoubleVector) As Double
252   NMath User’s Guide



  Return (2 * V(1)) + 6
End Function

This code computes the minimum using a ConjugateGradientMinimizer, starting 
at the origin:

Code Example – C# minimization

var function = new MultiVariableFunction(
    new Func<DoubleVector, double>( MyFunction ) );

var partialx = new MultiVariableFunction(
  new Func<DoubleVector, double>( MyFunctionDx ) );
var partialy = new MultiVariableFunction(
  new Func<DoubleVector, double>( MyFunctionDy ) );
var df = new MultiVariableFunction[] { partialx, partialy };

var minimizer =  new ConjugateGradientMinimizer();
var start = new DoubleVector( 2, 0 );
DoubleVector min = minimizer.Minimize( f, df, start );

Code Example – VB minimization

Dim MultiFunction As New MultiVariableFunction(
  New Func(Of DoubleVector, Double)(AddressOf MyFunction))
Dim PartialX As New MultiVariableFunction(
  New Func(Of DoubleVector, Double)(AddressOf Dx))
Dim PartialY As New MultiVariableFunction(
  New Func(Of DoubleVector, Double)(AddressOf Dy))

Dim Minimizer As New ConjugateGradientMinimizer()
Dim Start As New DoubleVector(2, 0)
Dim Min As DoubleVector = Minimizer.Minimize(F, DF, Start)
   Chapter 27.   Minimizing Multivariate Functions 253



254   NMath User’s Guide



CHAPTER 28.  
SIMULATED ANNEALING 

In NMath, class AnnealingMinimizer minimizes a multivariable function using 
the simulated annealing method.

Simulated annealing is based on an analogy from materials science. To produce a 
solid in a low energy state, such as a perfect crystal, a material is often first heated 
to a high temperature, then gradually cooled.

In the computational analogy of this method, a function is iteratively minimized 
with an added random temperature term. The temperature is gradually decreased 
according to an annealing schedule, as more optimizations are applied, increasing 
the likelihood of avoiding entrapment in local minima, and of finding the global 
minimum of the function.

This chapter describes how to use class AnnealingMinimizer.

28.1 Temperature

Temperature values are simply scalars used at each iteration of the minimization to 
introduce noise into the process. Each search movement is jittered +/- T ln(r), 
where r is a random deviate between 0 and 1.

Temperatures that are too low, or that drop too quickly, increase the likelihood of 
getting caught in a local minimum. Temperatures that are too high simply cause 
minimization to jump randomly around the search space without settling into a 
solution. Annealing schedules must therefore be chosen carefully. Unfortunately, 
this is something of a trial-and-error process. What is an appropriate regime will 
be entirely dependent on the characteristics of the function being minimized, 
which may not be well understood in advance.

28.2 Annealing Schedules

In simulated annealing, the annealing schedule governs the choice of initial 
temperature, how many iterations are performed at each temperature, and how 
much the temperature is decremented at each step as cooling proceeds.
   Chapter 28.   Simulated Annealing 255



For example, the annealing schedule shown in Table 21 has four steps.

Table 21 – A sample annealing schedule

In this case, the temperature decays linearly from 100 to 0, and the same number of 
iterations are performed at each step.

NOTE—Annealing schedules must end with a temperature of zero. Otherwise, they 
never converge on a minimum.

In NMath, AnnealingScheduleBase is the abstract base class for classes that 
define annealing schedules. Two concrete implementations are provided. 

Linear Annealing Schedules

Class LinearAnnealingSchedule encapsulates the linear decay of a starting 
temperature to zero. Each step has a specified number of iterations. For example, 
this code creates the annealing schedule shown in Table 21:

Code Example – C# simulated annealing

int steps = 4;
int iterationsPerStep = 20
double startTemp = 100.0;

LinearAnnealingSchedule schedule = new LinearAnnealingSchedule( 
  steps, iterationsPerStep, startTemp );

Code Example – VB simulated annealing

Dim Steps = 4
Dim IterationsPerStep = 20
Dim StartTime As Double = 100.0

Dim Schedule As New LinearAnnealingSchedule(Steps, 
  IterationsPerStep, StartTemp)

You may optionally also provide a non-default error tolerance. At each annealing 
step, iteration stops if the estimated error is less than the tolerance, but typically 
this only occurs during the final step, when the temperature is zero.

Step Temperature Iterations

1 100 20

2 75 20

3 50 20

4 0 20
256   NMath User’s Guide



Once constructed, a LinearAnnealingSchedule instance provides the following 
properties:

 Steps gets the number of steps in the schedule.

 Iterations gets and sets the number of iterations per step.

 TotalIterations gets and sets the total number of iterations in this 
schedule. When set, the number of iterations per step is scaled 
appropriately.

 StartingTemperature gets and sets the starting temperature.

 Tolerance gets and sets the error tolerance used in computing minima 
estimates.

Custom Annealing Schedules

For more control over the temperature decay, you can use class 
CustomAnnealingSchedule. Instances of CustomAnnealingSchedule are 
constructed from an array containing the number of iterations for each step, and 
the temperature for each step.

For example:

Code Example – C# simulated annealing

var iterations = new int[] { 50, 30, 20, 20 };
var temps = new double[] { 75.3, 20.0, 10.5, 0.0 };

var schedule = 
  new CustomAnnealingSchedule( iterations, temps );

Code Example – VB simulated annealing

Dim Iterations() As Integer = {50, 30, 20, 20}
Dim Temps() As Double = {75.3, 20.0, 10.5, 0.0}

Dim Schedule As New CustomAnnealingSchedule(Iterations, Temps)

NOTE—An InvalidArgumentException is raised if the final temperature in a custom 
annealing schedule is not zero. Without a final temperature of zero, the system never 
settles into a minimum.

You may optionally also provide a non-default error tolerance. At each annealing 
step, iteration stops if the estimated error is less than the tolerance, but typically 
this only occurs during the final step, when the temperature is zero.
   Chapter 28.   Simulated Annealing 257



Once constructed, a CustomAnnealingSchedule instance provides the following 
properties:

 Steps gets the number of steps in the schedule.

 Iterations gets and sets the arrray of iterations for each step. 

 TotalIterations gets and sets the total number of iterations in this 
schedule. When set, the number of iterations per step is scaled 
appropriately.

 Temperatures gets and sets the vector of temperatures for each step.

 Tolerance gets and sets the error tolerance used in computing minima 
estimates.

28.3 Minimizing Functions by Simulated 
Annealing

Instances of AnnealingMinimizer are constructed from an annealing schedule 
(Section 28.2). For instance:

Code Example – C# simulated annealing

var schedule = new LinearAnnealingSchedule( 5, 25, 100.0 );;
var minimizer = new AnnealingMinimizer( schedule );

Code Example – VB simulated annealing

Dim Schedule As New LinearAnnealingSchedule(5, 25, 100.0)
Dim Minimizer As New AnnealingMinimizer(Schedule)

After construction, you can use the Schedule property to get and set the annealing 
schedule associated with an AnnealingMinimizer.

The RandomNumberGenerator property gets and sets the random number 
generator associated with this minimizer. The random number generator is used 
for making temperature-dependent, random steps in the search space as part of 
the annealing process. The random number generator is initially set at construction 
time to the value of static property DefaultRandomNumberGenerator, which 
defaults to an instance of RandGenUniform.

Class AnnealingMinimizer implements the IMultiVariableMinimizer interface, 
which provides a single Minimize() method that takes a MultiVariableFunction 
to minimize, and a starting point. For instance, if f is an encapsulated 
multivariable function (Chapter 25) of five variables, this code minimizes the 
function using the downhill simplex method, starting at (0.2,0.2,-.2,0.0,0.0):
258   NMath User’s Guide



Code Example – C# simulated annealing

var minimizer = new AnnealingMinimizer( schedule );
var start = new DoubleVector( 0.2, 0.2, -0.2, 0.0, 0.0 );
DoubleVector min = minimizer.Minimize( f, start );

Code Example – VB simulated annealing

Dim Minimizer As New AnnealingMinimizer(Schedule)
Dim Start As New DoubleVector(0.2, 0.2, -0.2, 0.0, 0.0)
Dim Min As DoubleVector = Minimizer.Minimize(F, Start)

After minimization, the following properties on AnnealingMinimizer can be 
useful for gathering more information about the minimum just computed:

 Error gets the error associated with the mimimum just computed.

 ToleranceMet returns a boolean value indicating whether the minimum 
just computed stopped because the error tolerance was reached. (At each 
annealing step, iteration stops if the estimated error is less than the 
tolerance, but typically this only occurs during the final step, when the 
temperature is zero.)

For more information on the annealing process just completed, access the 
annealing history (Section 28.4).

28.4 Annealing History

For annealing to successfully locate the global minimum of a function, an 
appropriate annealing schedule must be chosen, but unfortunately this is 
something of a trial-and-error process. An appropriate regime is entirely 
dependent on the characteristics of the function being minimized, which may not 
be well understood in advance.

To help you in this process, class AnnealingMinimizer can be configured to keep a 
history of the annealing process. There is a cost in memory and execution to record 
this information, so it is not enabled by default. To record the annealing history, set 
the KeepHistory property to true. Thus:

Code Example – C# simulated annealing

var minimizer = new AnnealingMinimizer( schedule );
minimizer.KeepHistory = true;

Code Example – VB simulated annealing

Dim Minimizer As New AnnealingMinimizer(Schedule)
Minimizer.KeepHistory = True
   Chapter 28.   Simulated Annealing 259



AnnealingMinimizer performs a minimization at each step in an annealing 
schedule. When history is turned on, the results of each step are recorded in an 
AnnealingHistory object. This data may be useful when adjusting the schedule for 
optimal performance. For example, this code prints out the complete history after a 
minimization:

Code Example – C# simulated annealing

DoubleVector min = minimizer.Minimize( f, startingPoint );
AnnealingHistory history = minimizer.AnnealingHistory;
Console.WriteLine( history );

Code Example – VB simulated annealing

Dim Min As DoubleVector = Minimizer.Minimize(F, StartingPoint)
Dim History As AnnealingHistory = Minimizer.AnnealingHistory
Console.WriteLine(History)

AnnealingHistory also provides a variety of properties for accessing specific 
information:

 Function gets the function that was minimized.

 MaximumIterations gets the number of maximum iterations at each step 
in the annealing history.

 Iterations gets the number of iterations actually performed at each step 
in the annealing history.

 Temperatures gets the temperatures at each step in the annealing history.

 Simplexes gets the starting simplexes at each step in the annealing history.

 MinimumPoints gets the minima computed at each step in the annealing 
history.

 MinimumValues gets the function evaluated at the minima computed at 
each step in the annealing history.

 Errors gets the errors at each step in the annealing history.

The inner class AnnealingHistory.Step encapsulates all of the data associated with 
a particular step in an AnnealingHistory. The AnnealingHistory.Steps property 
returns a IList of the steps in the annealing history:

Code Example – C# simulated annealing

AnnealingHistory history = minimizer.AnnealingHistory;
foreach( AnnealingHistory.Step step in history )
{
  Console.WriteLine( step );
}

260   NMath User’s Guide



Code Example – VB simulated annealing

Dim History As AnnealingHistory = Minimizer.AnnealingHistory

For Each AnnealingStep As AnnealingHistory.Step In History
  Console.WriteLine(AnnealingStep)
Next

The provided indexer can also be used to retrieve information about a particular 
step. For example, this code prints out a summary of the third step:

Code Example – C# simulated annealing

Console.WriteLine( history[3] );

Code Example – VB simulated annealing

Console.WriteLine(History(3))
   Chapter 28.   Simulated Annealing 261



262   NMath User’s Guide



CHAPTER 29.  
LINEAR PROGRAMMING 

A linear programming (LP) problem optimizes a linear objective function subject 
to a set of linear constraints, and optionally subject to a set of variable bounds. For 
example:

Maximize
Z = X1 + 4 X2 + 9 X3

Subject To
X1 + X2 <= 5
X1 + X3 >= 10
-X2 + X3 = 7

Bounds
0 <= X1 <= 4
0 <= X2 <= 1

In NMath, class LinearProgrammingProblem encapsulates an LP problem. 
MixedIntegerLinearProgrammingProblem encapsulates an LP problem which 
may contain integral or binary constraints.

Class PrimalSimplexSolverORTools solves linear programming problems using 
the primal simplex method. The class  DualSimplexSolverORTools uses the dual 
simplex method. The simplex method solves LP problems by constructing an 
initial solution at a vertex of a simplex, then walking along edges of the simplex to 
vertices with successively higher values of the objective function until the 
optimum is reached. These two classes use the Google OR Tools computational 
engine for solving both LP and MIP problems.

This chapter describes how to solve LP problems using NMath.

29.1 Encapsulating LP Problems

Class LinearProgrammingProblem encapsulates an LP problem. Instances are 
constructed from a vector of coefficients representing the objective function.

Code Example – C# linear programming

// z = x1 + 4*x2 + 9*x3
var coeff = new DoubleVector( "[1 4 9]" );
var problem = new LinearProgrammingProblem( coeff );
   Chapter 29.   Linear Programming 263



MixedIntegerLinearProgrammingProblem encapsulates an LP problem which 
may contain integer or binary constraints.

Adding Bounds and Constraints

LinearProgrammingProblem instances maintain a list of LinearContraint objects, 
accessible via the Constraints property. A linear constraint on a set of variables is a 
constraint upon a linear combination of those variables. LinearConstraint 
supports to two such constraints: equality constraints and lower bound 
constraints. That is, given variables x0, x1,..., xn and constants b, a0, a1,..., an, two 
types of constraints may be formed

a0*x0 + a1*x1 + . . . + an*xn = b

and

a0*x0 + a1*x1 + . . . + an*xn >= b

NOTE—Upper bound constraints are represented as negations of lower bound 
constraints.

Constraints may be added to a LinearProgrammingProblem by working directly 
with the Constraints list, or by using the AddConstraint() method.

LinearContraint instances are constructed from a vector of coefficients, a right-
hand side, and a constraint type from the ConstraintType enumeration.

Code Example – C# linear programming

// 0 <= x0 + 2*x1 + 2*x2
var coeff = new DoubleVector( 1.0, 2.0, 2.0 );
var constraint = new LinearConstraint( coeff, 0, 
  ConstraintType.GreaterThanOrEqualTo);
problem.AddConstraint( constraint );

A variety of convenience methods are also provided on 
LinearProgrammingProblem for adding constraints and variable bounds to an 
existing LP problem. These methods create the required LinearConstraint objects 
for you and add them to the Constraints list.

Code Example – C# linear programming

// 0 <= x0 + 2*x1 + 2*x2 <= 72
var coeff = new DoubleVector( 1.0, 2.0, 2.0 );
problem.AddConstraint( coeff, 0, 72 );

MixedIntegerLinearProgrammingProblem encapsulates an LP problem which 
may contain integer or binary constraints. For example, in this code the first 
variable is constrained to be integer valued.
264   NMath User’s Guide



Code Example – C# integer programming

problem.AddIntegralConstraint( 0 );

Here, the ith variable in the solution must be binary.

Code Example – C# binary programming

problem.AddBinaryConstraint( i );

A binary constraint restricts the variable to a value of zero or one.

Method GetIntegrality() gets the integral constraint state of the variable at the 
given index. IntegralVariableIndices returns the indices of variables with 
integral constraints.

29.2 Solving LP Problems

Class PrimalSimplexSolverORTools solves linear programming problems using 
the primal simplex method. DualSimplexSolverORTools uses the dual simplex 
method. The simplex method solves LP problems by constructing an initial 
solution at a vertex of a simplex, then walking along edges of the simplex to 
vertices with successively higher values of the objective function until the 
optimum is reached.

The Solve() method takes a LinearProgrammingProblem or 
MixedIntegerLinearProgrammingProblem and, optionally, a boolean variable to 
indicate if the objective is to be minimized (true) or maximized.

Code Example – C# linear programming

var solver = new PrimalSimplexSolverORTools();
solver.Solve( problem, true );

This code demonstrates using a solver parameter object.

Code Example – C# linear programming

var solver = new DualSimplexSolverORTools();
solver.Solve( problem, true );

It is important to check whether a finite solution was found, since your problem 
may be unbounded or infeasible. If a finite solution was found, you can access the 
solution using the OptimalX property. The OptimalObjectiveFunctionValue 
property gets the value of the objective function evaluated at the solution.

Code Example – C# linear programming

if ( solver.Result == 
   Chapter 29.   Linear Programming 265



PrimalSimplexSolverORTools.SolveResult.Optimal )
{
  Console.WriteLine( solver.OptimalX );
  Console.WriteLine( solver.OptimalObjectiveFunctionValue );
}

If the solver result is SolverResult.Optimal, then the solver.OptimalX will 
contain the optimal solution with all constraints satisfied. Otherwise the 
SolverResult object may indicate one of the following results: Feasible, 
Infeasible, Unbounded, Abnormal, or NotSolved. The specified optimal X 
vector is not valid if the solver indicates either an unbounded, abnormal or not 
solved flag. 
266   NMath User’s Guide



CHAPTER 30.  
NONLINEAR AND QUADRATIC 
PROGRAMMING 

NMath provides classes for solving both Nonlinear Programming (NLP) and 
Quadratic Programming (QP) problems.

This chapter describes how to use QP and NLP classes.

30.1 Objective and Constraint Function Classes

Nonlinear and quadratic programming problems seek to minimize an objective 
function, subject to a set of constraint functions. NMath provides classes for 
encapsulating these functions, used by both QP and NLP solvers.

Objective Function Classes

Two classes support objective functions: 

 Class DoubleFunctional is an abstract class which derives from 
DoubleMultiVariableFunction. It is a particular type of multivariable 
function, where the dimension of the range space is one. Deriving classes 
must implement the Evaluate() method, and may optionally provide a 
Gradient() method.

 Since it is sometimes convenient to specify the objective function and its 
corresponding gradient using delegates (including anonymous delegates 
and lambda expressions), class DoubleFunctionalDelegate derives from 
DoubleFunctional and provides an easy way to wrap delegates in a 
DoubleFunctional interface. Thus, all functions which take a 
DoubleFunctional argument are overloaded to take a delegate argument.

For example, this code sub-classes DoubleFunctional to encapsulate an objective 
function:

Code Example – C#

// f(x) = exp(x0)*(4*x0^2 + 2*x1^2 + 4*x0*x1 + 2*x1 + 1)

class MyObjectiveFunction : DoubleFunctional
{

   Chapter 30.   Nonlinear and Quadratic Programming 267



  // Constructor. Must initilialize the base class with the 
  // dimension of the domain--2 in this case.
  public ObjectiveFunction()
    : base( 2 )
  {}

  public override double Evaluate( DoubleVector x )
  {
    double x0 = x[0];
    double x1 = x[1];
    return Math.Exp( x0 ) * ( 4 * x0 * x0 + 2 * x1 * x1 + 4 * x0 * 
      x1 + 2 * x1 + 1 );
  }

  public override void Gradient( DoubleVector x,
    DoubleVector grad )
  {
    double x0 = x[0];
    double x1 = x[1];
    double ex0 = Math.Exp( x0 );
    grad[0] = ex0 * ( 4 * x0 * x0 + 2 * x1 * x1 + 4 * x0 * x1 + 2 * 
      x1 + 1 ) + ex0 * ( 8 * x0 + 4 * x1 );
    grad[1] = ex0 * ( 4 * x0 + 4 * x1 + 2 );
  }
}

Code Example – VB

' f(x) = exp(x0)*(4*x0^2 + 2*x1^2 + 4*x0*x1 + 2*x1 + 1)
Public Class MyObjectiveFunction
  Inherits DoubleFunctional

  ' Constructor. Must initilialize the base class with the 
  ' dimension of the domain--2 in this case.
  Public Sub New()
    MyBase.New(2)
  End Sub

  Public Overrides Function Evaluate(X As DoubleVector) As Double
    Dim X0 As Double = X(0)
    Dim X1 As Double = X(1)
    Return Math.Exp(X0) * (4 * X0 * X0 + 2 * X1 * X1 + 4 * X0 *
      X1 + 2 * X1 + 1)
  End Function

  Public Overrides Sub Gradient(X As DoubleVector, Grad As 
DoubleVector)
    Dim X0 = X(0)
    Dim X1 = X(1)
    Dim EX0 = Math.Exp(X0)
268   NMath User’s Guide



    Grad(0) = EX0 * (4 * X0 * X0 + 2 * X1 * X1 + 4 * X0 * X1 + 2 *
      X1 + 1) + EX0 * (8 * X0 + 4 * X1)
    Grad(1) = EX0 * (4 * X0 + 4 * X1 + 2)
  End Sub

End Class

This code uses a DoubleFunctionalDelegate: 

Code Example – C#

public double MyFunction( DoubleVector x )
{
  // f(x) = -x0 * x1 *x2
  return -x[0] * x[1] * x[2];
}

int xDim = 3;
Func<DoubleVector, double> functional = MyFunction;

var objective = new DoubleFunctionalDelegate( xDim, functional )

Code Example – VB

Public Function MyFunction(X As DoubleVector) As Double
  ' f(x) = -x0 * x1 *x2
  Return -X(0) * X(1) * X(2)
End Function

Dim XDim As Integer = 3
Dim Functional As New Func(Of DoubleVector, Double
  (AddressOf MyFunction)

Dim Objective As New DoubleFunctionalDelegate(XDim, Functional)

Constraint Function Classes

NMath provides two concrete constraint classes: LinearConstraint and 
NonlinearConstraint, which both derive from the abstract base class Constraint. 
Constraint objects contain a constraint function c(x) and a constraint type, either 
equality or inequality, specified using the ConstraintType enumeration.

NOTE—It is assumed that equality type constraints have their constraint function c(x) 
equal to zero, and inequality type constraints have their constraint function c(x) 
greater than or equal to zero. 

A linear constraint on a set of variables is a constraint upon a linear combination of 
those variables. LinearConstraint supports to two such constraints: equality 
constraints and lower bound constraints. That is, given variables x0, x1,..., xn and 
constants b, a0, a1,..., an, two types of constraints may be formed
   Chapter 30.   Nonlinear and Quadratic Programming 269



a0*x0 + a1*x1 + . . . + an*xn = b

and

a0*x0 + a1*x1 + . . . + an*xn >= b

Upper bound constraints are represented as negations of lower bound constraints.

Nonlinear constraints are of the form  (inequality constraint), or  
(equality constraint), where c(x) is a real-valued, smooth function of the vector 
variable. Constraints can also be constructed with a tolerance. Equality constraints 
are satisfied when ; inequality constraints are satisfied when 

.

In most cases, you will not need to create constraint objects directly. QP and NLP 
problem classes provide methods for adding constraints which construct the 
necessary constraint objects for you.

30.2 Nonlinear Programming

A general formulation of a nonlinear programming (NLP) problem is:

subject to

where the functions f and ci are all smooth (continuous derivative), real-valued 
functions on a subset of Rn, and E and I are finite sets of indices. Function f is called 
the objective function, and functions ci are called the constraint functions.

Encapsulating the Problem

In NMath, class NonlinearProgrammingProblem encapsulates an NLP problem. 
MixedIntegerNonlinearProgrammingProblem encapsulates an NLP which may 
contain integral or binary constraints.

Instances are constructed from an objective function to minimize, and optionally 
an IEnumerable of Constraint objects. Alternatively, constraints can be added 
post-construction using convenience methods.

c x  0 c x  0=

c x   tolerance
c x  tol–

min f x 
x R

n

ci x  0 i E=

ci x  0 i I
270   NMath User’s Guide



For example, if MyObjectiveFunction extends DoubleFunctional (see 
Section 30.1):

Code Example – C# nonlinear programming

DoubleFunctional objective = new MyObjectiveFunction();
var problem = new NonlinearProgrammingProblem( objective );

Code Example – VB nonlinear programming

Dim Objective As DoubleFunctional = New MyObjectiveFunction()
Dim Problem As New NonlinearProgrammingProblem(Objective)

Rather than sub-classing, you can also use a delegate to express the objective 
function, in which case you must also specify the dimension of the domain of the 
objective function. For instance:

Code Example – C# nonlinear programming

public double MyFunction( DoubleVector x )
{
  // min f(x) = -x0 * x1 * x2
  return -x[0] * x[1] * x[2];
}

int xDim = 3; 
Func<DoubleVector, double> objective = MyFunction;
var problem = new NonlinearProgrammingProblem( xDim, objective );

Code Example – VB nonlinear programming

Public Function MyFunction(X As DoubleVector)
  ' min f(x) = -x0 * x1 * x2
  Return -X(0) * X(1) * X(2)
End Function

Dim XDim As Integer = 3
Dim Objective As New Func(Of DoubleVector, Double)(MyFunction)
Dim Problem As New NonlinearProgrammingProblem(XDim, Objective)

This code specifies two constraints in the constructor:

Code Example – C# nonlinear programming

var constraints = new List<Constraint>();
var c1 = 
    new DoubleFunctionalDelegate( 2, new Func<DoubleVector, 
        double>(delegate(DoubleVector v) { return v[0]; }) );
var constraint1 = new NonlinearConstraint( 
    c1, ConstraintType.GreaterThanOrEqualTo )
constraints.Add( constraint1 );

var c2 =
   Chapter 30.   Nonlinear and Quadratic Programming 271



    new DoubleFunctionalDelegate(2, new Func<DoubleVector, 
        double>(delegate(DoubleVector v) { return v[1]; }));
var constraint2 = new NonlinearConstraint( 
    c2, ConstraintType.GreaterThanOrEqualTo )
constraints.Add( constraint2 );

var problem =
    new NonlinearProgrammingProblem( objective, constraints );

Code Example – VB nonlinear programming

Dim Constraints As New List(Of Constraint)
Dim C1 As New DoubleFunctionalDelegate(2,
  New Func(Of DoubleVector, Double)(MyConstraintFunction1))
Dim Constraint1 As New NonlinearConstraint(C1, 
  ConstraintType.GreaterThanOrEqualTo)
Constraints.Add(Constraint1)

Dim C2 As New DoubleFunctionalDelegate(2,
  New Func(Of DoubleVector, Double)(MyConstraintFunction2))
Dim Constraint2 As New NonlinearConstraint(C2, 
  ConstraintType.GreaterThanOrEqualTo)
Constraints.Add(Constraint2)

Dim Problem As New NonlinearProgrammingProblem(Objective, 
  Constraints)

Adding Bounds and Constraints

Class NonlinearProgrammingProblem provides several convenience methods for 
adding constraints and variable bound to an existing problem object.

For example, this code adds lower and upper variable bounds:

Code Example – C# nonlinear programming

// 0 <= x0, x1, x2 <= 42
for ( int i = 0; i < xDim; i++ ) {
    problem.AddBounds( i, 0.0, 42.0 );
}

Code Example – VB nonlinear programming

' 0 &lt= x0, x1, x2 &lt= 42
For I As Integer = 0 To XDim - 1
  Problem.AddBounds(I, 0.0, 42.0)
Next

This code adds a linear constraint:
272   NMath User’s Guide



Code Example – C# nonlinear programming

// 0 <= x0 + 2*x1 + 2*x2 <= 72,
problem.AddLinearConstraint( new DoubleVector( 1.0, 2.0, 2.0 ), 
    0.0, 72 );

Code Example – VB nonlinear programming

' 0 &lt= x0 + 2*x1 + 2*x2 &lt= 72,
Problem.AddLinearConstraint(New DoubleVector(1.0, 2.0, 2.0),0.0, 
  72)

This code adds constraint functions:

Code Example – C# nonlinear programming

int xDim = 2;

// x0*x1 >= -10
problem.AddLowerBoundConstraint( xDim,
    ( DoubleVector x ) => x[0] * x[1], -10.0 );

// x0*x1 - x0 -x1 <= -1.5
problem.AddUpperBoundConstraint( xDim,
    ( DoubleVector x ) => x[0] * x[1] - x[0] - x[1], -1.5 );

Code Example – VB nonlinear programming

Dim XDim As Integer = 2

Public Function LowerConstraint(X As DoubleVector) As Double
  Return X(0) * X(1)
End Function

Public Function UpperConstraint(X As DoubleVector) As Double
  Return X(0) * X(1) - X(0) - X(1)
End Function
  
' x0*x1 &gt= -10
Problem.AddLowerBoundConstraint(xDim, New Func(Of DoubleVector, 
  Double)(AddressOf LowerConstraint), -10.0)

' x0*x1 - x0 -x1 &lt= -1.5
Problem.AddUpperBoundConstraint(xDim, New Func(Of DoubleVector, 
  Double)(AddressOf UpperConstraint), -1.5)

MixedIntegerNonlinearProgrammingProblem encapsulates an NLP which may 
contain integral or binary constraints. For example, in this code variable index 2 is 
constrained to be integer valued.

Code Example – C# integer programming

problem.AddIntegralConstraint( 2 );
   Chapter 30.   Nonlinear and Quadratic Programming 273



Here, variable indices 0 and 1 must be binary.

Code Example – C# binary programming

problem.AddBinaryConstraint( 0, 1 );

A binary constraint restricts the variable to a value of zero or one.

Method GetIntegrality() gets the integral constraint state of the variable at the 
given index. IntegralVariableIndices returns the indices of variables with 
integral constraints.

Solving the Problem

NMath provides two types of NLP solvers: Stochastic Hill Climbing and 
Sequential Quadratic Programming (SQP).

Stochastic Hill Climbing

The strategy of the Stochastic Hill Climbing algorithm is to iteratively make small 
random changes to the decision values. A candidate solution is accepted if it 
results in an improvement, and rejected if it makes it worse. The strategy addresses 
the limitations of deterministic hill climbing techniques, which are prone to getting 
stuck in local optima due to their greedy acceptance of neighboring moves.

StochasticHillClimbingSolver solves NLP problems using the Stochastic Hill 
Climbing algorithm.

Code Example – C# nonlinear programming

var solver = new StochasticHillClimbingSolver();

Code Example – VB nonlinear programming

Dim Solver As New StochasticHillClimbingSolver()

The algorithm is stochastic. Setting a random seed ensures consistent results 
between runs.

Code Example – C# nonlinear programming

solver.RandomSeed = 0x248;

Code Example – VB nonlinear programming

Solver.RandomSeed = &H248

Additional parameters are specified using an instance of 
StochasticHillClimbingParameters.
274   NMath User’s Guide



Code Example – C# nonlinear programming

var solverParams = new StochasticHillClimbingParameters 
{ 
  TimeLimitMilliSeconds = 10000,
  Presolve = true
};

Code Example – VB nonlinear programming

Dim SolverParams As New StochasticHillClimbingParameters()
SolverParams.TimeLimitMilliSeconds = 10000
SolverParams.Presolve = True

Note that this example sets a time limit of 10 seconds for the solver. By default, the 
solver runs until a solution is found. Since this may take forever, it is a good idea to 
set a reasonable time limit on the solve. If an optimal solution is not found within 
the specified time limit, the solver exits and the solver's Result property will be 
equal to SolverResult.SolverInterrupted.

This example also sets Presolve = true. By default there is no pre-solve step. For 
some problems pre-solve can reduce the size and complexity and result in fewer 
steps to reach a solution.

This code performs the actual solve and prints out the results:

Code Example – C# nonlinear programming

solver.Solve( problem, solverParams );
Console.WriteLine( "Solver Result = " + solver.Result );
Console.WriteLine( "Number of steps = " + solver.Steps );
Console.WriteLine( "Optimal x = " + solver.OptimalX );
Console.WriteLine( "Optimal function value = " + 
  solver.OptimalObjectiveFunctionValue );

Code Example – VB nonlinear programming

Solver.Solve(Problem, SolverParams)
Console.WriteLine("Solver Result = {0}", Solver.Result)
Console.WriteLine("Number of steps = {0}", Solver.Steps)
Console.WriteLine("Optimal x = {0}", Solver.OptimalX)
Console.WriteLine("Optimal function value = {0}", 
  Solver.OptimalObjectiveFunctionValue)

Sequential Quadratic Programming (SQP)

SQP algorithms solve NLP problems iteratively. At each step, a quadratic sub-
problem is formed from the Hessian of the Lagrangian, Hk, the constraints, and the 
current iterate value xk. The solution of this sub-problem yields a step direction pk. 
Next a step size ak is determined, and the new iterate value is obtained as 
xk+1=xk+ak pk.
   Chapter 30.   Nonlinear and Quadratic Programming 275



SequentialQuadraticProgrammingSolver is the abstract base class for SQP 
solvers. NMath currently provides one concrete implementation: 
ActiveSetLineSearchSQP solves NLP problems using an active set algorithm.

Code Example – C# nonlinear programming

var solver = new ActiveSetLineSearchSQP();

Code Example – VB nonlinear programming

Dim Solver As New ActiveSetLineSearchSQP()

A convergence tolerance and maximum number of iterations can also be specified 
in the constructor, as well as other advanced options (see below):

Code Example – C# nonlinear programming

double tolerance = 1e-4;
var solver = new ActiveSetLineSearchSQP( tolerance );

Code Example – VB nonlinear programming

Dim Tolerance As Double = "1e-4"
Dim Solver As New ActiveSetLineSearchSQP(Tolerance)

The Solve() method solves the problem given an initial starting position, and 
returns true if the algorithm terminated successfully:

Code Example – C# nonlinear programming

var x0 = new DoubleVector( 3, 1.0 );
bool success = solver.Solve( problem, x0 );
Console.WriteLine( "Termination status = " + 
    solver.SolverTerminationStatus );

Code Example – VB nonlinear programming

Dim X0 As New DoubleVector(3, 1.0)
Dim Success = Solver.Solve(Problem, X0)
Console.WriteLine("Termination status = {0}",
  Solver.SolverTerminationStatus)

Properties on the solver get the minimum x-value found, and the objective 
function evaluated at that point:

Code Example – C# nonlinear programming

Console.WriteLine( "X = " + solver.OptimalX );
Console.WriteLine( "f(x) = " + 
  solver.OptimalObjectiveFunctionValue );
276   NMath User’s Guide



Code Example – VB nonlinear programming

Console.WriteLine("X = {0}", Solver.OptimalX)
Console.WriteLine("f(x) = {0}",
   Solver.OptimalObjectiveFunctionValue)

ActiveSetLineSearchSQP.Options provides advanced options for controlling the 
ActiveSetLineSearchSQP algorithm, such as the step size and finer grain 
convergence tolerances:

Code Example – C# nonlinear programming

var solverOptions = new ActiveSetLineSearchSQP.Options();
solverOptions.StepSizeCalculator = new ConstantSQPStepSize( 1 );
solverOptions.StepDirectionTolerance = 1e-8;
solverOptions.FunctionChangeTolerance = 1e-6;

var solver = new ActiveSetLineSearchSQP( solverOptions );

Code Example – VB nonlinear programming

Dim SolverOptions As New ActiveSetLineSearchSQP.Options()

SolverOptions.StepSizeCalculator = New ConstantSQPStepSize(1)
SolverOptions.StepDirectionTolerance = "1e-8"
SolverOptions.FunctionChangeTolerance = "1e-6"

Dim Solver As New ActiveSetLineSearchSQP(SolverOptions)

This code sets the step size calculator to use an instance of ConstantSQPStepSize, 
which simply returns a constant step size regardless of iteration values. By default, 
the ActiveSetLineSearchSQP algorithm uses an instance of L1MeritStepSize, 
which computes the step size based on sufficient decrease in the L1 merit function.

30.3 Quadratic Programming

A quadratic programming (QP) problem is a NLP problem with a specific form for 
the objective and constraint functions. A QP problem has the following form:

subject to

                                     

min q x  1
2
---x

T
Hx x

T
c+=

x R
n

ai
T

x bi i E=

ai
T

x bi i I
   Chapter 30.   Nonlinear and Quadratic Programming 277



where H is a symmetric nxn matrix, E and I are finite sets of indices, and c, x, and ai 
are vectors in Rn. The matrix H is the Hessian of the objective function q(x). 

NOTE—Only convex QP problems are supported. A QP problem is convex if the 
matrix H in the objective function is positive definite.

Encapsulating the Problem

In NMath, class QuadraticProgrammingProblem class encapsulates a QP 
problem. The objective function is specified by providing the matrix H and the 
vector c. The matrix H, usually referred to as the Hessian, is the quadratic 
coefficient matrix. The vector c, sometimes referred to as the gradient, contains the 
coefficients for the linear terms.

For example, to minimize 

q(x) = (x0 - 1)^2 + (x1 - 2.5)^2

Translate the objective function into the form 0.5*x'Hx + x'c. In this case:

H = | 2 0 |
    | 0 2 |

c = [-2 -5]   

This code sets up the QP problem:

Code Example – C# quadratic programming problem

var H = new DoubleMatrix( "2x2[2 0  0 2]" );
var c = new DoubleVector( -2.0, -5.0 );
var problem = new QuadraticProgrammingProblem( H, c );

Code Example – VB quadratic programming problem

Dim H As New DoubleMatrix("2x2[2 0  0 2]")
Dim C As New DoubleVector(-2.0, -5.0)
Dim Problem As New QuadraticProgrammingProblem(H, C)

Adding Bounds and Constraints

The constraints in a QP problem must be linear. There are several convenience 
methods provided for adding constraints and variable bounds.
278   NMath User’s Guide



For instance, given constraints:

-x0 + 2*x1 <= 2

 x0 - 2*x1 >= -6
-x0 + 2*x1 >= -2

 x0 >= 0
 x1 >= 0

The following code adds these constraints to an existing 
QuadraticProgrammingProblem object:

Code Example – C# quadratic programming problem

problem.AddUpperBoundConstraint(
  new DoubleVector( -1.0, 2.0 ), 2.0 );
problem.AddLowerBoundConstraint(
  new DoubleVector( 1.0, -2.0 ), -6.0 );
problem.AddLowerBoundConstraint(
  new DoubleVector( -1.0, 2.0 ), -2.0 );
problem.AddLowerBound( 0, 0 );
problem.AddLowerBound( 1, 0 );

Code Example – VB quadratic programming problem

Problem.AddUpperBoundConstraint( New DoubleVector(-1.0, 2.0), 2.0)
Problem.AddLowerBoundConstraint( New DoubleVector(1.0, -2.0), -6.0)
Problem.AddLowerBoundConstraint( New DoubleVector(-1.0, 2.0), -2.0)
Problem.AddLowerBound(0, 0)
Problem.AddLowerBound(1, 0)

Solving the Problem

NMath provides two classes for solving quadratic programming problems:

 Class ActiveSetQPSolver solves QP problems using an active set 
algorithm.

 Class InteriorPointQPSolver solves QP problems using an interior point 
algorithm.

Active Set

Class ActiveSetQPSolver solves QP problems using an active set algorithm. The 
active set contains a subset of inequalities to watch while searching for a solution, 
which reduces the complexity of the search.
   Chapter 30.   Nonlinear and Quadratic Programming 279



Code Example – C# active set quadratic programming

var solver = new ActiveSetQPSolver();

Code Example – VB active set quadratic programming

Dim Solver As New ActiveSetQPSolver()

The Solve() method solves the problem, and returns true if the algorithm 
terminated successfully:

Code Example – C# active set quadratic programming

if ( !solver.Solve( problem ) ) {
  Console.WriteLine( "Solver failed: {0}", solver.Status );
}
else {
  Console.WriteLine("Solver found solution (x0, x1) = ({0}, {1})", 
        solver.OptimalX[0], solver.OptimalX[1] );
  Console.WriteLine("After {0} iterations", solver.Iterations );
  Console.WriteLine( "Optimal objective function value = {0}", 
    solver.OptimalObjectiveFunctionValue );
}

Code Example – VB active set quadratic programming

If Not Solver.Solve(Problem) Then
  Console.WriteLine("Solver failed: {0}", Solver.Status)
Else
  Console.WriteLine("Solver found solution (x0, x1) = ({0}, {1})",
    Solver.OptimalX(0), Solver.OptimalX(1))
  Console.WriteLine("After {0} iterations", Solver.Iterations)
  Console.WriteLine("Optimal objective function value = {0}",
    Solver.OptimalObjectiveFunctionValue)
End If

The Solve() method also optionally accepts a starting point for the solution 
search. The starting point need not be a feasible point.

Interior Point

Class InteriorPointQPSolver solves QP problems using an interior point 
algorithm.

Code Example – C# interior point quadratic programming

var solver = new InteriorPointQPSolver();

Code Example – VB interior point quadratic programming

Dim Solver As New InteriorPointQPSolver()

Parameters are specified using an instance of InteriorPointQPSolverParams.
280   NMath User’s Guide



Code Example – C# interior point quadratic programming

var solverParams = new InteriorPointQPSolverParams
{
  KktForm = InteriorPointQPSolverParams.KktFormOption.Blended,
  Tolerance = 1e-6,
  MaxDenseColumnRatio = 0.9,
  PresolveLevel =
    InteriorPointQPSolverParams.PresolveLevelOption.Full,
  SymbolicOrdering = InteriorPointQPSolverParams.
    SymbolicOrderingOption.ApproximateMinDegree
};

Code Example – VB interior point quadratic programming

Dim SolverParams As New InteriorPointQPSolverParams
SolverParams.KktForm = 
  InteriorPointQPSolverParams.KktFormOption.Blended
SolverParams.Tolerance = "1e-6"
SolverParams.MaxDenseColumnRatio = 0.9
SolverParams.PresolveLevel = 
  InteriorPointQPSolverParams.PresolveLevelOption.Full
SolverParams.SymbolicOrdering = InteriorPointQPSolverParams.
  SymbolicOrderingOption.ApproximateMinDegree

This code performs the actual solve and prints out the results:

Code Example – C# interior point quadratic programming

solver.Solve( problem, solverParams );

Console.WriteLine( "Solver Parameters:" );
Console.WriteLine( solverParams.ToString() );
Console.WriteLine( "\nResult = " + solver.Result );
Console.WriteLine( "Optimal x = " + solver.OptimalX );
Console.WriteLine( "Optimal Function value = " + 
  solver.OptimalObjectiveFunctionValue );
Console.WriteLine( "iterations = " + solver.IterationCount );

Code Example – VB interior point quadratic programming

Console.WriteLine("Solver Parameters:")
Console.WriteLine(SolverParams.ToString())
Console.WriteLine()
Console.WriteLine("Result = {0}", Solver.Result)
Console.WriteLine("Optimal x = {0}", Solver.OptimalX)
Console.WriteLine("Optimal Function value = {0}", 
  Solver.OptimalObjectiveFunctionValue)
Console.WriteLine("iterations = {0}", Solver.IterationCount)
   Chapter 30.   Nonlinear and Quadratic Programming 281



30.4 Constrained Least Squares

When least squares problems are unconstrained, they can be solved by geometric 
means, such as orthogonal projection. When constraints are introduced, however, 
nonlinear optimization techniques are required. In NMath, class 
ConstrainedLeastSquaresProblem encapsulates a constrained least squares 
problem, which can be solved using class ConstrainedLeastSquares. The problem 
is solved by reformulating as a quadratic programming problem (Section 30.3).

Encapsulating the Problem

A least squares problem solves  by minimizing . Class 
ConstrainedLeastSquaresProblem encapsulates a constrained least squares 
problem. First construct the problem object from the matrix C and the vector d.

Code Example – C# constrained least squares

var C = new DoubleMatrix(
  "5x4 [0.9501    0.7620    0.6153    0.4057 " +
       "0.2311    0.4564    0.7919    0.9354 " +
       "0.6068    0.0185    0.9218    0.9169 " +
       "0.4859    0.8214    0.7382    0.4102 " +
       "0.8912    0.4447    0.1762    0.8936]" );

var d = new DoubleVector( 0.0578, 0.3528, 0.8131, 0.0098, 0.1388 );

var problem = new ConstrainedLeastSquaresProblem( C, d );

Code Example – VB constrained least squares

Dim C As New DoubleMatrix(
  "5x4 [0.9501    0.7620    0.6153    0.4057 " &
       "0.2311    0.4564    0.7919    0.9354 " &
       "0.6068    0.0185    0.9218    0.9169 " &
       "0.4859    0.8214    0.7382    0.4102 " &
       "0.8912    0.4447    0.1762    0.8936]")

Dim D As New DoubleVector(0.0578, 0.3528, 0.8131, 0.0098, 0.1388)

Dim Problem As New ConstrainedLeastSquaresProblem(C, D)

Adding Bounds and Constraints

Next, add the bounds and constraints. Constraints are specified using a constraint 
matrix, a vector of right-hand sides, and a tolerance. For example, this code adds 
the inequality constraints Ax <= b using a constraint tolerance of 0.00001. This 

Cx d= Cx d–
2

282   NMath User’s Guide



allows for small violations of the constraints. Specifically the constraints will be 
considered satisfied for a vector x if Ax <= b + 0.00001.

Code Example – C# constrained least squares

var A = new DoubleMatrix(
  "3x4[0.2027    0.2721    0.7467    0.4659 " +
      "0.1987    0.1988    0.4450    0.4186 " +
      "0.6037    0.0152    0.9318    0.8462]" );
var b = new DoubleVector( 0.5251, 0.2026, 0.6721 );
double constraintTolerance = 0.00001;

for ( int i = 0; i < A.Rows; i++ )
{
  problem.AddUpperBoundConstraint( A.Row( i ), b[i], 
    constraintTolerance );
}

Code Example – VB constrained least squares

Dim A As New DoubleMatrix(
  "3x4[0.2027    0.2721    0.7467    0.4659 " &
      "0.1987    0.1988    0.4450    0.4186 " &
      "0.6037    0.0152    0.9318    0.8462]")
Dim B As New DoubleVector(0.5251, 0.2026, 0.6721)
Dim ConstraintTolerance As Double = 0.00001

Dim I As Integer
For I = 0 To A.Rows - 1
  Problem.AddUpperBoundConstraint(A.Row(I), B(I), 
ConstraintTolerance)
Next

This code add variable bounds -0.1 <= x[i] <= 2.0.

Code Example – C# constrained least squares

for ( int i = 0; i < problem.NumVariables; i++ )
{
  problem.AddBounds( i, -0.10, 2.0, .00001 );
}

Code Example – VB constrained least squares

For I = 0 To Problem.NumVariables - 1
  Problem.AddBounds(I, -0.1, 2.0, 0.00001)
Next

Solving the Problem

ConstrainedLeastSquares uses a Quadratic Programming (QP) solver to solve the 
constrained least squares problem.
   Chapter 30.   Nonlinear and Quadratic Programming 283



Code Example – C# constrained least squares

var solver = new ConstrainedLeastSquares();
bool success = solver.Solve( problem );
Console.WriteLine( "Success = {0}", success );
Console.WriteLine( "Solution x = {0}", solver.X );
Console.WriteLine( "Residual norm = {0}", solver.ResidualNorm );
Console.WriteLine( "Performed {0} iterations", solver.Iterations );

Code Example – VB constrained least squares

Dim Solver As New ConstrainedLeastSquares()
Dim Success As Boolean = Solver.Solve(Problem)
Console.WriteLine("Success = {0}", Success)
Console.WriteLine("Solution x = {0}", Solver.X)
Console.WriteLine("Residual norm = {0}", Solver.ResidualNorm)
Console.WriteLine("Performed {0} iterations", Solver.Iterations)

By default, the QP solver used is the active set solver with default options 
(Section 30.3). You can also pass in an instance of a QP solver for the constrained 
least squares class to use. This allows you to set options on the QP solver and 
inspect results.

Code Example – C# constrained least squares

var interiorPointQp = new InteriorPointQPSolver();

var solverParams = new InteriorPointQPSolverParams
{
  MaxIterations = 10000,
  PresolveLevel = 
    InteriorPointQPSolverParams.PresolveLevelOption.None
};

solver.Solve( problem, interiorPointQp,
  solverParams );
Console.WriteLine( "Interior point QP result = {0}",
  interiorPointQp.Result );

Code Example – VB constrained least squares

Dim InteriorPointQp As New InteriorPointQPSolver()

Dim SolverParams = New InteriorPointQPSolverParams()
SolverParams.MaxIterations = 10000
SolverParams.PresolveLevel = 
  InteriorPointQPSolverParams.PresolveLevelOption.None

Solver.Solve(Problem, InteriorPointQp, SolverParams)
Console.WriteLine("Interior point QP result = {0}",
  InteriorPointQp.Result)
284   NMath User’s Guide



If you use the active set QP solver you can determine which constraints are active 
in the solution by accessing the Lagrange multiplier property. A constraint is active 
if its corresponding Lagrange multiplier is nonzero.

Code Example – C# constrained least squares

var activeSetQP = new ActiveSetQPSolver();
solver.Solve( problem, activeSetQP );

// Print out the active constraints.
for ( int i = 0; i < activeSetQP.LagrangeMultiplier.Length; i++ )
{
  if ( activeSetQP.LagrangeMultiplier[i] != 0.0 )
  {
    Console.WriteLine( "Constraint {0} = {1} is active", i, 
      problem.Constraints[i].ToString() );
  }
}

Code Example – VB constrained least squares

Dim ActiveSetQP As New ActiveSetQPSolver()
Solver.Solve(Problem, ActiveSetQP)

'' Print out the active constraints.
For I = 0 To ActiveSetQP.LagrangeMultiplier.Length - 1
  If (ActiveSetQP.LagrangeMultiplier(I) <> 0.0) Then
    Console.WriteLine("Constraint {0} = {1} is active", I,
      Problem.Constraints(I).ToString())
  End If
Next
   Chapter 30.   Nonlinear and Quadratic Programming 285



286   NMath User’s Guide



CHAPTER 31.  
FITTING POLYNOMIALS

As described in Chapter 8, the CenterSpace.NMath.Core namespace includes 
classes for calculating least squares fits of linear functions to a set of points. In 
addition, the class PolynomialLeastSquares, performs a least squares fit of a 
Polynomial to a set of points.

This chapter describes how to use class PolynomialLeastSquares.

NOTE—For testing the goodness of fit of PolynomialLeastSquares fits, see class 
GoodnessOfFit. Available statistics include the residual standard error, the coefficient 
of determination (R2 and "adjusted" R2), the F-statistic for the overall model with its 
numerator and denominator degrees of freedom, and standard errors, t-statistics, and 
finally corresponding (two-sided) p-values for the model parameters.

31.1 Creating PolynomialLeastSquares

A PolynomialLeastSquares is constructed from paired vectors of known x- and y-
values, and the desired degree of the fitted polynomial. For example, this code fits 
a cubic:

Code Example – C# polynomial fit

int degree = 4;
var fit = new PolynomialLeastSquares( degree, x, y );

Code Example – VB polynomial fit

Dim Degree = 4
Dim Fit As New PolynomialLeastSquares(Degree, X, Y)
   Chapter 31.   Fitting Polynomials 287



31.2 Properties of PolynomialLeastSquares

Once constructed, a PolynomialLeastSquares object provides the following 
properties:

 FittedPolynomial gets the fitted Polynomial object.

 Coefficients gets the coeffients of the fitted polynomial. The constant is 
at index 0, and the leading coefficient is at index Coefficients.Length -

1.

 Degree gets the degree of the fitted polynomial.

 LeastSquaresSolution gets the DoubleLeastSquares object used to 
compute the coefficients.

 DesignMatrix gets the design matrix for the fit.

Finally, the CoeffErrorEstimate() method returns a vector of error estimates for 
the coefficients based on a given estimated error in the y-values. For example:

Code Example – C# polynomial fit

Console.WriteLine( fit.CoeffErrorEstimate(0.01) );

Code Example – VB polynomial fit

Console.WriteLine( Fit.CoeffErrorEstimate(0.01) )
288   NMath User’s Guide



CHAPTER 32.  
NONLINEAR LEAST SQUARES

NMath provides classes for solving nonlinear least squares problems. 

Solving a nonlinear least squares problem means finding the best approximation to 
vector y with the model function that has nonlinear dependence on variables x, by 
minimizing the sum, S, of the squared residuals:

where

Unlike the linear least squares problem, non-linear least squares does not have a 
closed form solution, and is therefore solved by iterative refinement. 

NMath provides nonlinear least squares classes for:

 solving nonlinear least squares problems, with or without linear boundary 
constraints, using the Trust-Region or Levenberg-Marquardt methods

 curve fitting, by finding a minimum in the curve parameter space in the 
sum of the squared residuals with respect to a set of data points 

 surface fitting, by finding a minimum in the surface parameter space in the 
sum of the squared residuals with respect to a set of data points

This chapter describes how to use the nonlinear least squares classes.

32.1 Nonlinear Least Squares Interfaces

In NMath, classes which solve nonlinear least squares problems implement either 
the INonlinearLeastSqMinimizer interface or the 
IBoundedNonlinearLeastSqMinimizer interface.

S ri
2

i 1=

n

=

ri y f xi –=
   Chapter 32.   Nonlinear Least Squares 289



Minimization

The INonlinearLeastSqMinimizer interface provides the Minimize() method for 
minimizing a given function encapsulated as a DoubleMultiVariableFunction, an 
abstract class for representing a multivariable function. Instances override the 
Evaluate() method and, optionally, the Jacobian() method. If the Jacobian() 
method is not overriden, a central differences approximation is used to calculate 
the Jacobian.

For example, this code encapsulates a function that has four input variables and 
twenty output variables:

Code Example – C# nonlinear least squares

public class MyFunction : DoubleMultiVariableFunction
{
  DoubleVector yi = new DoubleVector( 20 );
  DoubleVector ti = new DoubleVector( 20 );
  DoubleVector p = new DoubleVector( 4 );

  public MyFunction() : base(4, 20)
  {
    p[0] = -4;
    p[1] = -5;
    p[2] = 4;
    p[3] = -4;

    for ( int i = 0; i < yi.Length; i++ )
    {
      ti[i] = i;
      yi[i] = p[2]*Math.Exp( p[0]*i ) + p[3]*Math.Exp( p[1]*i );
    }
  }

  public override void Evaluate(DoubleVector x, ref DoubleVector y)
  {
    if ( x.Length != 4 || y.Length != 20 ) throw
      new InvalidArgumentException( "bad length" );

    for ( int i = 0; i < ti.Length; i++ )
    {
      y[i] = yi[i] - x[2] * Math.Exp( x[0] * ti[i] )
                   - x[3] * Math.Exp( x[1] * ti[i] );
    }
  }
}

290   NMath User’s Guide



Code Example – VB nonlinear least squares

Public Class MyFunction
  Inherits DoubleMultiVariableFunction

  Private YI As As New DoubleVector( 20 )
  Private TI As New DoubleVector(20)
  Private P As New DoubleVector(4)

  Public Sub New()
    MyBase.New(4, 20)

    P(0) = -4
    P(1) = -5
    P(2) = 4
    P(3) = -4

    For I As Integer = 0 To YI.Length - 1
      TI(I) = I
      yi(I) = P(2) * Math.Exp(P(0) * I) + P(3) * Math.Exp(P(1) * I)
    Next

  End Sub

  Public Overrides Sub Evaluate(X As DoubleVector,
    ByRef Y As DoubleVector)

    If X.Length <> 4 Or Y.Length <> 20 Then
      Throw New InvalidArgumentException("bad length")
    End If

    For I As Integer = 0 To TI.Length - 1
      Y(I) = yi(I) - X(2) * Math.Exp(X(0) * TI(I)) - X(3) * 
        Math.Exp(X(1) * TI(I))
    Next

  End Sub

End Class

The Minimize() method takes:

 the function to minimize, encapsulated as a 
DoubleMultiVariableFunction

 the starting point

The IBoundedNonlinearLeastSqMinimizer interface extends 
INonlinearLeastSqMinimizer to provide an overload of the Minimize() method 
which also accepts lower and upper linear bounds on the solution.
   Chapter 32.   Nonlinear Least Squares 291



Minimization Results

The Minimize() method returns the solution found by the minimization:

Code Example – C# nonlinear least squares

DoubleVector solution = minimizer.Minimize( f, start );

Code Example – VB nonlinear least squares

Dim Solution As DoubleVectorn = Minimizer.Minimize(F, Start)

Additional information about the last performed fit is available from properties in 
the INonlinearLeastSqMinimizer interface:

 InitialResidual gets the residual associated with the starting point.

 FinalResidual gets the residual associated with the last computed 
solution.

 Iterations gets the number of iterations used in the last computed 
solution.

 MaxIterations gets and sets the maximum number of iterations used in 
computing minima estimates.

 MaxIterationsMet returns true if the minimum just computed stopped 
because the maximum number of iterations was reached; otherwise, false. 

For example:

Code Example – C# nonlinear least squares

double initialResidual = minimizer.InitialResidual;
double finalResidual = minimizer.FinalResidual;
int iterations = minimizer.Iterations;

Code Example – VB nonlinear least squares

Dim InitialResidual As Double = Minimizer.InitialResidual
Dim FinalResidual As Double = Minimizer.FinalResidual
Dim Iterations As Integer = Minimizer.Iterations

Implementations

NMath provides two implementations of the nonlinear least squares interfaces:

 Class TrustRegionMinimizer (Section 32.2) solves both constrained and 
unconstrained nonlinear least squares problems using the Trust-Region 
method, and implements the IBoundedNonlinearLeastSqMinimizer 
interface.
292   NMath User’s Guide



 Class LevenbergMarquardtMinimizer (Section 32.3) solves nonlinear least 
squares problems using the Levenberg-Marquardt method, and 
implements the INonlinearLeastSqMinimizer interface.

32.2 Trust-Region Minimization

NMath provides class TrustRegionMinimizer for solving both constrained and 
unconstrained nonlinear least squares problems using the Trust-Region method. 
TrustRegionMinimizer implements the IBoundedNonlinearLeastSqMinimizer 
interface.

The Trust-Region method maintains a region around the current search point 
where a quadratic model is “trusted” to be correct. If an adequate model of the 
objective function is found within the trust region, the region is expanded. 
Otherwise, the region is contracted.

The Trust-Region algorithm requires the partial derivatives of the function, but a 
numerical approximation may be used if the closed form is not available.

Constructing a TrustRegionMinimizer

Instances of TrustRegionMinimizer are constructed by specifying an error 
tolerance and a maximum number of iterations, or by accepting the defaults for 
these values. For example, this code constructs a TrustRegionMinimizer using the 
default tolerance and a maximum of 1000 iterations:

Code Example – C# trust region minimization

int iter = 1000;
var minimizer = new TrustRegionMinimizer( iter );

Code Example – VB nonlinear least squares

Dim Iter As Integer = 1000
Dim Minimizer As New TrustRegionMinimizer(Iter)

Minimization

Class TrustRegionMinimizer provides the Minimize() method for minimizing a 
given multivariable function. Functions may be multidimensional in both their 
domain, x, and range, y. 
   Chapter 32.   Nonlinear Least Squares 293



The Minimize() method takes:

 the function, f, to minimize, encapsulated as a 
DoubleMultiVariableFunction, as described in Section 32.1

 the starting point

 (optionally) lower and upper bounds on the solution

NOTE—The dimensionality of y must be greater than or equal to the dimensionality of 
x, or the least squares problem is under constrained.

Thus, this code minimizes the function MyFunction, starting at the specified point:

Code Example – C# trust region minimization

public class MyFunction : DoubleMultiVariableFunction
{
  public MyFunction() : base(4,4) {;}

  public override void Evaluate( DoubleVector x,
                                 ref DoubleVector y )
  {
    for (int i = 0; i < (x.Length) / 4; i++)
    {
      y[4 * i] = x[4 * i] + 10.0 * x[4 * i + 1];
      y[4 * i + 1] = 2.2360679774997896964091736687313 *
        (x[4 * i + 2] - x[4 * i + 3]);
      y[4 * i + 2] = (x[4 * i + 1] - 2.0 * x[4 * i + 2]) *
        (x[4 * i + 1] - 2.0 * x[4 * i + 2]);
      y[4 * i + 3] = 3.1622776601683793319988935444327 *
        (x[4 * i] - x[4 * i + 3]) * (x[4 * i] - x[4 * i + 3]);
    }
  }
}

var f = new MyFunction();
var start = new DoubleVector("3.0 -1.0 0.0 1.0");

var minimizer = new TrustRegionMinimizer();
DoubleVector solution = minimizer.Minimize( f, start );
294   NMath User’s Guide



Code Example – VB trust region minimization

Public Class MyFunction
  Inherits DoubleMultiVariableFunction

  Public Sub New()
    MyBase.New(4, 4)
  End Sub

  Public Overrides Sub Evaluate(X As DoubleVector, ByRef Y As 
DoubleVector)

    For I As Integer = 0 To (X.Length / 4) - 1
      Y(4 * I) = X(4 * I) + 10.0 * X(4 * I + 1)
      Y(4 * I + 1) = 2.23606797749979 *
       (X(4 * I + 2) - X(4 * I + 3))
      Y(4 * I + 2) = (X(4 * I + 1) - 2.0 *
        X(4 * I + 2)) * (X(4 * I + 1) - 2.0 * X(4 * I + 2))
      Y(4 * I + 3) = 3.1622776601683795 *
       (X(4 * I) - X(4 * I + 3)) * (X(4 * I) - X(4 * I + 3))
    Next
  End Sub

End Class

Dim F As New MyFunction()
Dim Start As New DoubleVector("3.0 -1.0 0.0 1.0")

Dim Minimizer As New TrustRegionMinimizer()
Dim Solution As DoubleVector = Minimizer.Minimize(F, Start)

Since problems can have multiple local minima, trying different starting points is 
recommended for better solutions.

NOTE—The Trust-Region algorithm requires the partial derivatives of the function 
being minimized. A numerical approximation is used by default, but you can also imple-
ment the Jacobian() method on your DoubleMultiVariableFunction.

Linear Bound Constraints

The Minimize() method also accepts linear bound constraints on the solution, 
such that:

loweri xi upperi     i, 1  n =
   Chapter 32.   Nonlinear Least Squares 295



For instance, this code specifies lower and upper bounds:

Code Example – C# trust region minimization

var f = new MyFunction();

var start = new DoubleVector("3.0 -1.0 0.0 1.0");
var lowerBounds = new DoubleVector("0.1 -20.0 -1.0 -1.0");
var upperBounds = new DoubleVector("100.0 20.0 1.0 50.0");

var minimizer = new TrustRegionMinimizer();
DoubleVector solution = minimizer.Minimize( f, start, lowerBounds, 
  UpperBounds );

Code Example – VB trust region minimization

Dim F As New MyFunction()

Dim Start As New DoubleVector("3.0 -1.0 0.0 1.0")
Dim LowerBounds As New DoubleVector("0.1 -20.0 -1.0 -1.0")
Dim UpperBounds As New DoubleVector("100.0 20.0 1.0 50.0")

Dim Minimizer As New TrustRegionMinimizer()
Dim Solution As DoubleVector = Minimizer.Minimize(F, Start, 
  LowerBounds, UpperBounds)

Minimization Results

The Minimize() method returns the solution found by the minimization:

Code Example – C# trust region minimization

DoubleVector solution = minimizer.Minimize( f, start );

Code Example – VB trust region minimization

Dim Solution As DoubleVector = Minimizer.Minimize(F, Start)

Additional information about the last performed fit is available from properties 
implemented as part of the INonlinearLeastSqMinimizer interface (Section 32.1). 
Class TrustRegionMinimizer also provides property StopCriterion which 
return the reason for stopping. The stopping criterion is returned as a value from 
the TrustRegionMinimizer.Criterion enumeration, shown in Table 22.
296   NMath User’s Guide



Note that by default, the general tolerance supplied when your construct a 
TrustRegionMinimizer instance is used for all tolerance-related stopping criteria. 
However, tolerances can also be specified individually for each criterion. For 
example, this code sets the trial step tolerance to 1e-12:

Code Example – C# trust region minimization

minimizer.ToleranceTrialStep = 1e-12;

Code Example – VB trust region minimization

Minimizer.ToleranceTrialStep = "1e-12"

The SetAllTolerances() method can be used after construction to set all 
tolerances to the same value.

32.3 Levenberg-Marquardt Minimization

NMath provides class LevenbergMarquardtMinimizer for solving nonlinear least 
squares problems using the Levenberg-Marquardt method. 

Table 22 – Stopping Criterion

Criterion Description

MaxIterationsExceeded The maximum number of iterations was 
exceeded.

TrustRegionWithinTolerance The area of the trust region was within 
tolerance.

FunctionValueWithinTolerance The function value was within tolerance.

JacobianWithinTolerance The value of the Jacobian matrix, A, at x 
was within tolerance for all A[i,j].

TrialStepWithinTolerance The size of the trial step was within 
tolerance.

ImprovementWithinTolerance The magnitude of the improvement 
between steps was within tolerance. The 
magnitude of the improvement between 
steps is ||F(x)||- ||F(x) - A(x)s||, where F(x) is 
the value of the function at x, A is the 
Jacobian matrix, and s is the trial step.
   Chapter 32.   Nonlinear Least Squares 297



LevenbergMarquardtMinimizer implements the INonlinearLeastSqMinimizer 
interface.

Constructing a LevenbergMarquardtMinimizer

Instances of LevenbergMarquardtMinimizer are constructed by specifying a 
maximum number of iterations, gradient tolerance, and a solution tolerance, or by 
accepting the defaults for these values. Iteration stops when the infinity norm of 
the gradient used in calculating the next step falls below the gradient tolerance, or 
then the L2 norm of the step size falls below the solution tolerance. For example:

Code Example – C# Levenberg-Marquardt minimization

int maxIterations = 1000;
double gradientTolerance = 1e-14; 
double solutionTolerance = 1e-14;
var lm = new LevenbergMarquardtMinimizer( 
  maxIterations, gradientTolerance, solutionTolerance );

Code Example – VB Levenberg-Marquardt minimization

Dim MaxIterations As Integer = 1000
Dim GradientTolerance As Double = "1e-14"
Dim SolutionTolerance As Double = "1e-14"
Dim LM As New LevenbergMarquardtMinimizer(MaxIterations, 
  GradientTolerance, SolutionTolerance)

Minimization

Class LevenbergMarquardtMinimizer provides the Minimize() method for 
minimizing a given multivariable function, encapsulated as a 
DoubleMultiVariableFunction, as described in Section 32.1.
298   NMath User’s Guide



Minimization Results

The Minimize() method returns the solution found by the minimization:

Code Example – C# Levenberg-Marquardt minimization

DoubleVector solution = minimizer.Minimize( f, start );

Code Example – VB Levenberg-Marquardt minimization

Dim Solution As DoubleVector = Minimizer.Minimize(F, Start)

Additional information about the last performed fit is available from properties 
implemented as part of the INonlinearLeastSqMinimizer interface (Section 32.1).

32.4 Nonlinear Least Squares Curve Fitting

NMath provides classes OneVariableFunctionFitter and 
BoundedOneVariableFunctionFitter for fitting generalized one variable functions 
to a set of points. In the space of the function parameters, beginning at a specified 
starting point, these classes finds a minimum (possibly local) in the sum of the 
squared residuals with respect to a set of data points. Minimization is performed 
by an implementation of the INonlinearLeastSqMinimizer or 
IBoundedNonlinearLeastSqMinimizer interface (Section 32.1), respectively. You 
must supply at least as many data points to fit as your function has parameters.

BoundedOneVariableFunctionFitter derives from OneVariableFunctionFitter, 
and accepts linear bounds on the solution.

Generalized One Variable Functions

A one variable function takes a single double x, and returns a double y:

A generalized one variable function additionally takes a set of parameters, p, which 
may appear in the function expression in arbitrary ways:

y f x =

y f p1 p2  pn x;   =
   Chapter 32.   Nonlinear Least Squares 299



For example, this code computes :

Code Example – C# nonlinear least squares fit

public double MyFunction( DoubleVector p, double x )
{
  return p[0] * Math.Sin( p[1] * x + p[2] );
}

Code Example – VB nonlinear least squares fit

Public Function MyFunction(P As DoubleVector, X As Double) As 
  Double
  Return P(0) * Math.Sin(P(1) * X + P(2))
End Function

Encapsulating One Variable Functions

In NMath, generalized one variable functions can be encapsulated in two ways:

 By extending the abstract class DoubleParameterizedFunction, and 
implementing the Evaluate() method. The 
GradientWithRespectToParams() can also be implemented to compute 
the gradient with respect to the parameters; otherwise, a numerical 
approximation is used.

 By wrapping a Func<DoubleVector, double, double> delegate in a 
DoubleParameterizedDelegate. An Action<DoubleVector, double, 
DoubleVector> delegate can also be provided for computing the gradient 
with respect to the parameters; otherwise a numerical approximation is 
used.

For example, this code encapsulates  using a 
DoubleParameterizedFunction:

Code Example – C# nonlinear least squares fit

public class MyFunction : DoubleParameterizedFunction
{
  public MyFunction()
  {}

  public override double Evaluate( DoubleVector p, double x )
  {
    return p[0] * Math.Sin( p[1] * x + p[2] );
  }
}

DoubleParameterizedFunction f = new MyFunction();

y a bx c+ sin=

y a bx c+ sin=
300   NMath User’s Guide



Code Example – VB nonlinear least squares fit

Public Class MyFunction
  Inherits DoubleParameterizedFunction

  Public Sub New()
  End Sub

  Public Overrides Function Evaluate(P As DoubleVector,
    X As Double) As Double
    Return P(0) * Math.Sin(P(1) * X + P(2))
  End Function

End Class

Dim F As DoubleParameterizedFunction = New MyFunction()

This code encapsulates the same function using a DoubleParameterizedDelegate:

Code Example – C# nonlinear least squares fit

public double MyFunction( DoubleVector p, double x )
{
  return p[0] * Math.Sin( p[1] * x + p[2] );
}

var f = new DoubleParameterizedDelegate( MyFunction );

Code Example – VB nonlinear least squares fit

Public Function MyFunction(P As DoubleVector, X As Double) As 
  Double
  Return P(0) * Math.Sin(P(1) * X + P(2))
End Function

Dim F As New DoubleParameterizedDelegate(AddressOf MyFunction)
   Chapter 32.   Nonlinear Least Squares 301



This code demonstrates implementing GradientWithRespectToParams() as well 
as Evaluate() in a DoubleParameterizedFunction which encapsulates 

:

Code Example – C# nonlinear least squares fit

public class MyFunction : DoubleParameterizedFunction
{
  public MyFunction()
  {}

  public override double Evaluate( DoubleVector p, double x )
  {
    double a = p[0];
    double b = p[1];
    return a*Math.Cos( b*x ) + b*Math.Sin( a*x );
  }

  public override void GradientWithRespectToParams( DoubleVector p, 
    double x, ref DoubleVector grad )
  {
    double a = p[0];
    double b = p[1];
    grad[0] = Math.Cos( b*x ) + b*x*Math.Cos( a*x );
    grad[1] = -a*x*Math.Sin( b*x ) + Math.Sin( a*x );
  }
}

Code Example – VB nonlinear least squares fit

Public Class MyFunction
  Inherits DoubleParameterizedFunction

  Public Sub New()
  End Sub

  Public Overrides Function Evaluate(P As DoubleVector, X As 
    Double) As Double
    Dim A As Double = P(0)
    Dim B As Double = P(1)
    Return a * Math.Cos(b * x) + b * Math.Sin(a * x)
  End Function

  Public Overrides Sub GradientWithRespectToParams(P As 
    DoubleVector, X As Double, ByRef Grad As DoubelVector)
    Dim A As Double = P(0)
    Dim B As Double = P(1)
    Grad(0) = Math.Cos(B * X) + B * X * Math.Cos(A * X)
    Grad(1) = -A * X * Math.Sin(B * X) + Math.Sin(A * X)
  End Sub
End Class

y a bx  b ax sin+cos=
302   NMath User’s Guide



Predefined Functions

For convenience, class AnalysisFunctions includes a selection of common 
generalized one variable functions, as shown in Table 23.

Instances of DoubleParameterizedDelegate can be constructed from these 
functions. For example:

Code Example – C# nonlinear least squares fit

var f = new DoubleParameterizedDelegate( 
  AnalysisFunctions.FourParameterLogistic );

Code Example – VB nonlinear least squares fit

Dim F As New DoubleParameterizedDelegate(
  AnalysisFunctions.FourParameterLogistic)

Constructing a OneVariableFunctionFitter

Class OneVariableFunctionFitter is templatized on 
INonlinearLeastSqMinimizer, and BoundedOneVariableFunctionFitter is 
templatized on IBoundedNonlinearLeastSqMinimizer (Section 32.1). Instances 
are constructed from an encapsulated, generalized one variable function. For 
example, this code uses one of the predefined curves in AnalysisFunctions:

Table 23 – Predefined Generalized One Variable Functions

Delegate Function

TwoParameterAsymptotic

ThreeParameterExponential

ThreeParameterSine

FourParameterLogistic

FiveParameterLogistic

y a
b
x
---+=

y ae
bx

c+=

y a bx c+ sin=

y d
a d–

1
x
c
--- 
  b

+

--------------------+=

y d
a d–

1
x
c
--- 
  b

+
g

----------------------------+=
   Chapter 32.   Nonlinear Least Squares 303



Code Example – C# nonlinear least squares fit

var f = new DoubleParameterizedDelegate( 
  AnalysisFunctions.FourParameterLogistic );

var fitter =
  new OneVariableFunctionFitter<TrustRegionMinimizer>( f );

Code Example – VB nonlinear least squares fit

Dim F As New DoubleParameterizedDelegate(
  AnalysisFunctions.FourParameterLogistic)

Dim Fitter As New OneVariableFunctionFitter(
  Of TrustRegionMinimizer)(F)

As a convenience, there is a constructor that takes a Func<DoubleVector, 
double, double> delegate directly:

Code Example – C# nonlinear least squares fit

BoundedOneVariableFunctionFitter<TrustRegionMinimizer> fitter =
  new BoundedOneVariableFunctionFitter<TrustRegionMinimizer>( 
    AnalysisFunctions.FourParameterLogistic );

Code Example – VB nonlinear least squares fit

Dim Fitter As New BoundedOneVariableFunctionFitter(
  Of TrustRegionMinimizer)(AnalysisFunctions.FourParameterLogistic)

An existing minimizer instance can also be passed to the constructor:

Code Example – C# nonlinear least squares fit

var minimizer = new LevenbergMarquardtMinimizer();
minimizer.GradientTolerance = 1e-6;

var fitter =
  new OneVariableFunctionFitter<LevenbergMarquardtMinimizer>( 
    AnalysisFunctions.FourParameterLogistic, minimizer );

Code Example – VB nonlinear least squares fit

Dim Minimizer As New LevenbergMarquardtMinimizer()
Minimizer.GradientTolerance = "1e-6"

Dim Fitter As New OneVariableFunctionFitter(
  Of LevenbergMarquardtMinimizer)(
    AnalysisFunctions.FourParameterLogistic, Minimizer)
304   NMath User’s Guide



Fitting Data

Once you’ve constructed an instance of OneVariableFunctionFitter or 
BoundedOneVariableFunctionFitter containing a function, you can fit that 
function to a set of points using the Fit() method.

The Fit() method on OneVariableFunctionFitter takes vectors of x and y values 
representing the data points, and a starting position in the function parameter 
space. For instance:

Code Example – C# nonlinear least squares fit

var x = new DoubleVector( 0.00, 0.00, 0.00, 0.00, 0.00, 
                          0.00, 0.94, 0.94, 0.94, 1.88, 
                          1.88, 1.88, 3.75, 3.75, 3.75, 
                          7.50, 7.50, 7.50, 15.00, 15.00, 
                          15.00, 30.00, 30.00, 30.00 );

var y = new DoubleVector( 7.58, 8.00, 8.32, 7.25, 7.37, 
                          7.96, 8.35, 6.91, 7.75, 6.87, 
                          6.45, 5.92, 1.92, 2.88, 4.23, 
                          1.18, 0.85, 1.05, 0.68, 0.52, 
                          0.82, 0.25, 0.22, 0.44 );
      
var start = new DoubleVector( "0.1 0.1 0.1 0.1" );

DoubleVector solution = fitter.Fit( x, y, start );

Code Example – VB nonlinear least squares fit

Dim X As New DoubleVector(0.0, 0.0, 0.0, 0.0, 0.0,
                          0.0, 0.94, 0.94, 0.94, 1.88,
                          1.88, 1.88, 3.75, 3.75, 3.75,
                          7.5, 7.5, 7.5, 15.0, 15.0,
                          15.0, 30.0, 30.0, 30.0)

Dim Y As New DoubleVector(7.58, 8.0, 8.32, 7.25, 7.37,
                          7.96, 8.35, 6.91, 7.75, 6.87,
                          6.45, 5.92, 1.92, 2.88, 4.23,
                          1.18, 0.85, 1.05, 0.68, 0.52,
                          0.82, 0.25, 0.22, 0.44)

Dim Start As New DoubleVector("0.1 0.1 0.1 0.1")

Dim Solution As DoubleVector = Fitter.Fit(X, Y, Start)

In the space of the function parameters, beginning at a specified start point, 
Fit() finds a minimum (possibly local) in the sum of the squared residuals with 
respect to the given x and y values.
   Chapter 32.   Nonlinear Least Squares 305



NOTE—You must supply at least as many data points to fit as your function has 
parameters.

The Fit() method on BoundedOneVariableFunctionFitter additionally accepts 
linear bounds on the solution:

Code Example – C# nonlinear least squares fit

var lowerBounds = new DoubleVector( 1.1, 1.8 ); 
var upperBounds = new DoubleVector( 2.1, 3.9 );
DoubleVector solution =
  fitter.Fit( x, y, start, lowerBounds, upperBounds );

Code Example – VB nonlinear least squares fit

Dim LowerBounds As New DoubleVector(1.1, 1.8)
Dim UpperBounds As New DoubleVector(2.1, 3.9)
Dim Solution As DoubleVector = fitter.Fit(X, Y, Start, LowerBounds, 
  UpperBounds)

Trying different initial starting points is recommended for better solutions. If 
possible, use starting points based on a priori information about the curve shape 
and the data being fit. Otherwise, random value close to zero are usually a good 
choice.

Fit Results

The Fit() method returns the solution found by the minimization. To compute the 
residuals relative to the data points at the solution, use the ResidualVector() 
method:

Code Example – C# nonlinear least squares fit

DoubleVector residuals = fitter.ResidualVector( x, y, solution );

Code Example – VB nonlinear least squares fit

Dim Residuals As DoubleVector =
  fitter.ResidualVector(X, Y, solution)

Additional information about the last performed fit is available from the 
underlying minimizer instance, accessible using the Minimizer property. For 
example, this code gets the sum of the squared residuals at the starting point and 
at the solution, the number of iterations performed, and the stop criterion:

Code Example – C# nonlinear least squares fit

INonlinearLeastSqMinimizer minimizer = fitter.Minimizer;

double initialResidual = minimizer.InitialResidual;
double finalResidual = minimizer.FinalResidual;
int iterations = minimizer.Iterations;
306   NMath User’s Guide



Code Example – VB nonlinear least squares fit

Dim Minimizer As INonlinearLeastSqMinimizer = Fitter.Minimizer

Dim InitialResidual As Double = Minimizer.InitialResidual
Dim FinalResidual As Double = Minimizer.FinalResidual
Dim Iterations As Integer = Minimizer.Iterations

NOTE—For testing the goodness of fit of OneVariableFunctionFitter solutions, see 
class GoodnessOfFit. Available statistics include the residual standard error, the coeffi-
cient of determination (R2 and "adjusted" R2), the F-statistic for the overall model with 
its numerator and denominator degrees of freedom, and standard errors, t-statistics, 
and finally corresponding (two-sided) p-values for the model parameters.

32.5 Nonlinear Least Squares Surface Fitting

NMath provides classes MultiVariableFunctionFitter and 
BoundedMultiVariableFunctionFitter for fitting generalized multivariable 
functions to a set of points. The interface is analogous to 
OneVariableFunctionFitter and BoundedOneVariableFunctionFitter 
(Section 32.4), with only a couple changes to accommodate multivariate data. 
Again, you must supply at least as many data points to fit as your function has 
parameters.

Generalized Multivariable Functions

A multivariable function takes a vector of x values, and returns a double y:

A generalized multivariable function additionally takes a set of parameters, p, 
which may appear in the function expression in arbitrary ways:

For example, this code computes :

Code Example – C# nonlinear least squares surface fit

public double MyFunction( DoubleVector p, DoubleVector x )
{
  return p[0] * Math.Pow( x[0], 2.0 ) * x[1] + 
         p[1] * Math.Sin( x[0] ) + 
         p[2] * Math.Pow( x[1], 3.0 );
};

y f x1 x2  xn  =

y f p1 p2  pm  x1 x2  xn ; =

y ax1
2
x2 b x1 sin cx2

3
+ +=
   Chapter 32.   Nonlinear Least Squares 307



Code Example – VB nonlinear least squares surface fit

Public Function MyFunction(P As DoubleVector, X As DoubleVector) As 
  Double
  Return P(0) * Math.Pow(X(0), 2.0) * X(1) +
         P(1) * Math.Sin(X(0)) +
         P(2) * Math.Pow(X(1), 3.0)
End Function

Encapsulating Generalized Multivariable Functions

In NMath, generalized multivariable functions can be encapsulated in two ways:

 By extending the abstract class DoubleParameterizedFunctional, and 
implementing the Evaluate() method. The 
GradientWithRespectToParams() can also be implemented to compute 
the gradient with respect to the parameters; otherwise, a numerical 
approximation is used.

 By wrapping a Func<DoubleVector, DoubleVector, double> delegate 
in a DoubleVectorParameterizedDelegate. An Action<DoubleVector, 
DoubleVector, DoubleVector> delegate can also be provided for 
computing the gradient with respect to the parameters; otherwise a 
numerical approximation is used.

For example, this code encapsulates a multivariable function using a 
DoubleParameterizedFunctional:

Code Example – C# nonlinear least squares surface fit

public class MyFunction : DoubleParameterizedFunctional
{
  public MyFunction()
    : base (2)
  {}

  public override double Evaluate( DoubleVector p, DoubleVector x )
  {
    // z = ayx^2 + bsin(x) + cy^3
    return p[0] * x[0] * Math.Pow( x[1], 2.0 ) + 
           p[1] * Math.Sin( x[0] ) + 
           p[2] * Math.Pow( x[1], 3.0 );
  }
}

DoubleParameterizedFunctional f = new MyFunction();
308   NMath User’s Guide



Code Example – VB nonlinear least squares surface fit

Public Class MyFunction
  Inherits DoubleParameterizedFunctional

  Sub New()
    MyBase.New(2)
  End Sub

  Public Overrides Function Evaluate(P As DoubleVector, X As 
    DoubleVector) As Double
    ' z = ayx^2 + bsin(x) + cy^3
    Return P(0) * X(0) * Math.Pow(X(1), 2.0) +
           P(1) * Math.Sin(X(0)) +
           P(2) * Math.Pow(X(1), 3.0)
  End Function

End Class

DoubleParameterizedFunctional F As New MyFunction()

This code encapsulates the same function using a 
DoubleVectorParameterizedDelegate:

Code Example – C# nonlinear least squares surface fit

public double MyFunction( DoubleVector p, DoubleVector x )
{
    // z = ayx^2 + bsin(x) + cy^3
    return p[0] * x[0] * Math.Pow( x[1], 2.0 ) + 
           p[1] * Math.Sin( x[0] ) + 
           p[2] * Math.Pow( x[1], 3.0 );
}

var f = new DoubleVectorParameterizedDelegate( MyFunction );

Code Example – VB nonlinear least squares surface fit

Public Function MyFunction(P As DoubleVector, X As DoubleVector) As 
  Double
  Return P(0) * Math.Pow(X(0), 2.0) * X(1) +
         P(1) * Math.Sin(X(0)) +
         P(2) * Math.Pow(X(1), 3.0)
End Function

Dim F As New DoubleVectorParameterizedDelegate( MyFunction )

Constructing a MultiVariableFunctionFitter

Class MultiVariableFunctionFitter is templatized on 
INonlinearLeastSqMinimizer, and class BoundedMultiVariableFunction is 
   Chapter 32.   Nonlinear Least Squares 309



templatized on IBoundedNonlinearLeastSqMinimizer (Section 32.1). Instances 
are constructed from an encapsulated generalized multivariable function. For 
example:

Code Example – C# nonlinear least squares surface fit

Func<DoubleVector, DoubleVector, double> myDelegate = 
  delegate( DoubleVector p, DoubleVector x )
  {
    // z = ayx^2 + bsin(x) + cy^3
    return p[0] * x[0] * Math.Pow( x[1], 2.0 ) + 
           p[1] * Math.Sin( x[0] ) + 
           p[2] * Math.Pow( x[1], 3.0 );
  };

DoubleVectorParameterizedDelegate f =
  new DoubleVectorParameterizedDelegate( myDelegate );
 
MultiVariableFunctionFitter<TrustRegionMinimizer> fitter =
  new MultiVariableFunctionFitter<TrustRegionMinimizer>( f );

Again, an existing minimizer instance can also be passed to the constructor:

Code Example – C# nonlinear least squares surface fit

var minimizer = new LevenbergMarquardtMinimizer();
minimizer.DefaultTolerance = 1e-6;

var fitter =
  new MultiVariableFunctionFitter<LevenbergMarquardtMinimizer>( 
    f, minimizer );

Code Example – VB nonlinear least squares surface fit

Dim Minimizer As New LevenbergMarquardtMinimizer()
Minimizer.GradientTolerance = "1e-6"

Dim Fitter As New MultiVariableFunctionFitter(
  Of LevenbergMarquardtMinimizer)(F, Minimizer)

Fitting Data

Once you’ve constructed an instance of MultiVariableFunctionFitter or 
BoundedMultiVariableFunctionFitter containing a function, you can fit that 
function to a set of points using the Fit() method. 

The Fit() method on MultiVariableFunctionFitter takes a DoubleMatrix of x 
values, where each row in the matrix represents a point, a DoubleVector of y 
values representing the data points, and a starting position in the function 
parameter space. For instance:
310   NMath User’s Guide



Code Example – C# nonlinear least squares surface fit

var x = new DoubleMatrix(10, 2);
x[Slice.All, 0] = new DoubleVector("3.6 7.7 9.3 4.1 8.6
                                    2.8 1.3 7.9 10.0 5.4");
x[Slice.All, 1] = new DoubleVector("16.5 150.6 263.1 24.7 208.5 
                                    9.9 2.7 163.9 325.0 54.3");

var y = new DoubleVector("95.09 23.11 60.63 48.59 89.12 
                          76.97 45.68 1.84 82.17 44.47");

var start = new DoubleVector("10 10 10");

DoubleVector solution = fitter.Fit( x, y, start );

Code Example – VB nonlinear least squares surface fit

Dim X As New DoubleMatrix(10, 2)
X(Slice.All, 0) = New DoubleVector("3.6 7.7 9.3 4.1 8.6" & _
                                    "2.8 1.3 7.9 10.0 5.4")
X(Slice.All, 1) = New DoubleVector("16.5 150.6 263.1 24.7 208.5" & 
_
                                        "9.9 2.7 163.9 325.0 54.3")

Dim Y As New DoubleVector("95.09 23.11 60.63 48.59 89.12" & _
                          "76.97 45.68 1.84 82.17 44.47")

Dim Start As New DoubleVector("10 10 10")

Dim Solution As DoubleVector = Fitter.Fit(X, Y, Start)

In the space of the function parameters, beginning at a specified start point, 
Fit() finds a minimum (possibly local) in the sum of the squared residuals with 
respect to the given x and y values.

NOTE—You must supply at least as many data points to fit as your function has 
parameters.
   Chapter 32.   Nonlinear Least Squares 311



The Fit() method on BoundedMultiVariableFunctionFitter additionally accepts 
linear bounds on the solution:

Code Example – C# nonlinear least squares surface fit

var lowerBounds = new DoubleVector( "[0 -18 0]" );
var upperBounds = new DoubleVector( "[.007 -3 1]" );
DoubleVector solution =
  fitter.Fit( x, y, start, lowerBounds, upperBounds );

Code Example – VB nonlinear least squares surface fit

Dim LowerBounds As New DoubleVector("[0 -18 0]")
Dim UpperBounds As New DoubleVector("[.007 -3 1]")
Dim Solution As DoubleVector =
  Fitter.Fit(X, Y, Start, LowerBounds, UpperBounds)

Trying different initial starting points is recommended for better solutions. If 
possible, use starting points based on a priori information about the curve shape 
and the data being fit. Otherwise, random value close to zero are usually a good 
choice.

Fit Results

The Fit() method returns the solution found by the minimization. To compute the 
residuals relative to the data points at the solution, use the ResidualVector() 
method:

Code Example – C# nonlinear least squares surface fit

DoubleVector residuals = fitter.ResidualVector( x, y, solution );

Code Example – VB nonlinear least squares surface fit

Dim Residuals As DoubleVector =
  Fitter.ResidualVector(X, Y, solution)

Additional information about the last performed fit is available from the 
underlying minimizer instance, accessible using the Minimizer property. For 
example, this code gets the sum of the squared residuals at the starting point and 
at the solution, the number of iterations performed, and the stop criterion:

Code Example – C# nonlinear least squares surface fit

INonlinearLeastSqMinimizer minimizer = fitter.Minimizer;

double initialResidual = minimizer.InitialResidual;
double finalResidual = minimizer.FinalResidual;
int iterations = minimizer.Iterations;
312   NMath User’s Guide



Code Example – VB nonlinear least squares surface fit

Dim Minimizer As INonlinearLeastSqMinimizer = Fitter.Minimizer

Dim InitialResidual As Double = Minimizer.InitialResidual
Dim FinalResidual As Double = Minimizer.FinalResidual
Dim Iterations As Integer = Minimizer.Iterations
   Chapter 32.   Nonlinear Least Squares 313



314   NMath User’s Guide



CHAPTER 33.  
FINDING ROOTS OF UNIVARIATE 
FUNCTIONS 

NMath includes classes for finding roots of univariate functions. A root-finding 
algorithm finds a value x for a given function f, such that f(x) = 0.

All NMath root-finding classes derive from the abstract base class 
RootFinderBase. The interface and behavior is the same as for MinimizerBase 
(Section 26.1)—iteration stops when either the decrease in function value is less 
than a specified error tolerance, or the specified maximum number of iterations is 
reached. The root-finding classes also implement one of the following interfaces:

 Classes that implement the IOneVariableRootFinder interface require only 
function evaluations to find roots.

 Classes that implement the IOneVariableDRootFinder interface also 
require evaluations of the derivative of a function.

This chapter describes how to use the root-finding classes.

33.1 Finding Function Roots Without 
Calculating the Derivative

NMath provides several classes that implement the IOneVariableRootFinder 
interface, and find roots of univariate functions using only function evaluations:

 Class SecantRootFinder finds roots of univariate functions using the secant 
method. The secant method assumes that the function is approximately 
linear in the local region of interest and uses the zero-crossing of the line 
connecting the limits of the interval as an estimate of the root. The function 
is evaluated at the estimate, a new line is formed, and the process is 
repeated.
   Chapter 33.   Finding Roots of Univariate Functions 315



 Class RiddersRootFinder finds roots of univariate functions using Ridders' 
Method. Ridders' Method first evaluates the function at the midpoint of the 
interval, then factors out the unique exponential function which turns the 
residual function into a straight line.

 Class FZero finds roots of univariate functions using the zeroin() root 
finder published originally in Computer Methods for Mathematical 
Computations by Forsythe, Malcolm and Moler in 1977. This class is similar 
to MATLAB's fzero() function.

Instances are constructed by specifying an error tolerance and a maximum number 
of iterations, or by accepting the defaults for these values. For example, this code 
constructs a SecantRootFinder using the default tolerance and a maximum of 50 
iterations:

Code Example – C# root finding

int maxIter = 50;
var finder = new SecantRootFinder( maxIter );

Code Example – VB root finding

Dim MaxIter As Integer = 50
Dim Finder As New SecantRootFinder(MaxIter)

Instances provide Find() methods for minimizing a given function within a given 
interval. For instance, the cosine function has a root at :

Code Example – C# root finding

var f = new OneVariableFunction(
  new Func<double, double>( Math.Cos ) );

var finder = new RiddersRootFinder();
double lower = 0;
double upper = Math.PI;
double root = finder.Find( f, lower, upper );

Code Example – VB root finding

Dim F As New OneVariableFunction(
  New Func(Of Double, Double)(AddressOf Math.Cos))

Dim Finder As New RiddersRootFinder()
Dim Lower As Double = 0
Dim Upper As Double = Math.PI
Dim Root As Double = Finder.Find(F, Lower, Upper)

 2
316   NMath User’s Guide



33.2 Finding Function Roots of Derivable 
Functions

Class NewtonRalphsonRootFinder implements the IOneVariableDRootFinder 
interface and finds roots of univariate functions using the Newton-Raphson Method. 
The Newton-Raphson algorithm finds the slope of the function at the current point 
and uses the zero of the tangent line as an estimate of the root.

Like SecantRootFinder and RiddersRootFinder (Section 33.1), instances of 
NewtonRalphsonRootFinder are constructed by specifying an error tolerance and 
a maximum number of iterations, or by accepting the defaults for these values. For 
example:

Code Example – C# root finding

double tol = 1e-8;
int maxIter = 100;
var finder = new NewtonRaphsonRootFinder( tol, maxIter );

Code Example – VB root finding

Dim Tol As Double = "1e-8"
Dim MaxIter As Integer = 100
Dim Finder As New NewtonRaphsonRootFinder(Tol, MaxIter)

Once you have constructed a NewtonRalphsonRootFinder instance, you can use 
the Find() method to find a root within a given interval. For instance, this 
polynomial has a root at 1:

This code finds the root in the interval (0, 3):

Code Example – C# root finding

var p = new Polynomial(
  new DoubleVector( -2.0, -5.0, 9.0, -2.0 ) );
var finder = new NewtonRaphsonRootFinder();
double lower = 0;
double upper = 3;
double root = finder.Find( p, p.Derivative(), lower, upper );

Code Example – VB root finding

Dim P As New Polynomial(New DoubleVector(-2.0, -5.0, 9.0, -2.0))
Dim Finder As New NewtonRaphsonRootFinder()
Dim Lower As Double = 0
Dim Upper As Double = 3
Dim Root As Double = Finder.Find(P, P.Derivative(), Lower, Upper)

f x  2x
3

– 9x
2

5x– 2–+=
   Chapter 33.   Finding Roots of Univariate Functions 317



318   NMath User’s Guide



CHAPTER 34.  
INTEGRATING MULTIVARIABLE 
FUNCTIONS

The CenterSpace.NMath.Core namespace includes classes for computing an 
approximation of the integral of a OneVariableFunction over some interval 
(Chapter 13). These classes include RombergIntegrator and 
GaussKronrodIntegrator, which implement the IIntegrator interface. 

Also the class TwoVariableIntegrator computes the integral of a function of two 
variables. Class TwoVariableIntegrator computes the double integral by breaking 
up the problem into repeated one-dimensional integrals. 

The chapter describes how to use class TwoVariableIntegrator.

34.1 Creating TwoVariableIntegrators

A TwoVariableIntegrator has two instances of IIntegrator: one for the x 
dimension, and one for the y dimension. This code constructs a 
TwoVariableIntegrator with the default univariate integrators:

Code Example – C# integration

var integrator = new TwoVariableIntegrator();

Code Example – VB integration

Dim Integrator As New TwoVariableIntegrator()

Instances of GaussKronrodIntegrator are used by default. Alternatively, you can 
provide non-default univariate integrators:

Code Example – C# integration

var gauss1 = new GaussKronrodIntegrator();
var gauss2 = new GaussKronrodIntegrator();
gauss2.Tolerance = 1e-6;
var integrator = new TwoVariableIntegrator( gauss1, gauss2 );

Code Example – VB integration

Dim Gauss1 As New GaussKronrodIntegrator()
Dim Gauss2 As New GaussKronrodIntegrator()
Gauss2.Tolerance = "1e-6"
   Chapter 34.   Integrating Multivariable Functions 319



Dim Integrator As New TwoVariableIntegrator(Gauss1, Gauss2)

Class TwoVariableIntegrator also provides properties DxIntegrator and 
DyIntegrator for getting and setting the x and y univariate integrators on a 
TwoVariableIntegrator instance post-construction.

34.2 Integrating Functions of Two Variables

The Integrate() method on TwoVariableIntegrator integrates a given two-
variable function over a given region. For example, to compute the double integral:

First write the function:

Code Example – C# integration

private double F( DoubleVector v )
{
  return 1.0 / ( 1.0 - ( v[0] * v[0] * v[1] * v[1] ) );
}

Code Example – VB integration

Function F(V As DoubleVector) As Double
  Return 1.0 / (1.0 - (V(0) * V(0) * V(1) * V(1)))
End Function

Then encapsulate the function as a MultiVariableFunction:

Code Example – C# integration

var function = new MultiVariableFunction(
  new Func<DoubleVector, double>( F ) );

Code Example – VB integration

Dim MultiFunction As New MultiVariableFunction(
  New Func(Of DoubleVector, Double)(F))

Finally, compute the integral:

Code Example – C# integration

var integrator = new TwoVariableIntegrator();
double xLower = 0;
double xUpper = 1;

xd yd

1 x
2
y

2
–

--------------------

0

1


0

1



320   NMath User’s Guide



double yLower = 0;
double yUpper = 1;
double integral = integrator.Integrate( function, xLower, xUpper, 
  yLower, yUpper );

Code Example – VB integration

Dim Integrator As New TwoVariableIntegrator()
Dim XLower As Double = 0
Dim XUpper As Double = 1
Dim YLower As Double = 0
Dim YUpper As Double = 1
Dim Integral As Double = integrator.Integrate(MultiFunction, 
  XLower, XUpper, YLower, YUpper)

The code above explicitly sets the x and y bounds. You can also set the y lower 
bound, y upper bound, or both, as a function of x. For example, to compute this 
double integral:

First define the function:

Code Example – C# integration

private double F( DoubleVector v )
{
  return ( 9.0 * v[0] * v[0] ) - ( 3.0 * v[1] );
}

Code Example – VB integration

Function F(V As DoubleVector) As Double
  Return (9.0 * V(0) * V(0)) - (3.0 * V(1))
End Function

Then encapsulate the function as a MultiVariableFunction:

Code Example – C# integration

var function = new MultiVariableFunction(
  new Func<DoubleVector, double>( F ) );

Code Example – VB integration

Dim function As New MultiVariableFunction(
  New Func(Of DoubleVector, Double)(F))

Then define the y bounding functions and encapsulate them as 
OneVariableFunction objects:

9x
2

3y–  xd yd

9 x2––

9 x2–


3–

3



   Chapter 34.   Integrating Multivariable Functions 321



Code Example – C# integration

private double YUpperF( double x )
{
  return Math.Sqrt( 9.0 - ( x * x ) );
}

private double YLowerF( double x )
{
  return -YUpperF( x );
}

var yLowerFunction = new OneVariableFunction(
  new NMathFunctions.DoubleUnaryFunction( YLowerF ) );
var yUpperFunction = new OneVariableFunction(
  new NMathFunctions.DoubleUnaryFunction( YUpperF ) );

Code Example – VB integration

Function YUpperF(X As Double) As Double
  Return Math.Sqrt(9.0 - (X * X))
End Function

Function YLowerF(X As Double) As Double
  Return -YUpperF(X)
End Function

Dim YLowerFunction As New OneVariableFunction(
  New Func(Of Double, Double)(AddressOf YLowerF))
Dim YUpperFunction As New OneVariableFunction(
  New Func(Of Double, Double)(AddressOf YUpperF))

Finally, compute the integral:

Code Example – C# integration

var integrator = new TwoVariableIntegrator();
double xLower = -3;
double xUpper = 3;
double integral = integrator.Integrate( function, xLower, xUpper,
  yLowerFunction, yUpperFunction );

Code Example – VB integration

Dim Integrator As New TwoVariableIntegrator()
Dim XLower As Double = -3
Dim Xupper As Double = 3
Dim Integral As Double = integrator.Integrate(MultiFunction,
  XLower, XUpper, YLowerFunction, YUpperFunction)
322   NMath User’s Guide



CHAPTER 35.  
DIFFERENTIAL EQUATIONS

NMath provides classes for solving first order initial value differential equations 
by the Runge-Kutta method.

An ordinary differential equation (ODE) contains one or more derivatives of a 
dependent variable y with respect to a single independent variable. A first-order 
ODE contains only the first derivative of y. Since there are generally many 
functions that satisfy an ODE, an initial value is necessary to constrain the 
solution—that is, y is equal to y0 at a given initial x0.

NMath includes:

 Class FirstOrderInitialValueProblem encapsulates a first order initial 
value differential equation. 

 Class RungeKuttaSolver solves an initial value ODE by the common 
Runge-Kutta method.

 Class RungeKutta45OdeSolver solves an initial value ODE using an 
explicit Runge-Kutta (4,5) formula known as the Dormand-Prince pair.

 Class RungeKutta5OdeSolver solves an initial value ODE using a non-
adaptive explicit Runge-Kutta formula of order 5.

 Class VariableOrderOdeSolver solves stiff and non-stiff ordinary 
differential equations. The algorithm uses higher order methods and 
smaller step size when the solution varies rapidly.

The chapter describes how to use class these classes.

35.1 Encapsulating Differential Equations

Class FirstOrderInitialValueProblem represents a first order initial value 
differential equation. If  is the unknown function, the first order initial 
value problem may be stated as

where  denotes the first derivative of y with respect to x, F is a continuous 
function with bounded partial derivatives, and  is the value of the unknown 
function y at the point .

y y x =

y' F x y  y x0  y0==

y'
y0

x0
   Chapter 35.   Differential Equations 323



A FirstOrderInitialValueProblem instance is constructed from a function, F, and 
initial value,  and . The function F is encapsulated as a Func<double, 
double, double>, a delegate which takes two doubles and returns a double.

For example, the following code constructs a FirstOrderInitialValueProblem 
where :

Code Example – C# ordinary differential equations (ODE)

Func<double, double, double> f = 
  delegate( double x, double y )
  { 
    return x * x;
  };

double x0 = 0.0;
double y0 = 1.0;

FirstOrderInitialValueProblem prob =
  new FirstOrderInitialValueProblem( f, x0, y0 );

35.2 Solving Differential Equations

Class RungeKuttaSolver solves first order initial value differential equations by 
the Runge-Kutta method. The solver computes the unknown function y as set of 
tabulated values  such that .

Constructing RungeKuttaSolver Instances

Instances of RungeKuttaSolver are constructed from the number of tabulated 
points and a nonzero value delta. From the number of points and the delta, the set 

 is determined as .

For instance:

Code Example – C# ordinary differential equations (ODE)

int n = 2000;
double delta = .001;
var solver = new RungeKuttaSolver( n, delta );

Code Example – VB ordinary differential equations (ODE)

Dim N As Integer = 2000
Dim Delta As Double = 0.001
Dim Solver As New RungeKuttaSolver(N, Delta)

x0 y0

y' x
2

y 0  1= =

xi yi  y xi  yi=

xi  xi x0 i for i=0,1, n+=
324   NMath User’s Guide



Optionally, the order of the Runge-Kutta method may also be specified, using the 
enum RungeKutterSolver.SolverOrder. 

Code Example – C# ordinary differential equations (ODE)

var solver = new RungeKuttaSolver( n, delta, SolverOrder.First );

Code Example – VB ordinary differential equations (ODE)

Dim Solver As New RungeKuttaSolver(N, Delta, SolverOrder.First)

By default, the fourth order Runge-Kutta method (RK4) is used.

Solving First Order Initial Value Problems

The Solve() method on RungeKuttaSolver solves a given  
FirstOrderInitialValueProblem by the common Runge-Kutta method. The 
Solve() method computes the unknown function y as set of tabulated values 

 such that . The tabulated values are returned either as a 
KeyValuePair<double[], double[]>, or as a 
CenterSpace.NMath.Core.TabulatedFunction passed by reference. (See 
Section 13.5 for more information on tabulated functions.)

For example:

Code Example – C# ordinary differential equations (ODE)

KeyValuePair<double[], double[]> tabulatedValues =
  solver.Solve( prob );

Code Example – VB ordinary differential equations (ODE)

Dim TabulatedValues As KeyValuePair(Of Double(), Double()) = 
  Solver.Solve(Prob)

or

Code Example – C# ordinary differential equations (ODE)

TabulatedFunction ftab = null;
solver.Solve( prob, ref ftab );

Code Example – VB ordinary differential equations (ODE)

Dim FTab As TabulatedFunction = Nothing
Solver.Solve(Prob, FTab)

Similarly, in the following code, results are returned as a LinearSpline, a subclass 
of TabulatedFunction that provides linear interpolation between tabulated values:

Code Example – C# ordinary differential equations (ODE)

var spline = new LinearSpline();

xi yi  y xi  yi=
   Chapter 35.   Differential Equations 325



solver.Solve( prob, ref spline );

Code Example – VB ordinary differential equations (ODE)

Dim Spline As New LinearSpline()
Solver.Solve(Prob, Spline)

35.3 Dormand–Prince Method

The Dormand–Prince (DOPRI) method is a member of the Runge–Kutta family of 
ODE solvers. It uses six function evaluations to calculate fourth- and fifth-order 
accurate solutions. Dormand–Prince is currently the default method in MATLAB's 
ode45 solver. NMath provides two solvers which use Dormand-Prince methods:

 Class RungeKutta45OdeSolver solves an initial value ODE using an 
explicit Runge-Kutta (4,5) formula known as the Dormand-Prince pair.

 Class RungeKutta5OdeSolver solves an initial value ODE using a non-
adaptive explicit Runge-Kutta formula of order 5. This is a non-adaptive 
solver. The step sequence is determined by given vector of time values, but 
the derivative function is evaluated multiple times per step. The solver 
implements the Dormand-Prince method of order 5 in a general framework 
of explicit Runge-Kutta methods.

For example, the following code shows how to use the RungeKutta45OdeSolver 
to solve a non-stiff system of equations describing the motion of a rigid body 
without external forces:

y1' = y2*y3,       y1(0) = 0
y2' = -y1*y3,      y2(0) = 1
y3' = -0.51*y1*y2, y3(0) = 1

This function describes the system of differential equations:

Code Example – C# ordinary differential equations (ODE)

static DoubleVector Rigid( double t, DoubleVector y )
{
  var dy = new DoubleVector( 3 );
  dy[0] = y[1] * y[2];
  dy[1] = -y[0] * y[2];
  dy[2] = -0.51 * y[0] * y[1];
  return dy;
}

Code Example – VB ordinary differential equations (ODE)

Shared Function Rigid(T As Double, Y As DoubleVector)
  Dim DY As New DoubleVector(3)
326   NMath User’s Guide



  DY(0) = Y(1) * Y(2)
  DY(1) = -Y(0) * Y(2)
  DY(2) = -0.51 * Y(0) * Y(1)
  Return DY
End Function

Parameter t is the time parameter, and y is the state vector.

First, construct the solver:

Code Example – C# ordinary differential equations (ODE)

var solver = new RungeKutta45OdeSolver();

Code Example – VB ordinary differential equations (ODE)

Dim Solver As New RungeKutta45OdeSolver()

Next, construct the time span vector. If this vector contains exactly two points, the 
solver interprets these to be the initial and final time values. Step size and function 
output points are provided automatically by the solver. Here the initial time value 
t0 is 0.0 and the final time value is 12.0.

Code Example – C# ordinary differential equations (ODE)

var timeSpan = new DoubleVector( 0.0, 12.0 );

Code Example – VB ordinary differential equations (ODE)

Dim TimeSpan As New DoubleVector(0.0, 12.0)

Specify the initial y vector.

Code Example – C# ordinary differential equations (ODE)

var y0 = new DoubleVector( 0.0, 1.0, 1.0 );

Code Example – VB ordinary differential equations (ODE)

Dim Y0 As New DoubleVector(0.0, 1.0, 1.0)

Optionally, construct solver options. Here we set the absolute and relative 
tolerances to use.

Code Example – C# ordinary differential equations (ODE)

var solverOptions =
  new RungeKutta45OdeSolver.Options
  {
    AbsoluteTolerance = new DoubleVector( 1e-4, 1e-4, 1e-5 ),
    RelativeTolerance = 1e-4,
    Refine = 1
  };
   Chapter 35.   Differential Equations 327



Code Example – VB ordinary differential equations (ODE)

Dim SolverOptions As New RungeKutta45OdeSolver.Options()
SolverOptions.AbsoluteTolerance =
  New DoubleVector(0.0001, 0.0001, 0.00001)
SolverOptions.RelativeTolerance = 0.0001
SolverOptions.Refine = 1

Construct the delegate representing our system of differential equations.

Code Example – C# ordinary differential equations (ODE)

var odeFunction =
  new Func<double, DoubleVector, DoubleVector>( Rigid );

Code Example – VB ordinary differential equations (ODE)

Dim ODEFunction As New Func(Of Double, DoubleVector, 
  DoubleVector)(AddressOf Rigid)

Finally, solve the problem. The solution is returned as a key/value pair. The first 
element of the pair is the time span vector, the second element is the corresponding 
solution values. That is, if the computed solution function is y then 
y(soln.Key[i]) = soln.Value[i].

Code Example – C# ordinary differential equations (ODE)

RungeKutta45OdeSolver.Solution<DoubleMatrix> soln =
  solver.Solve( odeFunction, timeSpan, y0, solverOptions );
Console.WriteLine( "T = " + soln.T );
Console.WriteLine( "Y = " );
Console.WriteLine( soln.Y.ToTabDelimited() );
328   NMath User’s Guide



Code Example – VB ordinary differential equations (ODE)

Dim Soln As RungeKutta45OdeSolver.Solution(Of DoubleMatrix) = 
Solver.Solve(ODEFunction, TimeSpan, Y0, SolverOptions)
Console.WriteLine("T = {0}", Soln.T)
Console.WriteLine("Y = ")
Console.WriteLine(Soln.Y.ToTabDelimited())

35.4 Stiff Equations

A stiff equation is a differential equation for which common numerical methods for 
solving the equation are numerically unstable, unless the step size is taken to be 
extremely small. In NMath, class VariableOrderOdeSolver solves stiff and non-
stiff ordinary differential equations. The algorithm uses higher order methods and 
smaller step size when the solution varies rapidly.

The Solve() method solves the given initial value problem of ordinary differential 
equation of the form

or

for problems that involve a mass matrix M.

The function takes

 A delegate which evaluates the right hand side of the differential 
equations.

 A timespan vector specifying the interval of integration [t0, tf]. The 
solver imposes initial conditions at t0 and integrates from t0 to tf. If the 
timespan vector contains two elements, the solver returns the solution 
evaluated at every integration step. If the timespan vector contains more 
than two points, the solver returns the solution evaluated at the given 
points. The time values must be in order, either increasing or decreasing.

 The initial value for problem—the value of the unknown function y at the 
initial time value.

For example, the van der Pol equations in relaxation oscillation provide an 
example of a stiff system.4 The limit cycle has portions where the solution 

4 https://www.mathworks.com/help/matlab/ref/ode15s.html

y' f t y( )=

y' M t y f t y =
   Chapter 35.   Differential Equations 329



components change slowly and the problem is quite stiff, alternating with regions 
of very sharp change where it is not stiff.

To simulate this system, first create a function containing the equations. The 
following code creates the parameterized Van der Pol equation with parameter 

. Parameter t is the time value, and y is the state value.

Code Example – C# stiff ODE solver

public static DoubleVector vdp1000( double t, DoubleVector y)
{
  DoubleVector dy = new DoubleVector( 2 );
  double y0 = y[0];
  double y1 = y[1];
  dy[0] = y1;
  dy[1] = 1000 * ( 1 - (y0 * y0) ) * y1 - y0;
  return dy;
}

Next, create a function that returns the Jacobian at given t and y values.

Code Example – C# stiff ODE solver

public static DoubleMatrix vdp1000Jac(double t, DoubleVector y)
{
  DoubleMatrix J = new DoubleMatrix( 2, 2 );
  J[0, 0] = 0;
  J[0, 1] = 1;
  J[1, 0] = -2 * 1000 * y[0] * y[1] - 1;
  J[1, 1] = 1000 * ( 1.0 - y[0] * y[0] );
  return J;
}

Create the initial values and time interval, and encapsulate the ODE function.

Code Example – C# stiff ODE solver

var y0 = new DoubleVector( 2.0, 0.0 );
var timespan = new DoubleVector( 0.0, 3000.0 );
var odeFunc =
  new Func<double, DoubleVector, DoubleVector>( vdp1000 );

Create the solver object and set up the solver options. Here we use the default 
relative and absolute tolerances (1e-3 and 1e-6, respectively). Also, since we have 
an explicit form for the Jacobian function, we set this in the solver options too.

y'0 y1=

y0 0( ) 2=

y'1 1000 1 y0
2

– y1 y0–=

y1 0( ) 0=

 1000=
330   NMath User’s Guide



Code Example – C# stiff ODE solver

var ode15s = new VariableOrderOdeSolver();
var options = new VariableOrderOdeSolver.Options();
options.JacobianFunction =
  new Func<double, DoubleVector, DoubleMatrix>( vdp1000Jac );

Finally, solve the equation and display the solution.

Code Example – C# stiff ODE solver

VariabeOrderOdeSolver.Solution<DoubleMatrix> soln =
  ode15s.Solve( vdp1000, timespan, y0, options );

Console.WriteLine( "t = " + NMathFunctions.Round(soln.T, 4) );
Console.WriteLine();
Console.WriteLine( "y = " );
Console.WriteLine(
  NMathFunctions.Round( soln.Y, 4 ).ToTabDelimited() );
   Chapter 35.   Differential Equations 331



332   NMath User’s Guide



PART V - STATISTICS
      339



340   NMath User’s Guide



CHAPTER 36.  STATISTICS INTRODUCTION

NMath’s statistical suite is fully integrated into CenterSpace Software’s NMath™ 
product. NMath provides object-oriented components for mathematical, 
engineering, scientific, and financial applications and includes statistical 
components for descriptive statistics, probability distributions, combinatorial 
functions, multiple linear regression, hypothesis testing, and analysis of variance 
all optimized for the .NET platform.

Fully compliant with the Microsoft Common Language Specification, all NMath 
routines are callable from any .NET language, including C#, Visual Basic, and 
Managed C++.

36.1 Product Features

The statistical features of NMath include:

 A data frame class for holding data of various types (numeric, string, 
boolean, datetime, and generic), with methods for appending, inserting, 
removing, sorting, and permuting rows and columns.

 Functions for computing descriptive statistics, such as mean, variance, 
standard deviation, percentile, median, quartiles, geometric mean, 
harmonic mean, RMS, kurtosis, skewness, and many more. 

 Probability density function (PDF), cumulative distribution function 
(CDF), inverse CDF, and random variable moments for a variety of 
probability distributions. 

 Multiple linear regression and logistic regression. 

 Basic hypothesis tests, such as z-test, t-test, F-test, and Pearson’s chi-square 
test, with calculation of p-values, critical values, and confidence intervals. 

 One-way and two-way analysis of variance (ANOVA) and analysis of 
variance with repeated measures (RANOVA).

 Non-parametric tests, such as the Kolmogorov-Smirnov test and Kruskal-
Wallis rank sum test.

 Multivariate statistical analyses, including principal component analysis, 
factor analysis, hierarchical cluster analysis, and k-means cluster analysis.

 Nonnegative matrix factorization (NMF), and data clustering using NMF.
   Chapter 36.   Statistics Introduction 1



 Partial least squares (PLS).

 Statistical process control.

36.2 Namespaces

All types in NMath are in the CenterSpace.NMath.Core namespace. To avoid 
using fully qualified names, preface your code with the namespace statement. For 
example:

Code Example – C#

using CenterSpace.NMath.Core;

Code Example – VB

Imports CenterSpace.NMath.Core

All NMath code shown in this manual assumes the presence of such a namespace 
statement.
2   NMath User’s Guide



CHAPTER 37.  
DATA FRAMES

Statistical functions generally support the NMath types DoubleVector and 
DoubleMatrix, as well as native arrays of doubles. In many cases, these types are 
sufficient for storing and manipulating your statistical data. However, they suffer 
from two limitations: they can only store numeric data, and they have limited 
support for adding, inserting, removing, and reordering data. Because the 
underlying data is an array of doubles, data must be copied to new storage every 
time manipulation operations such as these are performed.

For these reasons, NMath provides the DataFrame class which represents a two-
dimensional data object consisting of a list of columns of the same length. Columns 
are themselves lists of different types of data: numeric, string, boolean, generic, 
and so on. 

Methods are provided for appending, inserting, removing, sorting, and permuting 
rows and columns in a data frame. Because the underlying data is in a list, 
elements can be added, removed, and reordered without having to copy all of the 
data to new storage.

A DataFrame can be viewed as a kind of virtual database table. Columns can be 
accessed by numeric index (0...n-1) or by a string name supplied at construction 
time. Rows can be accessed by numeric index (0...n-1) or by a key object. 
Column names and row keys do not need to be unique. For example, this output 
shows a formatted string representation of data from a sample data frame:

#             State  Weight  Married
John Smith    OR     165     true
Ruth Barnes   WA     147     true
Jane Jones    VT     115     false
Tim Travis    AK     230     false
Betsy Young   MA     130     true
Arthur Smith  CA     152     false
Emma Allen    OK     135     false
Roy Wilkenson WI     182     true
   Chapter 37.   Data Frames 3



This data frame contains three columns: column 0, named State, contains string 
data; column 1, named Weight, contains integer data; column 2, named Married, 
contains boolean data. There are eight rows of data in this data frame, and the 
subjects’ names are used as row keys.

This chapter describes how to use the DataFrame class.

37.1 Column Types

A DataFrame may contain columns of different types—the only constraint is that 
the columns must be of the same length. DFColumn, which implements the 
IDFColumn interface, is the abstract base class for data frame columns. NMath 
provides the following derived classes for column types:

 DFBoolColumn represents a column of logical data.

 DFDateTimeColumn represents a column of temporal data.

 DFGenericColumn represents a column of generic data.

 DFIntColumn represents a column of integer data.

 DFNumericColumn represents a column of double-precision floating 
point data.

 DFStringColumn represents a column of string data.

Creating Columns

Empty columns are constructed by simply supplying a name for the column. For 
example:

Code Example – C#

var col = new DFDateTimeColumn( “myCol” );

Code Example – VB

Dim Col As New DFDateTimeColumn("myCol")

The name of a column can be used to access the column in a data frame. Once a 
column instance is constructed, the name cannot be changed. 

NOTE—Columns also provide a modifiable Label property for display purposes; see 
below.
4   NMath User’s Guide



Columns can also be initialized with an array of data at construction time:

Code Example – C#

var bArray =
  new bool[] { true, false, true, true, true, false, false };
var col = new DFBoolColumn( “myCol”, bArray );

Code Example – VB

Dim BArray() As Boolean = {True, False, True, True, True, False, 
False}
Dim Col As New DFBoolColumn("myCol", BArray)

Constructors that take an array of data use the params keyword, so values may 
also be passed as parameters:

Code Example – C#

var col =
  new DFStringColumn( “myCol”, “Jane”, “Joe”, “Mary”, “Bill” );

Code Example – VB

Dim Col As
  New DFStringColumn("myCol", "Jane", "Joe", "Mary", "Bill")

Some column types provide additional options for initializing data at construction 
time. For instance, this code initializes a numeric column with data from a 
DoubleVector:

Code Example – C#

var v = new DoubleVector( 50, 0, .1 );
var col = new DFNumericColumn( "myCol", v );

Code Example – VB

Dim V As New DoubleVector(50, 0, 0.1)
Dim Col As New DFNumericColumn("myCol", V)

This code initializes a generic column with data from an ICollection:

Code Example – C#

var list = new ArrayList( 3 );
list.Add( 3.14 );
list.Add( "Hello World" );
list.Add( DateTime.Now );
var col = new DFGenericColumn( "myCol", list );

Code Example – VB

Dim List As New ArrayList(3)
List.Add(3.14)
   Chapter 37.   Data Frames 5



List.Add("Hello World")
List.Add(DateTime.Now)
Dim Col As New DFGenericColumn("myCol", List)

Lastly, you can create a column from another column. For example, this code 
creates a DFIntColumn from a DFStringColumn:

Code Example – C#

var col = new DFStringColumn( “Col1”, “1”, “2”, “3”, “4” );
var col2 = new DFIntColumn( “Col2”, col1 );

Code Example – VB

Dim Col As New DFStringColumn("Col1", "1", "2", "3", "4")
Dim Col2 As New DFIntColumn("Col2", Col1)

A NMathFormatException is raised if the data in the given column cannot be 
converted to the appropriate type.

Adding and Removing Data

Once a column is constructed you can add or remove data from it. The Add() 
method appends an element to the end of the column:

Code Example – C#

var col = new DFStringColumn( "Name" );
col.Add( "Joe Smith" );
col.Add( "Jane Doe" );
col.Add( "John Davis" );

Code Example – VB

Dim Col As New DFStringColumn("Name")
Col.Add("Joe Smith")
Col.Add("Jane Doe")
Col.Add("John Davis")

The Insert() method inserts an element into a column at a given index. For 
instance, this code insert a new element at the top of the column:

Code Example – C#

col.Insert( 0, "Sally Jones" );

Code Example – VB

Col.Insert(0, "Sally Jones")

The RemoveAt() method removes the element at a given index:
6   NMath User’s Guide



Code Example – C#

col.RemoveAt( 3 );

Code Example – VB

Col.RemoveAt(3)

Accessing Column Data

The data frame column classes provide standard indexing operators for getting 
and setting element values. Thus, col[i] always returns the ith element of the 
column:

Code Example – C#

var col =
  new DFStringColumn( “Names”, “Jane”, “Joe”, “Mary”, “Bill” );
col[0] = “Janet”;

Code Example – VB

Dim Col As
  New DFStringColumn("Names", "Jane", "Joe", "Mary", "Bill")
Col(0) = "Janet"

The GetEnumerator() method returns an enumerator for the column data:

Code Example – C#

IEnumerator enumerator = col.GetEnumerator();
while ( enumerator.MoveNext() )
{
  // Do something with enumerator.Current
}

Code Example – VB

Dim Enumerator As IEnumerator = Col.GetEnumerator()
While (Enumerator.MoveNext())
  '' Do something with enumerator.Current
End While

Column Properties

Data frame column types provide the following properties:

 ColumnType gets the type of the objects held by the column.

 Count gets the number of ojects in the column.
   Chapter 37.   Data Frames 7



 IsNumeric returns true if a column is of type DFIntColumn or 
DFNumericColumn.

 Label gets and sets the label in the header of the column.

 MissingValue gets and sets the value used to represent missing values in 
the column (see below).

 Name gets the name of the column.

NOTE—The Name of a column can only be set in a constructor. Once a column is con-
structed, the name cannot be changed. For a modifiable label, see the Label property.

Reordering Column Data

You can use the Permute() method to arbitrarily reorder the elements in a column. 
This method accepts a permutation array of element indices and reorders the 
elements such that this[ permutation[i] ] is set to the ith object in the original 
column.

For example, this code moves the last two elements to the head of the column:

Code Example – C#

var col =
   new DFStringColumn( "myCol", "a", "b", "c", "d", "e" );
col.Permute( 2, 3, 4, 0, 1 );

Code Example – VB

Dim Col As New DFStringColumn("myCol", "a", "b", "c", "d", "e")
Col.Permute(2, 3, 4, 0, 1)

Missing Values

All column types—except DFBoolColumn, which has only two valid values—
support missing values. Most statistical functions in NMath are accompanied by a 
paired function that ignores missing values (Section 38.2).

NOTE—To represent missing values in boolean data, use a DFIntColumn. For example, 
use 1 for true, 0 for false, and -1 for missing.
8   NMath User’s Guide



At construction time, the missing value for a column is defined using a static 
variable in class StatsSettings, as shown in Table 24.

For instance, this code computes the mean of a column of integers, ignoring any 
missing values:

Code Example – C#

var col = new DFIntColumn( “myCol”, 5, 2, -1, 1, 0, 7 );
double mean = StatsFunctions.NaNMean( col );

Code Example – VB

Dim Col As New DFIntColumn("myCol", 5, 2, -1, 1, 0, 7)
Dim Mean As Double = StatsFunctions.NaNMean(Col)

By default, a missing value in a DFIntColumn is represented using the default 
setting of StatsFunctions.IntegerMissingValue, which is int.MinValue. You 
can change the way a missing value is represented for a particular column instance 
using the MissingValue property:

Code Example – C#

col.MissingValue = -1;
double mean = StatsFunctions.NaNMean( col );

Code Example – VB

Col.MissingValue = -1
Dim Mean As Double = StatsFunctions.NaNMean(Col)

In this example, all values in col equal to -1 are ignored when computing the 
mean.

NOTE—For DFNumericColumn instances you can use the MissingValue property to 
indicate that missing values are represented by something other than the default value 
Double.NaN. However, Double.NaN will continue to be treated as missing, in addition 
to whatever value you set.

Table 24 – Default missing values for data frame column types

Column Type StatsSettings Variable Default Value

DFDateTimeColumn DateTimeMissingValue DateTime.MinValue

DFGenericColumn GenericMissingValue null

DFIntColumn IntegerMissingValue int.MinValue

DFNumericColumn NumericMissingValue Double.NaN

DFStringColumn StringMissingValue “.”
   Chapter 37.   Data Frames 9



You can also change the default missing value for all columns of a particular type 
by setting the appropriate static variable in StatsSettings. Thus, this code sets the 
default missing value for integer columns to -1 for all subsequently constructed 
DFIntColumn instances:

Code Example – C#

StatsSettings.IntegerMissingValue = -1;

Code Example – VB

StatsSettings.IntegerMissingValue = -1

The Clean() method returns a new column with missing values removed.

Transforming Column Data

NMath provides convenience methods for applying functions to elements of a 
column. Each of these methods takes a function delegate. The Apply() method 
returns a new column whose contents are the result of applying the given function 
to each element of the column. The Transform() method modifies a column object 
by applying the given function to each of its elements.

Suppose, for example, that you want to cap all numeric values in a 
DFNumericColumn at 100.0. You could write a simple function like this:

Code Example – C#

private static double Cap( double x )
{
  return x > 100.0 ? 100.0 : x;
}

Code Example – VB

Private Shared Function Cap(X As Double) As Double
  If X > 100 Then
    Return 100
  Else
    Return X
  End If
End Function

Then encapsulate the function in a Func<double, double> delegate:

Code Example – C#

var capDelegate = new Func<double, double>( Cap );

Code Example – VB

Dim CapDelegate As New Func(Of Double, Double)(AddressOf Cap)
10   NMath User’s Guide



This code caps all numeric values in column col:

Code Example – C#

col.Transform( capDelegate );

Code Example – VB

Col.Transform( capDelegate )

A common use of the Apply() functions is to create a new column whose values 
are a function of values in one or two existing column. For example, suppose you 
have FirstName and LastName string columns in data frame df, and want to create 
a new column containing customers’ full names. You could write a simple function 
like this:

Code Example – C#

private static string Cat( string first, string last )
{
  return first + " " + last;
}

Code Example – VB

Private Shared Function Cat(First As String, Last As String) As 
String
  Return First & Last
End Function

Then encapsulate the function in a Func<String, String, String> delegate:

Code Example – C#

var catDelegate = new Func<String, String, String>( Cat );

Code Example – VB

Dim CatDelegate As New Func(Of String, String, String)(AddressOf 
Cat)

This code creates a new column containing the concatenated names:

Code Example – C#

DFStringColumn col =
  ( (DFStringColumn)data["FirstName"] ).Apply( “FullName”,   
    catDelegate, (DFStringColumn)data["LastName"] );

Code Example – VB

Dim First As DFStringColumn =
  CType(Data["FirstName"], DFStringColumn )
Dim Last As DFStringColumn =
  CType(Data["LastName"], DFStringcolumn )
   Chapter 37.   Data Frames 11



Dim Col As DFStringColumn =
  First.Apply("FullName", CatDelegate, Last)

Exporting Column Data

Data from a column can be exported in various ways:

 ToArray() exports the contents of a column to a strongly-typed array.

 ToDoubleArray() extracts the contents of a column to an array of doubles 
(numeric columns only).  

 ToDoubleVector() extracts the contents of a column to a DoubleVector 
(numeric columns only).  

 ToIntArray() extracts the contents of a column to an array of integers 
(integer columns only).

 ToString() returns a formatted string representation of a column.

 ToStringArray() exports the contents of a column to an array of strings. 

37.2 Creating DataFrames

Data frames can be constructed in a variety of ways.

Creating Empty DataFrames

The default constructor creates an empty data frame with no rows or columns. 
Columns and rows can then be added to the new data frame. 

Code Example – C#

var df = new DataFrame();

// Add some columns
df.AddColumn( new DFStringColumn( "Sex" ));  
df.AddColumn( new DFStringColumn( "AgeGroup" ));
df.AddColumn( new DFIntColumn( "Weight" ) );

// Add some rows
df.AddRow( "John Smith", "M", "Child", 45 );
df.AddRow( "Ruth Barnes", "F", "Senior", 115 );
df.AddRow( "Jane Jones", "F", "Adult", 115 );
df.AddRow( "Timmy Toddler", "M", "Child", 42 );
df.AddRow( "Betsy Young", "F", "Adult", 130 );
12   NMath User’s Guide



df.AddRow( "Arthur Smith", "M", "Senior", 142 );
df.AddRow( "Lucy Doe", "F", "Child", 30 );
df.AddRow( "Emma Allen", "F", "Child", 35 );

Code Example – VB

Dim DF As New DataFrame()

'' Add some columns
DF.AddColumn( New DFStringColumn( "Sex" ))  
DF.AddColumn( New DFStringColumn( "AgeGroup" ))
DF.AddColumn( New DFIntColumn( "Weight" ) )

'' Add some rows
DF.AddRow( "John Smith", "M", "Child", 45 )
DF.AddRow( "Ruth Barnes", "F", "Senior", 115 )
DF.AddRow( "Jane Jones", "F", "Adult", 115 )
DF.AddRow( "Timmy Toddler", "M", "Child", 42 )
DF.AddRow( "Betsy Young", "F", "Adult", 130 )
DF.AddRow( "Arthur Smith", "M", "Senior", 142 )
DF.AddRow( "Lucy Doe", "F", "Child", 30 )
DF.AddRow( "Emma Allen", "F", "Child", 35 )

NOTE—The first parameter to the AddRow() method is the row key. See Section 37.3 
and Section 37.4, respectively, for more information on adding columns and rows to a 
data frame.

Creating DataFrames from Arrays of Columns

You can also construct and populate columns independently, then combine them 
into a data frame:

Code Example – C#

var col1 = new DFNumericColumn( "Col1", 1.1, 2.2, 3.3, 4.4 );
var col2 = new DFBoolColumn ( "Col2", true, true, false, true );
var col3 =
  new DFStringColumn ( "Col3", "John", "Paulo", "Sam", "Becky" );
var cols = new DFColumn[] { col1, col2, col3 };
var df = new DataFrame( cols );

Code Example – VB

Dim Col1 As New DFNumericColumn("Col1", 1.1, 2.2, 3.3, 4.4)
Dim Col2 As New DFBoolColumn("Col2", True, True, False, True)
Dim Col3 As
  New DFStringColumn("Col3", "John", "Paulo", "Sam", "Becky")
Dim Cols As DFColumn() = {Col1, Col2, Col3}
Dim DF As New DataFrame(Cols)
   Chapter 37.   Data Frames 13



An InvalidArgumentException is thrown if the columns are not all of the same 
length.

In this case, the row keys are set to nulls; they can later be initialized using the 
SetRowKeys() method. Alternatively, you can pass in a collection of row keys at 
construction time:

Code Example – C#

var keys = new object[] { "Row1", "Row2", "Row3", "Row4" };
var df = new DataFrame( cols, keys );

Code Example – VB

Dim Keys As Object() = {"Row1", "Row2", "Row3", "Row4"}
Dim DF As New DataFrame(Cols, Keys)

Creating DataFrames from Matrices

You can construct a data frame from a DoubleMatrix and an array of column 
names. A new DFNumericColumn is added for each column in the matrix. For 
instance, this code creates a data frame from an 8 x 3 matrix:

Code Example – C#

var A = new DoubleMatrix( 8, 3, 0, 1 );
var colNames = new string[] { "A", "B", "C" };
var df = new DataFrame( A, colNames );

Code Example – VB

Dim A As New DoubleMatrix(8, 3, 0, 1)
Dim ColNames As String() = {"A", "B", "C"}
Dim DF As New DataFrame(A, ColNames)

The number of column names must match the number of columns in the matrix. 

Creating DataFrames from ADO.NET Objects

You can construct a data frame from an ADO.NET DataTable. For example, 
assuming table is a DataTable instance:

Code Example – C#

var df = new DataFrame( table );

Code Example – VB

Dim DF As New DataFrame(Table)
14   NMath User’s Guide



In this case, the row keys are set to the default rowIndex + 1—that is, 1...n. You 
can also specify the row keys in various ways. This code passes in an array of row 
keys:

Code Example – C#

var keys = new object[] { “Row1”, “Row2”, “Row3”, “Row4” };
var df = new DataFrame( table, keys );

Code Example – VB

Dim Keys As Object() { "Row1", "Row2", "Row3", "Row4" }
Dim DF As New DataFrame(Table, Keys)

Alternatively, you can indicate a column in the DataTable, either by column index 
or column name, to use for the row keys. This code uses column ID for row keys:

Code Example – C#

var df = new DataFrame( table, "ID" );

Code Example – VB

Dim DF As New DataFrame(Table, "ID")

Creating DataFrames from Strings

You can construct a data frame from a string representation. For example, if str is 
a tab-delimited string containing:

Key  Col1 Col2   Col3
Row1 1.1  true   A
Row2 2.2  true   B
Row3 3.3  false  A
Row4 4.4  true   C

Then you could construct a data frame like so:

Code Example – C#

var df = new DataFrame( str );

Code Example – VB

Dim DF As New DataFrame(Str)

For more control, you can also indicate:

 whether the first row of data contains column headers

 whether the first column of data contains row keys

 the delimiter used to separate columns
   Chapter 37.   Data Frames 15



 whether to parse the column types, or to treat everything as string data

For example, if str is a comma-delimited string containing column headers but no 
row keys:

Col1,Col2,Col3
1.1,true,A
2.2,true,B
3.3,false,A
4.4,true,C

you could construct a data frame like so:

Code Example – C#

var df = new DataFrame( str, true, false, “,”, true );

Code Example – VB

Dim DF As New DataFrame(Str, True, False, ",", True)

37.3 Adding and Removing Columns

The AddColumn() method adds a column to a data frame:

Code Example – C#

var df = new DataFrame();
var col = new DFNumericColumn( “myCol” );
df.AddColumn( col );

Code Example – VB

Dim DF As New DataFrame()
Dim Col As New DFNumericColumn("myCol")
DF.AddColumn( Col )

NOTE—The AddColumn() method raises a MismatchedSizeException if you attempt 
to add a column that is not the same length as any existing columns in a data frame.

You can also add all the columns from one data frame to another, optionally 
copying the data in the columns. For example, assuming df is a data frame, this 
code adds the columns of df to a new data frame and copies all the column data:

Code Example – C#

var df2 = new DataFrame();
df2.AddColumns( df, true );
16   NMath User’s Guide



Code Example – VB

Dim DF2 As New DataFrame()
DF2.AddColumns(DF, True)

Overloads of AddColumn() and AddColumns() accept ADO.NET DataColumn and 
DataColumnCollection instances, respectively. If the data frame already contains 
rows of data, you must also pass in a DataRowCollection of the same Count as the 
number of rows in the data frame.

InsertColumn() inserts a column at a given column index. This code adds a 
column in the first position:

Code Example – C#

var col = new DFStringColumn( “myCol” );
df.InsertColumn( 0, col );

Code Example – VB

Dim Col As New DFStringColumn("myCol")
DF.InsertColumn(0, Col)

RemoveColumn() removes the column at a given index:

Code Example – C#

df.RemoveColumn( 3 );

Code Example – VB

DF.RemoveColumn(3)

You can also identify a column by name:

Code Example – C#

df.RemoveColumn( “myCol” );

Code Example – VB

DF.RemoveColumn( "myCol" )

Because column names are not constrained to be unique, this method will remove 
all columns in the data frame with the given name.

RemoveAllColumns() removes all columns from a data frame, but preserves the 
existing row keys. RemoveColumns() removes the columns specified in a given 
subset or slice.

Clear() method removes all columns and rows from a data frame. CleanCols() 
returns a new data frame containing only those columns in a data frame that do 
not contain missing values.
   Chapter 37.   Data Frames 17



37.4 Adding and Removing Rows

The AddRow() method adds a row of data to a data frame. The first parameter is 
the row key; subsequent parameters are the row data. For example:

Code Example – C#

var df = new DataFrame();
df.AddColumn( new DFStringColumn( "Col1" ));  
df.AddColumn( new DFNumericColumn( "Col2" ) );
df.AddColumn( new DFNumericColumn( "Col3" ) );
df.AddRow( 1546, "Test1", 1.5445, 667.87 );

Code Example – VB

Dim DF As New DataFrame()
DF.AddColumn( New DFStringColumn( "Col1" ))  
DF.AddColumn( New DFNumericColumn( "Col2" ) )
DF.AddColumn( New DFNumericColumn( "Col3" ) )
DF.AddRow( 1546, "Test1", 1.5445, 667.87 )

NOTE—The AddRow() method raises a MismatchedSizeException if the number of 
row elements does not match the number of columns in the data frame.

This example uses 1546 as an integer row key, perhaps representing some sort of 
ID. Row keys can be any object, and need not be unique.

Additional overloads of AddRow() accept data in various collections other than an 
array of objects. One overload takes an ICollection. For instance:

Code Example – C#

var myQ = new Queue();
myQ.Enqueue( "Hello" );
myQ.Enqueue( 47.0 );
myQ.Enqueue( -0.34 );
df.AddRow( "Row1", myQ );

Code Example – VB

Dim MyQ As New Queue()
MyQ.Enqueue( "Hello" )
MyQ.Enqueue( 47.0 )
MyQ.Enqueue( -0.34 )
DF.AddRow( "Row1", MyQ )

Another overload accepts an IDictionary in which the keys are the column names 
and the values are the row data:

Code Example – C#

var df = new DataFrame();
df.AddColumn( new DFNumericColumn( "V1" ) );
18   NMath User’s Guide



df.AddColumn( new DFBoolColumn( "V2" ) );
df.AddColumn( new DFStringColumn( "V3" ) );
var myHT = new Hashtable();
myHT.Add( "V1", 3.14 );
myHT.Add( "V3", "Hello");
myHT.Add( "V2", true );
df.AddRow( "Row1", myHT );

Code Example – VB

Dim DF As New DataFrame()
DF.AddColumn( New DFNumericColumn( "V1" ) )
DF.AddColumn( New DFBoolColumn( "V2" ) )
df.AddColumn( New DFStringColumn( "V3" ) )
Dim MyHT As New Hashtable()
MyHT.Add("V1", 3.14)
MyHT.Add("V3", "Hello")
MyHT.Add("V2", True)
DF.AddRow("Row1", MyHT)

If all of the columns in your data frame are numeric, you can add a row as a 
DoubleVector:

Code Example – C#

var v = new DoubleVector( 10, 0, 1 );
df.AddRow( “myKey”, v );

Code Example – VB

Dim V As New DoubleVector(10, 0, 1)
DF.AddRow("myKey", V)

Other overloads of AddRow() and AddRows() accept ADO.NET DataRow and 
DataRowCollection instances, respectively.

InsertRow() inserts a row at a given row index. For example, this code inserts a 
row into the second position:

Code Example – C#

var df = new DataFrame();
df.AddColumn( new DFNumericColumn( "Col1" ) );
df.AddColumn( new DFNumericColumn( "Col2" ) );
df.AddColumn( new DFNumericColumn( "Col3" ) );
df.AddRow( "Row1", 2.5, 0.0, 3.4 );
df.AddRow( "Row2", 3.14, -.5, -.33 );
df.AddRow( "Row3", 0.1, 55.34, 12.02 );
df.AddRow( "Row4", 3.14, -33.2, 7.22 );
var myRow = object[] { 5.5, 9.05, -6.11 };
df.InsertRow( 1, "Row1a", myRow );
   Chapter 37.   Data Frames 19



Code Example – VB

Dim DF As New DataFrame()
DF.AddColumn(New DFNumericColumn("Col1"))
DF.AddColumn(New DFNumericColumn("Col2"))
DF.AddColumn(New DFNumericColumn("Col3"))
DF.AddRow("Row1", 2.5, 0.0, 3.4)
DF.AddRow("Row2", 3.14, -0.5, -0.33)
DF.AddRow("Row3", 0.1, 55.34, 12.02)
DF.AddRow("Row4", 3.14, -33.2, 7.22)
Dim MyRow As Object() = {5.5, 9.05, -6.11}
DF.InsertRow(1, "Row1a", MyRow)

Again, overloads are provided for adding row data in various collection types.

RemoveRow() removes the row at a given index:

Code Example – C#

df.RemoveRow( 0 );

Code Example – VB

DF.RemoveRow(0)

You can also identify a row by key:

Code Example – C#

df.RemoveRow( “Row3” );

Code Example – VB

DF.RemoveRow("Row3")

Because row keys are not constrained to be unique, this method will remove all 
rows in the data frame with the given key.

RemoveAllRows() removes all rows from a data frame, but preserves the existing 
columns. RemoveRows() removes the rows specified in a given subset or slice.

Clear() method removes all rows and columns from a data frame. CleanRows() 
returns a new data frame containing only those rows in a data frame that do not 
contain missing values.

Modifying Row Keys

Unlike column names which are fixed at construction time, row keys can be 
changed at any time. The SetRowKey() method sets the key for a given row to a 
given value. Remember that row keys can be any object:
20   NMath User’s Guide



Code Example – C#

df.SetRowKey( 0, 1.14 );
df.SetRowKey( 1, “John Doe” );
df.SetRowKey( 2, true );

Code Example – VB

DF.SetRowKey(0, 1.14)
DF.SetRowKey(1, "John Doe")
DF.SetRowKey(2, True)

SetRowKeys() accepts a collection of row keys, and raises a 
MismatchedSizeException if if the number of elements in the collection does not 
equal the number of rows in this data frame:

Code Example – C#

object[] keys = { “Subject1”, “Subject2”, “Subject3” };
df.SetRowKeys( keys );

Code Example – VB

Dim Keys As Object() = {"Subject1", "Subject2", "Subject3"}
DF.SetRowKeys(Keys)

Finally, IndexRowKeys() resets the row keys for all rows to rowIndex + 1; that is, 
1...n.     

37.5 Properties of DataFrames

The DataFrame class provides the following properties:

 Cols gets the number of columns.

 ColumnNames gets an array of the column names.

 ColumnHeaders gets and sets the array of column labels used for display 
purposes.

 CreateDate gets the creation datetime for the date frame.

 Name gets and sets the name of the data frame.

 Rows gets the number of rows.

 RowKeyHeader gets and sets the header for the row keys for display 
purposes. The default row key header is #.

 RowKeys gets an object array of the row keys.
   Chapter 37.   Data Frames 21



 StringRowKeys gets a string array of the row keys.

37.6 Accessing DataFrames

Class DataFrame provides a wide range of indexers and member functions 
accessing individual elements, columns, or rows in a data frame.

NOTE—For information on getting arbitrary sub-frames from a data frame, see 
Section 37.8.

Accessing Elements

Class DataFrame provides a two-dimensional indexing operator for getting and 
setting individual element values. Thus, df[i,j] always returns the ith element of 
the jth column:

Code Example – C#

df[3,0] = 1.0;

Code Example – VB

DF(3, 0) = 1.0

Accessing Columns

The one-dimensional indexing operator df[i] always returns the ith column:

Code Example – C#

DFNumericColumn col = df[3];

Code Example – VB

Dim Col As DFNumericColumn = DF(3)

You can also access columns by name:

Code Example – C#

DFNumericColumn col = df[ “myCol” ];

Code Example – VB

Dim Col As DFNumericColumn = DF("myCol")

Because column names are not constrained to be unique, this returns the first 
column with the given name, or null if a column by that name is not found.
22   NMath User’s Guide



The IndexOfColumn() method returns the index of the first column with a given 
name, or null if a column by that name is not found. IndicesOfColumn() returns 
an array of all column indices for a given column name.

You can also check whether a column of a given name exists in a data frame using 
the ContainsColumn() method:

Code Example – C#

if ( df.ContainsColumn( “myCol” ) )
{
  // Do something here with df[ “myCol” ]
}

Code Example – VB

If (DF.ContainsColumn("myCol")) Then
  '' Do something here with DF( "myCol" )
End If

Finally, the GetColumnDictionary() method returns an IDictionary of the values 
in a given column. For instance, this code gets a dictionary of the values in column 
2:

Code Example – C#

IDictionary dict = df.GetColumnDictionary( 2 );

Code Example – VB

Dim Dict As IDictionary = DF.GetColumnDictionary(2)

The row keys are used as keys in the dictionary. Alternatively, you can specify two 
column indices—the first is used for the dictionary keys, the second for the 
dictionary values:

Code Example – C#

IDictionary dict = df.GetColumnDictionary( 0, 2 );

Code Example – VB

Dim Dict As IDictionary = DF.GetColumnDictionary(0, 2)

In this example, the elements in column 0 are used as the dictionary keys.

Accessing Rows

Because the one-dimensional indexer df[i] is already used for accessing data 
frame columns, class DataFrame provides GetRow() methods for accessing 
individual rows. Thus, GetRow( i ) returns the data in the ith row as an array of 
objects:
   Chapter 37.   Data Frames 23



Code Example – C#

object[] rowData = df.GetRow( 3 );

Code Example – VB

Dim RowData As Object() = DF.GetRow(3)

You can also access rows by key:

Code Example – C#

object[] rowData = df.GetRow( “myKey” );

Code Example – VB

Dim RowData As Object() = DF.GetRow("myKey")

Because row keys are not constrained to be unique, this returns the first row with 
the given key, or null if a row with that key is not found.

The IndexOfKey() method returns the index of the first row with a given key, or 
null if a row with that key is not found. IndicesOfKey() returns an array of all 
row indices for a given key.

You can also retrieve the indices of rows with a particular value in a given column. 
IndexOf() returns the first row with a particular value in a column; IndicesOf() 
returns all rows. For instance, this code gets an array of row indices for all rows 
which have the value “John Doe” in column 2:

Code Example – C#

int[] rowIndices = df.IndicesOf( 2, “John Doe” );

Code Example – VB

Dim RowIndices As Integer() = DF.IndicesOf(2, "John Doe")

Lastly, the GetRowDictionary() method returns an IDictionary of the data in a 
given row, specified either by row index or row key. The column names are used as 
keys in the dictionary. Thus, this code gets a dictionary of the data in row 3:

Code Example – C#

IDictionary dict = df.GetRowDictionary( 3 );

Code Example – VB

Dim Dict As IDictionary = DF.GetRowDictionary(3)
24   NMath User’s Guide



37.7 Subsets

In addition to accessors for individual elements, columns, or rows in a data frame 
(Section 37.6), class DataFrame provides a large number of indexers and member 
functions for accessing sub-frames containing any arbitrary subset of rows, 
columns, or both (Section 37.8).

Such indexers and methods accept the NMath types Slice and Range to indicate 
sets of row or column indices with constant spacing, as well as abstract values like 
Slice.All for indexing all elements.

In addition, NMath introduces a new class called Subset. Like a Slice or Range, a 
Subset represents a collection of indices that can be used to view a subset of data 
from another data structure. Unlike a Slice or Range, however, a Subset need not 
be continuous, or even ordered. It is simply an arbitrary collection of indices.

This section describes the Subset class.

Creating Subsets

Subset instances can be constructed in a variety of ways. One constructor simply 
accepts an array of integers:

Code Example – C#

var sub = new Subset( new int[] { 5, 4, 0, 12 } );

Code Example – VB

Dim Subset As New Subset(New Integer() {5, 4, 0, 12})

Another constructor accepts an ICollection whose elements are all System.Int32.

A very useful constructor takes an array of boolean values and constructs a Subset 
containing the indices of all true elements in the array. This can used, for example, 
to create a subset from a DataFrame containing the indices of the rows or columns 
than meet a certain criteria.

Thus, this code creates a subset of row indices containing those rows where the 
value in column 2 is greater than the value in column 3:

Code Example – C#

var bArray = new bool[ df.Rows ];
for ( int i = 0; i < df.Rows; i++ )
{
  bArray[i] = ( df[2][i] > df[3][i] );
}
var rowIndices = new Subset( bArray );
   Chapter 37.   Data Frames 25



Code Example – VB

Dim BArray(DF.Rows) As Boolean
For I As Integer = 0 To DF.Rows - 1
  BArray(I) = DF(2)(I) > DF(3)(I)
Next
Dim RowIndices As New Subset(BArray)

This Subset could be use to access the sub-frame containing only those rows that 
meet the criterion, as described in Section 37.8.

A Subset can also be constructed from an array of other subsets. The subsets are 
simply concatenated. To created a sorted Subset of the unique indices, you can call 
Unique() on the constructed Subset (see below). 

Lastly, constructors are provided that construct subsets with continuous spacing, 
like slices and ranges. For instance, this code creates a subset starting at 2, with 5 
total elements, and a stepsize of 1:

Code Example – C#

var sub = new Subset( 2, 5, 1 );

Code Example – VB

Dim Subset As New Subset(2, 5, 1)

Properties of Subsets

Class Subset provides the following read-only properties:

 First gets the first index in the subset.

 Length gets the total number of indices in the subset.

 Indices gets the underlying array of integers.

 Last gets the last index in the subset.

Accessing Elements

Class Subset provides an indexing operator for getting and setting element values. 
Thus, subset[i] returns the ith element of the underlying array of integers.

Code Example – C#

sub[ 3 ] = 4;

Code Example – VB

Subset(3) = 4
26   NMath User’s Guide



NOTE—Indexing starts at 0.

The Get( i ) method safely gets the index at a given position by looping around 
the end of the subset if i exceeds the length of the subset:

Code Example – C#

var sub = new Subset( new int[] { 3, 4, 5, 8, 9 } );
int index = sub.Get( 5 )
// index = 3

Code Example – VB

Dim Subset As New Subset(New Integer() {3, 4, 5, 8, 9})
Dim Index As Integer = Subset.Get(5)
'' index = 3

You can also create a Subset of a Subset using the indexing operator. For instance:

Code Example – C#

var sub1 = new Subset( new int[] { 1, 3, 4, 7, 9 } );
var sub2 = new Subset( new int[] { 0, 2, 4 } );
Subset sub3 = sub1[ sub2 ];
// sub3.Indices = 1, 4, 9

Code Example – VB

Dim Sub1 As New Subset(New Integer() {1, 3, 4, 7, 9})
Dim Sub2 As New Subset(New Integer() {0, 2, 4})
Dim Sub3 As Subset = Sub1(Sub2)
'' sub3.Indices = 1, 4, 9

Logical Operations on Subsets

Operator == tests for equality of two subsets, and returns true if both subsets are 
the same length and all elements are equal; otherwise, false. Following the 
convention of the .NET Framework, if both objects are null, they test equal. 
Operator != returns the logical negation of ==. The Equals() member function 
also tests for equality. 

Arithmetic Operations on Subsets

NMath provides overloaded arithmetic operators for subsets with their 
conventional meanings for those .NET languages that support them, and 
equivalent named methods for those that do not. Table 25 lists the equivalent 
operators and methods.
   Chapter 37.   Data Frames 27



Manipulating Subsets

The Append() method adds an index to the end of a subset:

Code Example – C#

sub.Append( 5 );

Code Example – VB

Subset.Append(5)

Remove() removes the first occurence of a given index from a subset. Reverse() 
reverses the indices of a subset. Unique() sorts the indices in a subset and removes 
any repetitions. Thus:

Code Example – C#

var sub = new Subset( new int[] { 0,5,3,2,7,5 } );
sub.Remove( 3 );
// sub.Indices = 0, 5, 2, 7, 5
sub.Reverse();
// sub.Indices = 5, 7, 2, 5, 0
sub.Unique();
// sub.Indices = 0, 2, 5, 7

Code Example – VB

Dim Subset As New Subset(New Integer() {0, 5, 3, 2, 7, 5})
Subset.Remove(3)
'' sub.Indices = 0, 5, 2, 7, 5

Table 25 – Arithmetic operators for subsets

Operator Equivalent Named Method

+ Add()

- Subtract()

* Multiply()

/ Divide()

Unary - Negate()

++ Increment()

-- Decrement()

& Intersection()

| Union()
28   NMath User’s Guide



Subset.Reverse()
'' sub.Indices = 5, 7, 2, 5, 0
Subset.Unique()
'' sub.Indices = 0, 2, 5, 7 

Similarly, ToReverse() returns a new subset containing the indices of a subset in 
the reverse order; ToUnique() returns a new subset containing the sorted indices 
of a subset, with all repetitions removed.

The Repeat() method creates a new subset by repeating the source subset until a 
given length is reached. For instance:

Code Example – C#

var sub1 = new Subset( 3 );
// sub1.Indices = 0,1,2
Subset sub2 = sub1.Repeat( 11 );
// sub2.Indices = 0,1,2,0,1,2,0,1,2,0,1

Code Example – VB

Dim Sub1 As New Subset(3)
'' sub1.Indices = 0,1,2
Dim Sub2 As Subset = Sub1.Repeat(11)
'' sub2.Indices = 0,1,2,0,1,2,0,1,2,0,1

The Split() method splits a source subset into an arbitrary array of subsets. The 
parameters are the number of subsets into which to split the source subset, and 
another subset the same length as the source subset, the ith element of which 
indicates into which bin to place the ith element of the source subset. For example:

Code Example – C#

var sub = new Subset( 10 );
// sub.Indices = 0,1,2,3,4,5,6,7,8,9
var bins =
  new Subset( new int[] { 3, 1, 0, 2, 2, 1, 1, 2, 3, 0 } );
Subset[] subsetArray = sub.Split( 4, bins );
// subsetArray[0] = 2,9
// subsetArray[1] = 1,5,6
// subsetArray[2] = 3,4,7
// subsetArray[3] = 0,8

Code Example – VB

Dim Subset As New Subset(10)
'' sub.Indices = 0,1,2,3,4,5,6,7,8,9
Dim Bins As New Subset(New Integer() {3, 1, 0, 2, 2, 1, 1, 2, 3, 
0})
Dim SubsetArray() As Subset = Subset.Split(4, Bins)
'' subsetArray[0] = 2,9
'' subsetArray[1] = 1,5,6
'' subsetArray[2] = 3,4,7
   Chapter 37.   Data Frames 29



'' subsetArray[3] = 0,8

Lastly, the ToString() returns a comma-delimited string list of the indices in a 
subset.

Groupings

The static GetGroupings() methods on Subset create subsets from factors. One 
overload of this method accepts a single Factor and returns an array of subsets 
containing the indices for each level of the given factor. Another overload accepts 
two Factor objects and returns a two-dimensional jagged array of subsets 
containing the indices for each combination of levels in the two factors. See 
Section 37.10 for more information on factors and the GetGroupings() methods.

Random Samples

The static method Sample( n ) returns a random shuffle of 0..n-1. The returned 
Subset can be used to randomly reorder the rows in a data frame, as described in 
Section 37.8.

37.8 Accessing Sub-Frames

In addition to accessing individual elements, columns, or rows in a data frame 
(Section 37.6), class DataFrame provides a large number of member functions and 
indexers for accessing sub-frames containing any arbitrary subset of rows, 
columns, or both. Such methods and indexers accept Slice and Subset objects to 
indicate which rows and columns to return. (See Section 37.7 for more information 
on the Subset class.)

For example, GetColumns() returns a new data frame containing the columns 
indicated by a given Slice or Subset. For instance, if df has 5 columns, this code 
creates a new data frame containing columns 0, 4, and 5:

Code Example – C#

var colSubset = new Subset( new int[] { 0, 4, 5 } );
DataFrame subDF = df.GetColumns( colSubset );

Code Example – VB

Dim ColSubset As New Subset(New Integer() {0, 4, 5})
Dim SubDF As DataFrame = DF.GetColumns(ColSubset)
30   NMath User’s Guide



Similarly, GetRows() returns a new data frame containing the rows indicated by a 
given Slice or Subset. Thus, this code gets every other row in the source data 
frame:

Code Example – C#

var rowSubset = new Range( 0, df.Rows - 1, 2 );
DataFrame subDF = df.GetRows( rowSubset );

Code Example – VB

Dim RowSubset As New Range(0, DF.Rows - 1, 2)
Dim SubDF As DataFrame = DF.GetRows(RowSubset)

Class DataFrame also provides a wide range of indexers for accessing subframes:

Code Example – C#

this[int colIndex, Slice rowSlice]
this[int colIndex, Subset rowSubset]
this[Slice rowSlice, Slice colSlice]
this[Subset rowSubset, Subset colSubset]
this[Slice rowSlice, Subset colSubset]
this[Subset rowSubset, Slice colSlice]

Code Example – VB

Item(ColIndex As Integer, RowSlice As Slice)
Item(ColIndex As Integer, RowSubset As Subset)
Item(RowSlice As Slice, ColSlice As Slice)
Item(RowSubset As Subset, ColSlice As Slice)
Item(RowSlice As Slice, ColSubset As Subset)
Item(RowSubset As Subset, ColSlice As Slice)

These indexers can be used to return any portion of a data frame. For example, this 
code gets a new data frame containing columns 3-8 in reverse order, and all rows 
where column 0 equals Test1:

Code Example – C#

var colRange = new Range( 8, 3, -1 );

var bArray = new bool[ df.Rows ];
for ( int i = 0; i < df.Rows; i++ )
{
  bArray[i] = ( df[0][i] == “Test1” );
}
var rowSubset = new Subset( bArray );

DataFrame df2 = df[ rowSubset, colRange ];

Code Example – VB

Dim ColRange As New Range(8, 3, -1)
   Chapter 37.   Data Frames 31



Dim BArray() As Boolean = New Boolean(DF.Rows) {}
For I As Integer = 0 To DF.Rows - 1
  BArray(I) = (DF(0)(I) = "Test1")
Next
Dim RowSubset As New Subset(BArray)

Dim DF2 As DataFrame = DF(RowSubset, ColRange)

Finally, there is the GetSubRow() method. Whereas GetRow() returns an entire row 
for a given row index, GetSubRow() returns the portion of the row indicated by the 
given column Slice or Subset:

Code Example – C#

var colSlice = new Slice( 0, 3, 1 );
object[] subRow = df.GetSubRow( 3, colSlice );

Code Example – VB

Dim ColSlice As New Slice(0, 3, 1)
Dim SubRow As Object() = DF.GetSubRow(3, ColSlice)

37.9 Reordering DataFrames

The DataFrame class provides method for both sorting rows, and for arbitrarily 
reordering rows and columns.

Sorting Rows

The SortRows() method sorts the rows in a data frame according to a given 
ordered array of column indices. The first index is the primarily sort column, the 
second index is the secondary sort column, and so forth. For instance:

Code Example – C#

df.SortRows( 3, 0, 1 );

Code Example – VB

DF.SortRows(3, 0, 1)

By default, all sorting is in ascending order.

For more control, you can also pass an array of SortingType enumerated values 
(Ascending or Descending):
32   NMath User’s Guide



Code Example – C#

int[] colIndices = { 3, 0, 1 };
SortingType[] sortingTypes = { SortingType.Ascending,  
                               SortingType.Descending, 
                               SortingType.Ascending };
df.SortRows( colIndices, sortingTypes );

Code Example – VB

Dim ColIndices As Integer() = {3, 0, 1}
Dim SortingTypes As SortingType() = {SortingType.Ascending,
                                     SortingType.Descending,
                                     SortingType.Ascending}
DF.SortRows(ColIndices, SortingTypes)

Finally, the SortRowsByKeys() method sorts the rows in a data frame by their row 
keys, in the specified order:

Code Example – C#

df.SortRowsByKeys( SortingType.Ascending );

Code Example – VB

DF.SortRowsByKeys(SortingType.Ascending)

NOTE—StatsSettings.Sorting specifies the default SortingType.

Permuting Rows and Columns

The PermuteColumns() and PermuteRows() methods enable you to arbitrarily 
reorder the columns and rows in a data frame, respectively. Each method takes an 
array of indices. The array must be same length as the number of columns or rows, 
and contain unique indices. In both cases:

Code Example – C#

new[ permutation[i] ] = old[ i ]

Code Example – VB

New( permutation(i) ) = Old( i )

For example, assuming df has 3 columns, this code switches the last two columns:

Code Example – C#

df.PermuteColumns( 0, 2, 1 );

Code Example – VB

DF.PermuteColumns(0, 2, 1)
   Chapter 37.   Data Frames 33



Assuming df has 5 rows, this code moves the second and fourth rows to the top:

Code Example – C#

df.PermuteRows( 2, 0, 3, 1, 4 );

Code Example – VB

DF.PermuteRows(2, 0, 3, 1, 4)

37.10 Factors

The Factor class represents a categorical vector in which all elements are drawn 
from a finite number of factor levels. Thus, a Factor contains two parts: 

 an object array of factor levels

 an integer array of categorical data, of which each element is an index into 
the array of levels

For example, this string data:

“A”, “A”, “C”, “B”, “A”, “C”, “B”

could be presented as a Factor with the following levels and categorical data:

Code Example – C#

object[] levels = { “A”, “B”, “C” };
int[] data = { 0, 0, 2, 1, 0, 2, 1 };

Code Example – VB

Dim Levels As Object() = {"A", "B", "C"}
Dim Data As Integer() = {0, 0, 2, 1, 0, 2, 1}

Factors are usually constructed from a data frame column using the GetFactor() 
method, but they can also be constructed independently.

Creating Factors

The GetFactor() method on DataFrame accepts a column index or name and 
returns a Factor with levels for the sorted, unique elements in the given column:

Code Example – C#

Factor myColFactor = df.GetFactor( “myCol” );
34   NMath User’s Guide



Code Example – VB

Dim ColFactor As Factor = DF.GetFactor("myCol")

Alternatively, you can provide the factor levels yourself. The order is preserved. 
Thus:

Code Example – C#

var levels = new object[] { “Q1”, “Q2”, “Q3”, “Q4” };
Factor myColFactor = df.GetFactor( “myCol”, levels );

Code Example – VB

Dim Levels As Object() = {"Q1", "Q2", "Q3", "Q4"}
Dim ColFactor As Factor = DF.GetFactor("myCol", Levels)

An InvalidArgumentException is raised if the specified column contains a value 
not present in the given array of levels.

You can also construct a Factor independently of a DataFrame. For example, you 
can construct a Factor from an array of values:

Code Example – C#

var strArray = new object[] { 1, 1, 3, 2, 1, 3, 2 };
var factor = new Factor( strArray );

Code Example – VB

Dim StrArray As Object() = {1, 1, 3, 2, 1, 3, 2}
Dim Factor As New Factor(StrArray)

Factor levels are constructed from a sorted list of unique values in the passed array.

Alternatively, you can construct a Factor from an array of factor levels, and a data 
array consisting of indices into the factor levels:

Code Example – C#

var levels = new object[] { 1, 2, 3 };
var data = new int[] { 0, 0, 2, 1, 0, 2, 1 };
var factor = new Factor( levels, data );

Code Example – VB

Dim Levels As Object() = {1, 2, 3}
Dim Data As Integer() = {0, 0, 2, 1, 0, 2, 1}
Dim Factor As New Factor(Levels, Data)

An InvalidArgumentException is thrown if the given data array contains an 
invalid index.
   Chapter 37.   Data Frames 35



Properties of Factors

The Factor class provides the following properties:

 Data gets the categorical data for the factor. Each element in the returned 
integer array is an index into Levels.

 Levels gets the levels of the factor as an array of objects.

 Length gets the length of the Data in the factor.

 Name gets and set the name of the factor.

 NumberOfLevels gets the number of levels in the factor.

Accessing Factors

A standard indexer is provided for accessing the element at a given index:

Code Example – C#

string str = (string)factor[2];

Code Example – VB

Dim Str As String = CType(Factor(2), String)

The indexer returns Levels[ Data[index] ]—that is, it returns the level at the 
given position.

Creating Groupings with Factors

The principal use of factors is in conjunction with the GetGroupings() methods 
on Subset. One overload of this method accepts a single Factor and returns an 
array of subsets containing the indices for each level of the given factor. Another 
overload accepts two Factor objects and returns a two-dimensional jagged array of 
subsets containing the indices for each combination of levels in the two factors.
36   NMath User’s Guide



For example, suppose we weigh human subjects based on sex and age group. The 
data for 15 subject might look like this:

Table 26 – Sample data

In a DataFrame, each observation would be a row, like so:

Code Example – C#

var df = new DataFrame();
df.AddColumn( new DFStringColumn( "Sex" ) );  
df.AddColumn( new DFStringColumn( "AgeGroup" ));
df.AddColumn( new DFIntColumn( "Weight" ) );

df.AddRow( "John Smith", "Male", "Child", 45 );
df.AddRow( "Ruth Barnes", "Female", "Senior", 115 );
df.AddRow( "Jane Jones", "Female", "Adult", 115 );
df.AddRow( "Timmy Toddler", "Male", "Child", 42 );
df.AddRow( "Betsy Young", "Female", "Adult", 130 );
df.AddRow( "Arthur Smith", "Male", "Senior", 142 );
df.AddRow( "Lucy Young", "Female", "Child", 30 );
df.AddRow( "Emma Allen", "Female", "Child", 35 );
df.AddRow( "Roy Wilkenson", "Male", "Adult", 182 );
df.AddRow( "Susan Schwarz", "Female", "Senior", 110 );
df.AddRow( "Ming Tao", "Female", "Senior", 123 );
df.AddRow( "Johanna Glynn", "Female", "Child", 60 );
df.AddRow( "Randall Harvey", "Male", "Adult", 170 );
df.AddRow( "Tom Howard", "Male", "Senior", 155 );
df.AddRow( "Jennifer Watson", "Female", "Child", 40 );

Code Example – VB

Dim DF As New DataFrame()
DF.AddColumn(New DFStringColumn("Sex"))
DF.AddColumn(New DFStringColumn("AgeGroup"))
DF.AddColumn(New DFIntColumn("Weight"))

DF.AddRow("John Smith", "Male", "Child", 45)
DF.AddRow("Ruth Barnes", "Female", "Senior", 115)
DF.AddRow("Jane Jones", "Female", "Adult", 115)
DF.AddRow("Timmy Toddler", "Male", "Child", 42)
DF.AddRow("Betsy Young", "Female", "Adult", 130)
DF.AddRow("Arthur Smith", "Male", "Senior", 142)
DF.AddRow("Lucy Young", "Female", "Child", 30)

Male Female

Child 45, 42 30, 35, 60, 40

Adult 182, 170 115, 130, 110

Senior 142, 155 115, 123
   Chapter 37.   Data Frames 37



DF.AddRow("Emma Allen", "Female", "Child", 35)
DF.AddRow("Roy Wilkenson", "Male", "Adult", 182)
DF.AddRow("Susan Schwarz", "Female", "Senior", 110)
DF.AddRow("Ming Tao", "Female", "Senior", 123)
DF.AddRow("Johanna Glynn", "Female", "Child", 60)
DF.AddRow("Randall Harvey", "Male", "Adult", 170)
DF.AddRow("Tom Howard", "Male", "Senior", 155)
DF.AddRow("Jennifer Watson", "Female", "Child", 40)

In this case, we’re using the subjects’ names as row keys.

It is natural to construct factors from the Sex and AgeGroup columns:

Code Example – C#

Factor sex = df.GetFactor( "Sex" );
Factor age = df.GetFactor( "AgeGroup" );

Code Example – VB

Dim Sex As Factor = DF.GetFactor("Sex")
Dim Age As Factor = DF.GetFactor("AgeGroup")

We can then use these factors in conjunction with the GetGroupings() methods on 
Subset to create subsets representing the original rows, columns, and cells in 
Table 26:

Code Example – C#

Subset[] sexGroups = Subset.GetGroupings( sex );
Subset[] ageGroups = Subset.GetGroupings( age );
Subset[,] cellGroups = Subset.GetGroupings( sex, age );

Code Example – VB

Dim SexGroups As Subset() = Subset.GetGroupings(Sex)
Dim AgeGroups As Subset() = Subset.GetGroupings(Age)
Dim CellGroups As Subset(,) = Subset.GetGroupings(Sex, Age)

These subsets can then be used to operate on the relevant portions of the data 
frame. For instance, this code prints out row means, column means, and cell means 
for Table 26:

Code Example – C#

Console.WriteLine( "\nTABLE ROW MEANS" ); 
for ( int i = 0; i < age.NumberOfLevels; i++ )
{
  double mean = StatsFunctions.Mean(
    df[ df.IndexOfColumn( "Weight" ), ageGroups[i] ] );
  Console.WriteLine( "Mean for {0} = {1}", age.Levels[i], mean );
}

38   NMath User’s Guide



Console.WriteLine( "\nTABLE COLUMN MEANS" ); 
for ( int i = 0; i < sex.NumberOfLevels; i++ )
{
  double mean = StatsFunctions.Mean(
    df[ df.IndexOfColumn( "Weight" ), sexGroups[i] ] );
  Console.WriteLine( "Mean for {0} = {1}", sex.Levels[i], mean );
}

Console.WriteLine( "\nTABLE CELL MEANS" );
for ( int i = 0; i < sex.NumberOfLevels; i++ )
{
  for ( int j = 0; j < age.NumberOfLevels; j++ )
  {
    double mean = StatsFunctions.Mean(
      df[ df.IndexOfColumn( "Weight" ), cellGroups[i,j] ] );
    Console.WriteLine( "Mean for {0} {1} = {2}",
      sex.Levels[i], age.Levels[j], mean );
  }
}

Code Example – VB

Console.WriteLine(Environment.NewLine & "TABLE ROW MEANS")
For I As Integer = 0 To Age.NumberOfLevels - 1
  Dim Mean As Double =   
    StatsFunctions.Mean(DF(DF.IndexOfColumn("Weight"),       
    AgeGroups(I)))
  Console.WriteLine("Mean for {0} = {1}", Age.Levels(I), Mean)
Next

Console.WriteLine(Environment.NewLine & "TABLE COLUMN MEANS")
For I As Integer = 0 To Sex.NumberOfLevels - 1
  Dim Mean As Double = 
    StatsFunctions.Mean(DF(DF.IndexOfColumn("Weight"), 
    SexGroups(I)))

  Console.WriteLine("Mean for {0} = {1}", Sex.Levels(I), Mean)
Next

Console.WriteLine(Environment.NewLine & "TABLE CELL MEANS")
For I As Integer = 0 To Sex.NumberOfLevels - 1
  For J As Integer = 0 To Age.NumberOfLevels - 1
    Dim Mean As Double =   
      StatsFunctions.Mean(DF(DF.IndexOfColumn("Weight"), 
      CellGroups(I, J)))
    Console.WriteLine("Mean for {0} {1} = {2}", Sex.Levels(I), 
      Age.Levels(J), Mean)
  Next
Next

The output is:
   Chapter 37.   Data Frames 39



TABLE ROW MEANS
Mean for Adult = 149.25
Mean for Child = 42
Mean for Senior = 129

TABLE COLUMN MEANS
Mean for Female = 84.2222222222222
Mean for Male = 122.666666666667

TABLE CELL MEANS
Mean for Female Adult = 122.5
Mean for Female Child = 41.25
Mean for Female Senior = 116
Mean for Male Adult = 176
Mean for Male Child = 43.5
Mean for Male Senior = 148.5

See also the Tabulate() convenience methods on class DataFrame, as described in 
Section 37.11.

37.11 Cross-Tabulation

As described in Section 37.10, the DataFrame.GetFactor() method can be used in 
conjunction with Subset.GetGroupings() to access “cells” of data based on one 
or two grouping factors. This is such a common operation that class DataFrame 
also provides the Tabulate() methods as a convenience. This method accepts one 
or two grouping columns, a data column, and a delegate to apply to each data 
column subset. The results are returned in a new data frame.

Column Delegates

Overloads of Tabulate() accept static IDFColumn function delegates that return 
various types. For instance, this code encapsulates the static 
StatsFunctions.Mean() function in a Func<IDFColumn, double>:

Code Example – C#

var mean = new Func<IDFColumn, double>(StatsFunctions.Mean);

Code Example – VB

Dim Mean As Func(Of IDFColumn, Double) = AddressOf 
  StatsFunctions.Mean
40   NMath User’s Guide



Most of the static descriptive statistics functions on class StatsFunctions 
(Chapter 38) have overloads that accept an IDFColumn and return a double, and 
so can be encapsulated in this way. A few return integers.

For example, this code encapsulates StatsFunctions.Count(), which returns the 
number of items in a column, in a Func<IDFColumn, int>:

Code Example – C#

var count = new Func<IDFColumn, int>(StatsFunctions.Count);

Code Example – VB

Dim Count As Func(Of IDFColumn, Integer) = AddressOf 
  StatsFunctions.Count

Applying Column Delegates to Tabulated Data

The following code fills a DataFrame with some sales data:

Code Example – C#

var df = new DataFrame();
df.AddColumn( new DFStringColumn( "Product" ) );
df.AddColumn( new DFStringColumn("Month") );  
df.AddColumn( new DFIntColumn( "Quantity" ) );
df.AddColumn( new DFNumericColumn( "Price" ) );
df.AddColumn( new DFNumericColumn( "TotalSale" ) );

int rowID = 0;
df.AddRow( rowID++, "Squash", "Nov", 40, 1.50, 60.0 );
df.AddRow( rowID++, "Carrots", "Nov", 15, 1.20, 18.0 );
df.AddRow( rowID++, "Squash", "Nov", 37, 1.45, 53.65 );
df.AddRow( rowID++, "Carrots", "Nov", 18, 1.25, 22.50 );
df.AddRow( rowID++, "Squash", "Nov", 34, 1.39, 47.26 );
df.AddRow( rowID++, "Carrots", "Dec", 20, 1.30, 26.0 );
df.AddRow( rowID++, "Squash", "Dec", 31, 1.30, 40.30 );
df.AddRow( rowID++, "Carrots", "Dec", 25, 1.40, 35.0 );
df.AddRow( rowID++, "Squash", "Dec", 25, 1.25, 31.25 );
df.AddRow( rowID++, "Carrots", "Dec", 30, 1.45, 43.50 );
df.AddRow( rowID++, "Carrots", "Jan", 33, 1.50, 49.50 );
df.AddRow( rowID++, "Squash", "Jan", 19, 1.21, 22.99 );
df.AddRow( rowID++, "Carrots", "Jan", 40, 1.65, 66.0 );
df.AddRow( rowID++, "Squash", "Jan", 15, 1.11, 16.65 );
df.AddRow( rowID++, "Carrots", "Jan", 47, 1.80, 84.60 );
df.AddRow( rowID++, "Squash", "Jan", 10, 1.00, 10.0 );

Code Example – VB

Dim DF As New DataFrame()
DF.AddColumn(New DFStringColumn("Product"))
   Chapter 37.   Data Frames 41



DF.AddColumn(New DFStringColumn("Month"))
DF.AddColumn(New DFIntColumn("Quantity"))
DF.AddColumn(New DFNumericColumn("Price"))
DF.AddColumn(New DFNumericColumn("TotalSale"))

Dim RowID As Integer = 0
RowID += 1
DF.AddRow(RowID, "Squash", "Nov", 40, 1.5, 60.0)
RowID += 1
DF.AddRow(RowID, "Carrots", "Nov", 15, 1.2, 18.0)
RowID += 1
DF.AddRow(RowID, "Squash", "Nov", 37, 1.45, 53.65)
RowID += 1
DF.AddRow(RowID, "Carrots", "Nov", 18, 1.25, 22.5)
RowID += 1
DF.AddRow(RowID, "Squash", "Nov", 34, 1.39, 47.26)
RowID += 1
DF.AddRow(RowID, "Carrots", "Dec", 20, 1.3, 26.0)
RowID += 1
DF.AddRow(RowID, "Squash", "Dec", 31, 1.3, 40.3)
RowID += 1
DF.AddRow(RowID, "Carrots", "Dec", 25, 1.4, 35.0)
RowID += 1
DF.AddRow(RowID, "Squash", "Dec", 25, 1.25, 31.25)
RowID += 1
DF.AddRow(RowID, "Carrots", "Dec", 30, 1.45, 43.5)
RowID += 1
DF.AddRow(RowID, "Carrots", "Jan", 33, 1.5, 49.5)
RowID += 1
DF.AddRow(RowID, "Squash", "Jan", 19, 1.21, 22.99)
RowID += 1
DF.AddRow(RowID, "Carrots", "Jan", 40, 1.65, 66.0)
RowID += 1
DF.AddRow(RowID, "Squash", "Jan", 15, 1.11, 16.65)
RowID += 1
DF.AddRow(RowID, "Carrots", "Jan", 47, 1.8, 84.6)
RowID += 1
DF.AddRow(RowID, "Squash", "Jan", 10, 1.0, 10.0)

This code displays the average sales for each product:

Code Example – C#

var mean =
  new Func<IDFColumn, double>(StatsFunctions.Mean);
Console.WriteLine( df.Tabulate( "Product", "TotalSale", mean ) );

Code Example – VB

Dim Mean As Func(Of IDFColumn, Double) = AddressOf 
  StatsFunctions.Mean
Console.WriteLine(DF.Tabulate("Product", "TotalSale", Mean))
42   NMath User’s Guide



The Product column is used as a grouping column, TotalSale contains the data, 
and the mean delegate returns the mean of the value in each cell. The output is:

#         Results
Carrots   43.1375
Squash    35.2625
Overall   39.2000

The Tabulate() methods return a new data frame. If only one grouping factor is 
specified, as in this example, the row keys are the sorted, unique factor levels. The 
only column, named Results, contains the results of applying the given delegate 
to the values in the data column tabulated for each level of the factor. A final row is 
appended, with key Overall, containing the results of applying the given delegate 
to all values in the data column. 

Similarly, this code displays the number of observations in each cell for every 
combination of Product and Month:

Code Example – C#

var count =
  new Func<IDFColumn, int>( StatsFunctions.Count );
Console.WriteLine(
  df.Tabulate( "Product", "Month", "TotalSale", count );

Code Example – VB

Dim Count As Func(Of IDFColumn, Integer) = AddressOf 
  StatsFunctions.Count
Console.WriteLine(DF.Tabulate("Product", "Month", "TotalSale", 
  Count))

The Product and Month columns are used as grouping columns, TotalSale 
contains the data, and the count delegate returns the number of items in each cell. 

The output is:

#         Dec  Jan  Nov  Overall
Carrots   3    3    2    8
Squash    2    3    3    8
Overall   5    6    5    16

When two grouping factors are specified, as in this case, the returned data frame 
has row keys containing the sorted, unique levels of the first grouping factor as 
strings. The columns in the data frame are named using the sorted, unique levels 
of the second grouping factor. 

NOTE—In this example the alphabetic sorting of the Month names has put them into 
non-chronological order. In the months had been stored as DateTime objects in an 
DFDateTimeColumn,  they would have been ordered chronologically.
   Chapter 37.   Data Frames 43



Each cell in the data frame contains the results of applying the given delegate to 
the values in the data column tabulated for the appropriate combination of the two 
factors. A final column is appended, named Overall, containing the overall results 
for each level of the first factor. A final row is appended, with key Overall, 
containing the overall results for each level of the second factor. The lower right 
corner cell, accessed by indexer this["Overall","Overall"], contains the results 
of applying the given delegate to all values in the data column. 

37.12 Exporting Data from DataFrames

The contents of a data frame can be exported in various ways.

Exporting to a Matrix

The ToDoubleMatrix() method exports all the numeric data in a data frame to a 
DoubleMatrix. Non-numeric columns are ignored. For example, this code 
constructs a DataFrame from a DoubleMatrix, adds a column of string data, then 
exports the contents of the data frame to another DoubleMatrix:

Code Example – C#

var A = new DoubleMatrix( 8, 3, 0, .1 );
df = new DataFrame( A, new string[] { "A", "B", "C" } );

var col4 = new DFStringColumn( "D",
  new String[] { "x", "x", "x", "x", "x", "x", "x", "x" } );
df.AddColumn( col4 );

DoubleMatrix B = df.ToDoubleMatrix();

Code Example – VB

Dim A As New DoubleMatrix(8, 3, 0, 0.1)
DF = New DataFrame(A, New String() {"A", "B", "C"})

Dim Col4 As New DFStringColumn("D",
  New String() {"x", "x", "x", "x", "x", "x", "x", "x"})
DF.AddColumn(Col4)

Dim B As DoubleMatrix = DF.ToDoubleMatrix()

The two matrices are equal (A == B); the string column is ignored.
44   NMath User’s Guide



Exporting to a String

The ToString() method returns a formatted string representation of a data frame:

Code Example – C#

string str = df.ToString();

Code Example – VB

Dim Str As String = DF.ToString()

For more control, you can also indicate:

 whether to export column headers (the default is true)

 whether to export row keys (the default is true)

 the delimiter to use to separate columns (the default is tab-delimited)

For instance, this code exports the column headers, but not the row keys, and uses 
a comma delimiter:

Code Example – C#

string str = df.ToString( true, false, “,” );

Code Example – VB

Dim Str As String = DF.ToString(True, False, ",")

Convenience methods are also provided for persisting a text representation of a 
data frame to a text file. Save() exports the contents of the data frame to a given 
filename:

Code Example – C#

df.Save( “myData.txt” );

Code Example – VB

DF.Save("myData.txt")

Again, you can also indicate whether to export column header or row keys, and 
specify the column delimiter:

Code Example – C#

df.Save( “myData.txt”, true, false, “,” );

Code Example – VB

DF.Save("myData.txt", True, False, ",")

The LaunchSaveFileDialog() method allows the end user to specify the 
filename. The OpenInEditor() method programmatically opens a data frame in 
   Chapter 37.   Data Frames 45



the default text editor on the user’s system. The user can then edit the contents of 
the data frame. Lastly, the static Load() method imports a data frame from a text 
file:

Code Example – C#

DataFrame df = DataFrame.Load(  “myData.txt” );

Code Example – VB

Dim DF As DataFrame = DataFrame.Load("myData.txt")

Again, you can indicate whether the text file includes column headers and row 
keys, and the delimiter used to separate the columns.

Exporting to an ADO.NET DataTable

The ToDataTable() method exports the data in a data frame to an ADO.NET 
DataTable object. The row keys are placed in a DataColumn named DFRowKeys. 
Thus, this code:

Code Example – C#

var df = new DataFrame();
df.AddColumn(
  new DFNumericColumn( "ids", new DoubleVector( 3, 3, -1 )));
df.AddColumn(
  new DFStringColumn( "names", "a", "b", "c" ));
df.AddColumn(
  new DFBoolColumn( "bools", true, false, true ));
df.SetRowKeys( new String[] { "Row1", "Row2", "Row3" } );
DataTable table = df.ToDataTable();

Code Example – VB

Dim DF As New DataFrame()
DF.AddColumn(
  New DFNumericColumn("ids", New DoubleVector(3, 3, -1)))
DF.AddColumn(
  New DFStringColumn("names", "a", "b", "c"))
DF.AddColumn(
  New DFBoolColumn("bools", True, False, True))
DF.SetRowKeys(New String() {"Row1", "Row2", "Row3"})
Dim Table As DataTable = DF.ToDataTable()

returns a DataTable that looks like this:

name: CenterSpace.NMath.Core.DataFrame
#  DFRowKeys ids     names   bools
1  Row1      3.0000  a       True
2  Row2      2.0000  b       False
46   NMath User’s Guide



3  Row3      1.0000  c       True

If no name is assigned to a data frame before ToDataTable() is called, the name of 
the DataTable is set to the type: CenterSpace.NMath.Core.DataFrame.

Binary and SOAP Serialization

Class DataFrame implements the ISerializable interface to control serialization 
and deserialization. Common Language Runtime (CLR) serialization Formatter 
classes call the provided GetObjectData() method at serialization time to 
populate a SerializationInfo object with all the data required to represent a 
DataFrame. For example, the BinaryFormatter class provides Serialize() and 
Deserialize() methods for persisting an object in binary format to a given 
stream. For example, this code serializes a data frame to a file:

Code Example – C#

using System.IO;
using System.Runtime.Serialization.Formatters.Binary;

FileStream binStream = File.Create( “myData.dat” );
var binFormatter = new BinaryFormatter();
binFormatter.Serialize( binStream, df );
binStream.Close();

Code Example – VB

Imports System.IO
Imports System.Runtime.Serialization.Formatters.Binary

Dim BinStream As FileStream = File.Create("myData.dat")
Dim BinFormatter As New BinaryFormatter()
BinFormatter.Serialize(BinStream, DF)
BinStream.Close()

This code restores the data frame from the file:

Code Example – C#

binStream = File.OpenRead( "myData.dat" );
DataFrame df2 = (DataFrame)binFormatter.Deserialize( binStream );
binStream.Close();
File.Delete( "myData.dat" );

Code Example – VB

BinStream = File.OpenRead("myData.dat")
Dim DF2 As DataFrame = CType(BinFormatter.Deserialize(BinStream), 
DataFrame)
BinStream.Close()
File.Delete("myData.dat")
   Chapter 37.   Data Frames 47



Similarly, the SoapFormatter class persists an object in SOAP format to a given 
stream. Thus:

Code Example – C#

using System.IO;
using System.Runtime.Serialization.Formatters.Soap;

FileStream xmlStream = File.Create( "myData.xml" );
var xmlFormatter = new SoapFormatter();
xmlFormatter.Serialize( xmlStream, df );
xmlStream.Close();

Code Example – VB

Imports System.IO
Imports System.Runtime.Serialization.Formatters.Soap

Dim XMLStream As FileStream = File.Create("myData.xml")
Dim XMLFormatter As New SoapFormatter()
XMLFormatter.Serialize(XMLStream, DF)
XMLStream.Close()

This code restores the data frame from the file:

Code Example – C#

xmlStream = File.OpenRead( "myData.xml" );
DataFrame df2 = (DataFrame)xmlFormatter.Deserialize( xmlStream )
xmlStream.Close();
File.Delete( "myData.xml" );

Code Example – VB

XMLStream = File.OpenRead("myData.xml")
Dim DF2 As DataFrame = CType(XMLFormatter.Deserialize(XMLStream), 
DataFrame)
XMLStream.Close()
File.Delete("myData.xml")
48   NMath User’s Guide



CHAPTER 38.  
DESCRIPTIVE STATISTICS

Class StatsFunctions provides a wide variety of static functions for computing 
descriptive statistics, such as mean, variance, standard deviation, percentile, 
median, quartiles, geometric mean, harmonic mean, RMS, kurtosis, skewness, and 
many more.

Method overloads accept data as an array of doubles, as a DoubleVector, or as a 
column in a DataFrame (Chapter 37). For example:

Code Example – C#

double[] dblArray = { 1.12, -2.0, 3.88, 1.2, 15.345 };
double mean1 = StatsFunctions.Mean( dblArray );

var v = new DoubleVector( “1.12 -2.0 3.88 1.2 15.345”  );
double mean2 = StatsFunctions.Mean( v );

var df = new DataFrame();
df.AddColumn(
  new DFNumericColumn( "myData", 1.12, -2.0, 3.88, 1.2, 15.345 ) );
double mean3 = StatsFunctions.Mean( df[ “myData” ] );  

// mean1 == mean2 == mean3

Code Example – VB

Dim DblArray() As Double = {1.12, -2.0, 3.88, 1.2, 15.345}
Dim Mean1 As Double = StatsFunctions.Mean(DblArray)

Dim V As New DoubleVector("1.12 -2.0 3.88 1.2 15.345")
Dim Mean2 As Double = StatsFunctions.Mean(V)

Dim DF As New DataFrame()
DF.AddColumn(New DFNumericColumn("myData", 1.12, -2.0, 3.88, 1.2, 
  15.345))
Dim Mean3 As Double = StatsFunctions.Mean(DF("myData"))

'' mean1 == mean2 == mean3

In this chapter, where data is used in code examples, it should be understood to be 
an instance of any of these three types.
   Chapter 38.   Descriptive Statistics 49



38.1 Column Types

Most functions in class StatsFunctions require numeric data, although they accept 
any instance of IDFColumn. If a column is not an instance of DFIntColumn or 
DFNumericColumn, an attempt is made to convert the data to double using 
System.Convert.ToDouble().

NOTE—An NMathFormatException is raised if the data cannot be converted to 
double.

For instance, these functions will work with a DFStringColumn containing 
numbers represented as strings.

Code Example – C#

var col =
  new DFStringColumn( “Col1”, “1.5”, “2”, “1.33”, “4.76” );
double mean = StatsFunctions.Mean( col );

Code Example – VB

Dim Col As New DFStringColumn("Col1", "1.5", "2", "1.33", "4.76")
Dim Mean As Double = StatsFunctions.Mean(Col)

However, there is a processing penalty due to such type conversion. If you need to 
perform many statistical functions on a column, first create a new DFIntColumn 
or DFNumericColumn from your data column, so type conversion occurs only 
once. For example, if column 4 in data frame df is a DFGenericColumn containing 
decimal types, this works:

Code Example – C#

double mean = StatsFunctions.Mean( df[4] );
double stdev = StatsFunctions.StandardDeviation( df[4] );

Code Example – VB

Dim Mean As Double = StatsFunctions.Mean(DF(4))
Dim StdDev As Double = StatsFunctions.StandardDeviation(DF(4))

but the decimal data is converted to doubles twice. This code first creates a new 
DFNumericColumn containing doubles from the generic column, then computes 
the statistics:

Code Example – C#

var col = new DFNumericColumn( df[4].Name, df[4] );
double mean = StatsFunctions.Mean( col );
double stdev = StatsFunctions.StandardDeviation( col );

Code Example – VB

Dim Col As New DFNumericColumn(DF(4).Name, DFBoolColumn(4))
50   NMath Stats User’s Guide



Dim Mean As Double = StatsFunctions.Mean(Col)
Dim StdDev As Double = StatsFunctions.StandardDeviation(Col)

In some cases, you may want to replace the original generic column in the data 
frame with the new DFNumericColumn:

Code Example – C#

df.RemoveColumn( 4 );
df.InsertColumn( 4, col );
double mean = StatsFunctions.Mean( df[4] );
double stdev = StatsFunctions.StandardDeviation( df[4] );

Code Example – VB

DF.RemoveColumn(4)
DF.InsertColumn(4, Col)
Dim Mean As Double = StatsFunctions.Mean(DF(4))
Dim StdDev As Double = StatsFunctions.StandardDeviation(DF(4))

Note that sometimes you may not even be aware that your data is stored in a 
generic column. (You can always return the type of a column using the 
ColumnType property.) This is most likely to occur when you read data from a text 
file or database directly into a DataFrame. For example, if your database stores 
data using SQL NUMERIC or DECIMAL types, these get mapped to System.Decimal 
in ADO. NMath does not silently convert decimals to doubles, because of the loss 
of precision, so they are stored in the dataframe as objects in a DFGenericColumn. 
If you intend to perform multiple statistical functions on the data, convert the 
column to a DFNumericColumn first, as shown above.

38.2 Missing Values

Most functions in class StatsFunctions are accompanied by a paired function that 
ignores missing values, such as Double.NaN in a DoubleVector, 
DFNumericColumn, or array of doubles. For example, there are Mean() and 
NaNMean() functions, Variance() and NaNVariance() functions, and so forth. 
Unless a function is explicitly designed to handle missing values, it may return 
NaN or have unexpected results if values are missing.

Code Example – C#

var v = new DoubleVector( “[ 3.2 1.0 Double.NaN 4.5 -1.2 ]”); 

double mean1 = StatsFunctions.Mean( v );
// mean1 = Double.NaN

double mean2 = StatsFunctions.NaNMean( v );
// mean2 = 1.875
   Chapter 38.   Descriptive Statistics 51



Code Example – VB

Dim V As New DoubleVector("[ 3.2 1.0 Double.NaN 4.5 -1.2 ]")

Dim Mean1 As Double = StatsFunctions.Mean(V)
'' mean1 = Double.NaN

Dim Mean2 As Double = StatsFunctions.NaNMean(V)
'' mean2 = 1.875

The provided convenience method NaNCheck() returns true if a given data set 
contains any missing values. NaNRemove() creates a copy of a data set with 
missing values removed. For two-dimensional data sets, such as matrices and data 
frames, NaNRemoveCols() creates a copy with only those columns that do not 
contain missing values. NaNRemoveRows() removes any rows containing missing 
data. The CleanCols() and CleanRows() methods on class DataFrame have the 
same effect.

As described in Section 37.1, data frame column types enable you to specify how 
missing values are represented within a particular column instance, or for all 
columns of a particular type. For example, this column stores numeric data in a 
string column, and uses NA to indicate a missing value:

Code Example – C#

var col =
  new DFStringColumn( “myCol”, “32.1”, “NA”, “6.0”, “34” );

Code Example – VB

Dim Col As New DFStringColumn("myCol", "32.1", "NA", "6.0", "34")

This code identifies the missing value string, then computes the mean, ignoring 
missing values:

Code Example – C#

col.MissingValue = “NA”;
double mean = StatsFunctions.NaNMean( col );

Code Example – VB

Col.MissingValue = "NA"
Dim Mean As Double = StatsFunctions.NaNMean(Col)

Because the column is not an instance of DFIntColumn or DFNumericColumn, an 
attempt is made to convert the data to double using System.Convert.ToDouble() 
(Section 38.1). If StatsFunctions.Mean() was used, instead of 
StatsFunctions.NaNMean(), or if col.MissingValue was set to something other 
than NA (for example, the default value is “.”), an exception would be thrown.
52   NMath Stats User’s Guide



38.3 Counts and Sums

The static Count() method on class StatsFunctions returns the number of 
elements in a data set:

Code Example – C#

int numElements = StatsFunctions.Count( data );

Code Example – VB

Dim NumElements As Integer = StatsFunctions.Count(Data)

Counts() returns an IDictionary of key-value pairs in which the keys are the 
unique elements in a given data set, and the values are the counts for each element.

CountIf() calculates how many elements in a data set return true when a logical 
function is applied. For example, suppose MeetsThreshold() is a method that 
returns true if a given numeric value is greater than 100:

Code Example – C#

public bool MeetsThreshold( double x )
{
  return ( x > 100 );
}

Code Example – VB

Public Function MeetsThreshold(X As Double) As Boolean
  Return (X > 100)
End Function

This code counts the number of elements in a data set that meet the criterion:

Code Example – C#

int num = StatsFunctions.CountIf( data, new 
  new Func<double, bool>( MeetsThreshold ) );

Code Example – VB

Dim Num As Integer = StatsFunctions.CountIf(DataArray,
  New Func(Of Double, Boolean)(AddressOf MeetsThreshold))

Similarly, the static Sum() method sums the elements in a data set.  SumIf() sums 
the elements in a data set that return true when a logical function is applied:

Code Example – C#

double sum = StatsFunctions.SumIf( data, new 
  new Func<double, bool>( MeetsThreshold ) );
   Chapter 38.   Descriptive Statistics 53



Code Example – VB

Dim Sum As Double = StatsFunctions.SumIf(DataColumn,
  New Func(Of Double, Boolean)(AddressOf MeetsThreshold))

An overload of SumIf() sums the elements in one data set based on evaluating a 
logical function on another data set. For instance, this code sums the elements in 
data2 that correspond to those elements in data where MeetsThreshold() 
returns true:

Code Example – C#

double sum = StatsFunctions.SumIf( data, function, data2 );

Code Example – VB

Dim Sum As Double = StatsFunctions.SumIf(DataVector, MyFunction, 
  data2)

A MismatchedSizeException is raised if the two data sets do not have the same 
number of elements.

38.4 Min/Max Functions

Class StatsFunctions provides static min/max finding methods that return the 
integer index of the element in a data set that meets the appropriate criterion:

 MaxIndex() returns the index of the element with the greatest value.

 MinIndex() returns the index of the element with the smallest value.

 MaxAbsIndex() returns the index of the element with the greatest absolute 
value.

 MinAbsIndex() returns the index of the element with the smallest absolute 
value.

Min/max value methods MaxValue(), MinValue(), MaxAbsValue(), and 
MinAbsValue() return the value of the element that meets the appropriate 
criterion. 

38.5 Ranks, Percentiles, Deciles, and Quartiles

The static Ranks() method on class StatsFunctions returns the rank of each 
element in a data set an as array of integers. For example:
54   NMath Stats User’s Guide



Code Example – C#

int[] ranks  = StatsFunctions.Ranks( data );

Code Example – VB

Dim Ranks() As Integer = StatsFunctions.Ranks(MyData)

By default, the ranks are calculated using ascending order. Alternatively, you can 
specify a sort order using a value from the SortingType enumeration. Thus:

Code Example – C#

int[] ranks  =
  StatsFunctions.Ranks( data, SortingType.Descending );

Code Example – VB

Dim Ranks As Integer() = StatsFunctions.Ranks(MyData, 
  SortingType.Descending)

NOTE—StatsSettings.Sorting specifies the default SortingType.

The Rank() method returns where a given value would rank within a data set, if it 
were part of the data set. Again, the sorting order can be specified using a value 
from the SortingType enumeration. For instance:

Code Example – C#

double x = 5.342;
int rank = StatsFunctions.Rank( data, x, SortingType.Descending );

Code Example – VB

Dim X As Double = 5.342
Dim Rank As Integer = StatsFunctions.Rank(MyData, X, 
  SortingType.Descending)

Percentile() calculates the value at the nth percentile of the elements in a data 
set, where . For example, to find the value at the 95th percentile:

Code Example – C#

double x = StatsFunctions.Percentile( data, 0.95 );

Code Example – VB

Dim X As Double = StatsFunctions.Percentile(MyData, 0.95)

PercentileRank() performs the inverse calculation, returning the percentile a 
given value would have if it were part of the data set:

Code Example – C#

double x = 23.653;
double percentile = StatsFunctions.Percentile( data, x );

0 n 1 
   Chapter 38.   Descriptive Statistics 55



Code Example – VB

Dim X As Double = 23.653
Dim Percentile As Double = StatsFunctions.Percentile(MyData, X)

The returned percentile value is between 0 and 1.

Similarly, Decile() calculates a given decile, specified as an integer between 0 and 
10, of the elements in a data set.  Quartile() calculates a given quartile, specified 
as an integer between 0 and 4. For example, this code finds the third quartile value:

Code Example – C#

double x = StatsFunctions.Quartile( data, 3 );

Code Example – VB

Dim X As Double = StatsFunctions.Quartile(MyData, 3)

38.6 Central Tendency

Measures of central tendency are measures of the location of the middle or the 
center of a data set. For example, the static Mean() method on class StatsFunctions 
computes the arithmetic mean (average) of the elements in a data set:

Code Example – C#

double mean = StatsFunctions.Mean( data );

Code Example – VB

Dim Mean As Double = StatsFunctions.Mean(MyData)

Median() calculates the median of the  elements in a data set:

Code Example – C#

double median = StatsFunctions.Median( data );

Code Example – VB

Dim Median As Double = StatsFunctions.Median(MyData)

The median is the middle of the set—half the values are above the median and half 
are below the median. If there are an even number of elements, Median() returns 
the average of the middle two elements.

Mode() determines the most frequently occurring value in a data set:

Code Example – C#

double mode = StatsFunctions.Mode( data );
56   NMath Stats User’s Guide



Code Example – VB

Dim Mode As Double = StatsFunctions.Mode(MyData)

GeometricMean() calculates the geometric mean.

 

HarmonicMean() calculates the harmonic mean.

 

TrimmedMean() calculates the mean of a data set after the specified trimming. A 
trimmed mean is calculated by discarding a certain percentage of the lowest and 
the highest values and then computing the mean of the remaining values. For 
example, a mean trimmed 50% is computed by discarding the lower and higher 
25% of the values and taking the mean of the remaining values. TrimmedMean() 
takes a trimming parameter, which is a value between 0.0 and 1.0. For example, 
this code computes the mean trimmed 50%:

Code Example – C#

double trimMean = StatsFunctions.TrimmedMean( data, 0.50 );

Code Example – VB

Dim TrimMean As Double = StatsFunctions.TrimmedMean(MyData, 0.5)

The median is the mean trimmed 1.0, and the arithmetic mean is the mean 
trimmed 0.0. 

WeightedMean() calculates the weighted average of all the elements in a data set 
using a given set of corresponding weights. The weighted mean is calculated as 

 

For instance:

Code Example – C#

var v = new DoubleVector( "-0.3 -0.03 4 2.8 -12.3 -5 3 10" );
var weights = new DoubleVector( "1 2 3 4 2 1 3 4" );
double weightedMean = StatsFunctions.WeightedMean( v, weights ));

n

x1 x1xnn

------------------------------

n

1
x1
---- 1

x2
----  1

xn
----+ + +

----------------------------------------

w1x1 w2x2  wnxn+ + +

w1 w2  wn+ + +
----------------------------------------------------------
   Chapter 38.   Descriptive Statistics 57



Code Example – VB

Dim V As New DoubleVector("-0.3 -0.03 4 2.8 -12.3 -5 3 10")
Dim Weights As New DoubleVector("1 2 3 4 2 1 3 4")
Dim WeightedMean As Double = StatsFunctions.WeightedMean(V, 
Weights)

A MismatchedSizeException is raised if the number of weights does not equal the 
number of elements in the data set. Note that if all the weights are equal, the 
weighted mean is the same as the arithmetic mean. 

Lastly, RMS() calculates the root mean square of the elements in a data set. RMS, 
sometimes called the quadratic mean, is the square root of the mean squared value.

38.7 Spread

Measures of spread are measures of the degree values in the data set differ from 
each other. For example, the static SumOfSquaredErrors() method on class 
StatsFunctions calculates the sum of squared errors (SSE) of the elements in the 
data set. SSE is the sum of the squared differences between each element and the 
mean. 

StandardDeviation() computes the biased standard deviation of the elements in 
a data set.  

For instance:

Code Example – C#

double stdev = StatsFunctions.StandardDeviation( data );

Code Example – VB

Dim StdDev As Double = StatsFunctions.StandardDeviation(MyData)

Alternatively, you can specify the unbiased standard deviation

using a value from the BiasType enumeration:

Code Example – C#

double stdev =
  StatsFunctions.StandardDeviation( data, BiasType.Unbiased );

SSE
n

-----------

SSE
n 1–
-----------
58   NMath Stats User’s Guide



Code Example – VB

Dim StdDev As Double = StatsFunctions.StandardDeviation(MyData, 
BiasType.Unbiased)

NOTE—StatsSettings.Bias specifies the default BiasType.

Variance() calculates the variance of the elements in a data set. Variance is the 
square of the standard deviation. Again, you can specify a biased or unbiased 
estimator using values from the BiasType enumeration.

MeanDeviation() calculates the mean deviation of the elements in a data set. The 
mean deviation is the mean of the absolute deviations about the mean. The mean 
deviation is defined by

Similarly, MedianDeviationFromMean() calculates the median of the absolute 
deviations from the mean. MedianDeviationFromMedian() calculates the median 
of the absolute deviations from the median. 

Lastly, InterquartileRange() returns the difference between the median of the 
highest half and the median of the lowest half of the elements in a data set:

Code Example – C#

double iqr = StatsFunctions.InterQuartileRange( data );

Code Example – VB

Dim IQR As Double = StatsFunctions.InterquartileRange(MyData)

38.8 Shape

The static Skewness() method on class StatsFunctions computes the skewness of 
the elements in a data set. Skewness is the degree of asymmetry of a distribution. A 
distribution is skewed if one of its tails is longer than the other. Thus:

Code Example – C#

double skewness = StatsFunctions.Skewness( data );

Code Example – VB

Dim Skewness As Double = StatsFunctions.Skewness(MyData)

1
n
--- xi x–

i 1=

n



   Chapter 38.   Descriptive Statistics 59



By default, Skewness() uses a biased estimator of the standard deviation 
(Section 38.7). Alternatively, you can specify the unbiased standard deviation 
using a value from the BiasType enumeration:

Code Example – C#

double skewness =
  StatsFunctions.Skewness( data, BiasType.Unbiased );

Code Example – VB

Dim Skewness As Double = StatsFunctions.Skewness(MyData, 
  BiasType.Unbiased)

NOTE—StatsSettings.Bias specifies the default BiasType.

Kurtosis() calculates the kurtosis of the elements in a data set. Kurtosis is a 
measure of the degree of peakedness of a distribution. Again, a biased estimator of 
the standard deviation is used by default—you can specify the unbiased standard 
deviation using a value from the BiasType enumeration.

Finally, CentralMoment() returns the moment about the mean of a data set 
specified by a positive integer order. The first central moment is equal to zero. The 
second central moment is the variance. The third central moment is the skewness. 
The fourth central moment is the kurtosis.

38.9 Covariance, Correlation, and 
Autocorrelation 

The static Covariance() method on class StatsFunctions computes the covariance 
of two data sets. Covariance is a measure of the tendency of two data sets to vary 
together, and is defined by

Each deviation score in the first data set is multiplied by the corresponding 
deviation score in the second data set. For example:

Code Example – C#

double cov = StatsFunctions.Covariance( data1, data2 );

Code Example – VB

Dim Cov As Double = StatsFunctions.Covariance(MyData1, MyData2)

covx y

xi x–  yi y– 
n

--------------------------------------------=
60   NMath Stats User’s Guide



You can also specify a biased or unbiased estimator using values from the 
BiasType enumeration.

CovarianceMatrix() creates a square, symmetric matrix containing the variances 
and covariances of the columns in a given data matrix. The diagonal elements 
represent the variances for the columns; the off-diagonal elements represent the 
covariances of each pair of columns. 

Correlation() calculates the correlation between two data sets. Correlation is 
covariance standardized by dividing by the standard deviation of each data set:

The resultant value is the Pearson product-moment correlation coefficient, more 
commonly known simply as the correlation.

Spearmans() calculates the Spearman rank correlation coefficient, commonly 
known as Spearman’s rho. Spearman’s rho differs from Pearson's correlation only in 
that the computation is done after the values in the data set are converted to ranks 
(Section 38.5).

Fisher() calculates the Fisher transformation at a given value, which can be used 
to perform hypothesis testing on the correlation coefficient. FisherInv() 
calculates the inverse Fisher transformation.

Cronbach() calculates the standardized Cronbach’s alpha test for reliability.

Autocorrelation is the correlation between members of a time series of 
observations. Class StatsFunctions provides two static methods for computing 
first-order autocorrelation:

 DurbinWatson() calculates the Durbin-Watson statistic for the elements in 
a data set.

 VonNeumannRatio() calculates the Von Neumann ratio for the elements in 
a data set.

For instance:

Code Example – C#

double dw = StatsFunctions.DurbinWatson( data );
double vnr = StatsFunctions.VonNeumannRatio( data );

Code Example – VB

Dim DW As Double = StatsFunctions.DurbinWatson(MyData)
Dim VNR As Double = StatsFunctions.VonNeumannRatio(MyData)

corx y
covx y
SxSy

---------------=
   Chapter 38.   Descriptive Statistics 61



38.10 Sorting

The static Sort() method on class StatsFunctions sorts the elements of a data set 
in ascending or descending order using the quicksort algorithm and returns a new 
data set containing the result. The sort order is specified using a value from the 
SortingType enumeration.

For example:

Code Example – C#

var v = new DoubleVector( “5 7 1 3 9 4 5 2 1 0 11 3” );
v = StatsFunctions.Sort( v, SortingType.Descending );

Code Example – VB

Dim V As New DoubleVector("5 7 1 3 9 4 5 2 1 0 11 3")
V = StatsFunctions.Sort( V, SortingType.Descending )

NOTE—StatsSettings.Sorting specifies the default SortingType.

38.11 Logical Functions

The static If() method on class StatsFunctions creates an array of boolean values 
determined by applying a given logical function to the elements in a data set. 

For example, suppose OnInterval01() is a method that returns true if a given 
numeric value is between 0 and 1:

Code Example – C#

public bool OnInterval01( double x )
{
  return ( ( x >= 0 ) && ( x <= 1 ) );
}

Code Example – VB

Public Function OnInterval01(X As Double) As Boolean
  Return ((X >= 0) & (X <= 1))
End Function

This code creates an array of boolean values by applying the criterion to a data set:

Code Example – C#

bool[] bArray = StatsFunctions.If( data, new 
  new Func<double, bool>( OnInterval01 ) );
62   NMath Stats User’s Guide



Code Example – VB

Dim BArray() As Boolean = StatsFunctions.If(MyData,
  New Func(Of Double, Boolean)(AddressOf OnInterval01))

As described in Section 37.7, the resultant boolean array could be used to create a 
Subset containing the indices of all true elements in the array. The subset could 
then be used to create a sub-frame from a DataFrame containing the rows or 
columns than meet the criterion. 

An overload of If() creates a new data set by applying a logical function to the 
elements of another data set. Elements in the original data set that return true are 
set to a given true value in the new data set; elements that return false are not 
changed.

For instance, suppose GreaterThan100() is a method that returns true if a given 
numeric value is greater than 100. This code creates a new data in which all values 
in DoubleVector data that are greater than 100 are set to NaN:

Code Example – C#

DoubleVector data2 = StatsFunctions.If( data,
  new Func<double, bool>( GreaterThan100 ),   
  Double.NaN );

Code Example – VB

Dim MyData2 As DoubleVector = StatsFunctions.If(MyData,
  New Func(Of Double, Boolean)(AddressOf GreaterThan100), 
  Double.NaN)

You can also supply a false value, in which case elements in the original data set 
that return false are set to that value. 

Static CountIf() and SumIf() methods are also provided on class StatsFunctions. 
See Section 38.3 for more information. 
   Chapter 38.   Descriptive Statistics 63



64   NMath Stats User’s Guide



CHAPTER 39.  
SPECIAL FUNCTIONS

In addition to the descriptive statistics described in Chapter 38, class 
StatsFunctions also provides several special functions useful for statistical 
computation, including combinatorial functions, the beta function, and the gamma 
function.

39.1 Combinatorial Functions

The static Factorial() method on class StatsFunctions returns n!, the number of 
ways that n objects can be permuted. A lookup table is used for  for faster 
access. For example:

Code Example – C# factorial

int i = StatsFunctions.Factorial( 20 );
// i = 2,432,902,008,176,640,000

FactorialLn() returns the natural log factorial of n, .

The static Binomial() method returns the binomial coefficient. The binomial 
coefficient  (“n choose m”) is the number of ways of picking m unordered 
outcomes from n possibilities:

For instance:

Code Example – C# binomial

int nCm = StatsFunctions.Binomial( 6, 4 );

BinomialLn() returns the natural log of the binomial coefficient. 

39.2 Gamma Function

The static GammaLn() method on class StatsFunctions evaluates the log of the 
gamma function at a value x. The gamma function is an extension of the 
factorial function to complex and real number arguments.

n 24

ln n! 

Cn m

Cn m
n!

n m– !m!
-----------------------=

 x 
   Chapter 39.   Special Functions 65



The “complete” gamma function  can be generalized to the incomplete 
gamma function , such that . The “lower” incomplete gamma 
function is given by:

IncompleteGamma() returns the value of the lower regularized incomplete gamma 
function. 

39.3 Beta Function

The static Beta() method on class StatsFunctions method evaluates the beta 
function , which is related to the gamma function  as follows:

 

The incomplete beta function  is a generalization of the beta function:

IncompleteBeta() returns the value of the incomplete beta function.

 x 
 a x   a   a 0 =

P x a 
1

 a 
--------- t

a 1–
e

t–
dt

0

x

=

B n m   x 

B n m 
 n  n 
 n m+ 
----------------------- n 1– ! m 1– !

n m 1–+ !
--------------------------------------= =

Bz n m 

Bz a x  u
a 1– 1 u– b 1–

du

0

z

=
66   NMath Stats User’s Guide



CHAPTER 40.  
PROBABILITY DISTRIBUTIONS

NMath Stats provides classes for computing the probability density function 
(PDF), the cumulative distribution function (CDF), the inverse cumulative 
distribution function, and random variable moments for a variety of probability 
distributions, including beta, binomial, chi-square ( ), exponential, F, gamma, 
geometric, Johnson, logistic, log-normal, negative binomial, normal (Gaussian), 
Poisson, Student's t, triangular, uniform, and Weibull distributions. The 
distribution classes share a common interface, so once you learn how to use one 
distribution class, it’s easy to use any of the others.

This chapter describes the distribution classes and how to use them. This chapter 
also describes how to create correlated sets of random variables drawn from 
different distributions.

40.1 Distribution Classes

The NMath Stats probability distribution classes are listed in Table 27.

Table 27 – Probability Distribution Classes

Class Distribution

BetaDistribution Beta distribution

BinomialDistribution Binomial distribution

ChiSquareDistribution Chi-Square ( ) distribution

ExponentialDistribution Exponential distribution

FDistribution F distribution

GammaDistribution Gamma distribution

GeometricDistribution Geometric distribution

JohnsonDistribution Johnson distribution

LogisticDistribution Logistic distribution

LognormalDistribution Log-normal distribution

2

2
   Chapter 40.   Probability Distributions 67



All distribution classes share a common interface. Class ProbabilityDistribution is 
the abstract base class for the distribution classes, and provides the following 
abstract methods implemented by the derived classes:

 PDF() computes the probability density function at a given x.

 CDF() computes the cumulative distribution function at a given x.

 InverseCDF() computes the inverse cumulative distribution function for a 
given probability p—that is, it returns x such that CDF( x ) = p. 

In addition, all NMath Stats distribution classes implement the 
IRandomVariableMoments interface, which provides the following read-only 
properties:

 Mean gets the mean of the distribution.

 Variance gets the variance of the distribution.

 Kurtosis gets the kurtosis of the distribution.

 Skewness gets the skewness of the distribution.

Variance is the square of the standard deviation. Kurtosis is a measure of the degree 
of peakednesss of a distribution; skewness is a measure of the degree of asymmetry.

NegativeBinomialDistribution Negative Binomial distribution

NormalDistribution Normal (Gaussian) distribution

PoissonDistribution Poisson distribution

TDistribution Student’s t distribution

TriangularDistribution Triangular distribution

UniformDistribution Uniform distribution

WeibullDistribution Weibull distribution

Table 27 – Probability Distribution Classes

Class Distribution
68   NMath Stats User’s Guide



Once you have constructed a derived distribution type, you can query it for the 
PDF, CDF, inverse CDF, and random variable moments. For example, this code 
constructs a NormalDistribution with mean 0 and variance 1, then queries it:

Code Example – C# normal distribution

var dist = new NormalDistribution( 0, 1 );
double pdf = dist.PDF( 0 );
double cdf = dist.CDF( 0 );
double invCdf = dist.InverseCDF( .5 );
double mean = dist.Mean;
double var = dist.Variance;
double kurt = dist.Kurtosis;
double skew = dist.Skewness;

Code Example – VB normal distribution

Dim Dist As New NormalDistribution(0, 1)
Dim PDF As Double = Dist.PDF(0)
Dim CDF As Double = Dist.CDF(0)
Dim InvCDF As Double = Dist.InverseCDF(0.5)
Dim Mean As Double = Dist.Mean
Dim Var As Double = Dist.Variance
Dim Kurt As Double = Dist.Kurtosis
Dim Skew As Double = Dist.Skewness

Beta Distribution

Class BetaDistribution represents the beta probability distribution. The beta 
distribution is a family of curves with two free parameters, usually labelled  and 

. Beta distributions are nonzero only on the interval (0 1).

The distribution function for the beta distribution is:

where  is the beta function. The beta CDF is the same as the incomplete beta 
function.

For example, this code constructs a BetaDistribution:

Code Example – C# beta distribution

double alpha = 3;
double beta = 7;
var dist = new BetaDistribution( alpha, beta );

Code Example – VB beta distribution

Dim Alpha As Double = 3




f x    x
 1–

1 x–  1–

B  , 
---------------------------------------=

B x y, 
   Chapter 40.   Probability Distributions 69



Dim Beta As Double = 7
Dim Dist As New BetaDistribution(Alpha, Beta)

The default constructor creates a BetaDistribution with  and  equal to 1:

Code Example – C# beta distribution

var dist = new BetaDistribution();

Code Example – VB beta distribution

Dim Dist As New BetaDistribution()

The provided Alpha and Beta properties can be used to get and set the shape 
parameters after construction:

Code Example – C# beta distribution

dist.Alpha = 4;
dist.Beta = 10;

Code Example – VB beta distribution

Dist.Alpha = 4
Dist.Beta = 10

Once you have constructed a BetaDistribution object, you can query it for the 
PDF, CDF, inverse CDF, and random variable moments, as described in 
Section 40.1.

Binomial Distribution

Class BinomialDistribution represents the discrete probability distribution of 
obtaining exactly n successes in N trials where the probability of success on each 
trial is p. For example, this code constructs an BinomialDistribution:

Code Example – C# binomial distribution

int n = 20;
double p = 0.25;
var bin = new BinomialDistribution( n, p );

Code Example – VB binomial distribution

Dim N As Integer = 20
Dim P As Double = 0.25
Dim Bin As New BinomialDistribution(N, P)

The default constructor creates an BinomialDistribution with  and :

Code Example – C# binomial distribution

var bin = new BinomialDistribution();

 

n 2= p 0.5=
70   NMath Stats User’s Guide



Code Example – VB binomial distribution

Dim Bin As New BinomialDistribution()

The provided N and P properties can be used to get and set the number of trials and 
the probability of success on each trial after construction:

Code Example – C# binomial distribution

bin.N = 75;
bin.P = 0.02;

Code Example – VB binomial distribution

Bin.N = 75
Bin.P = 0.02

Once you have constructed an BinomialDistribution object, you can query it for 
the PDF, CDF, inverse CDF, and random variable moments, as described in 
Section 40.1.

Chi-Square Distribution

Class ChiSquareDistribution represents the chi-square ( ) probability 
distribution. The chi-square distribution is a special case of the gamma distribution 
with  and , where df is the degrees of freedom.

For example, this code constructs a ChiSquareDistribution:

Code Example – C# chi-square distribution

double df = 16;
var chiSq = new ChiSquareDistribution( df );

Code Example – VB chi-square distribution

Dim DF As Double = 16
Dim ChiSq As New ChiSquareDistribution(DF)

The default constructor creates a ChiSquareDistribution with 1 degree of 
freedom:

Code Example – C# chi-square distribution

var chiSq = new ChiSquareDistribution();

Code Example – VB chi-square distribution

Dim ChiSq As New ChiSquareDistribution()

The provided DegreesOfFreedom property can be used to get and set the degrees 
of freedom of the distribution after construction:

2

 df 2=  2=
   Chapter 40.   Probability Distributions 71



Code Example – C# chi-square distribution

chiSq.DegreesOfFreedom = 10;

Code Example – VB chi-square distribution

ChiSq.DegreesOfFreedom = 10

Once you have constructed a ChiSquareDistribution object, you can query it for 
the PDF, CDF, inverse CDF, and random variable moments, as described in 
Section 40.1.

Exponential Distribution

Class ExponentialDistribution represents the exponential distribution. A random 
variable w is said to have an exponential distribution if it has a probability density 
function

where  is often called the rate parameter. The mean of an exponential 
distribution is , and the variance is . For example, this code constructs an 
ExponentialDistribution:

Code Example – C# exponential distribution

double lambda = 22;
var exp = new ExponentialDistribution( lambda );

Code Example – VB exponential distribution

Dim Lambda As Double = 22
Dim Exp As New ExponentialDistribution(Lambda)

The provided Lambda property can be used to get and set the rate after 
construction:

Code Example – C# exponential distribution

exp.Lambda = 15;

Code Example – VB exponential distribution

Exp.Lambda = 15

Once you have constructed an ExponentialDistribution object, you can query it 
for the PDF, CDF, inverse CDF, and random variable moments, as described in 
Section 40.1.

g w  e
w–

=

 0
1  1 2
72   NMath Stats User’s Guide



F Distribution

Class FDistribution represents the F probability distribution. The F distribution is 
the ratio of two chi-square distributions with degrees of freedom  df1 and df2, 
respectively, where each chi-square has first been divided by its degrees of 
freedom. For example, this code constructs an FDistribution:

Code Example – C# F distribution

double df1 = 11;
double df2 = 19;
var f = new FDistribution( df1, df2 );

Code Example – VB F distribution

Dim DF1 As Double = 11
Dim DF2 As Double = 19
Dim F As New FDistribution(DF1, DF2)

The default constructor creates an FDistribution with both degrees of freedom 
equal to 1:

Code Example – C# F distribution

var f = new FDistribution();

Code Example – VB F distribution

Dim F As New FDistribution()

The provided DegreesOfFreedom1 and DegreesOfFreedom2 properties can be 
used to get and set the degrees of freedom after construction:

Code Example – C# F distribution

f.DegreesOfFreedom1 = 15;
f.DegreesOfFreedom2 = 23;

Code Example – VB F distribution

F.DegreesOfFreedom1 = 15
F.DegreesOfFreedom2 = 23

Once you have constructed an FDistribution object, you can query it for the PDF, 
CDF, inverse CDF, and random variable moments, as described in Section 40.1.

Gamma Distribution

Class GammaDistribution represents the gamma probability distribution. The 
gamma distribution is a family of curves with two free parameters, usually 
labelled  and . The mean of the distribution is ; the variance is . When  
is large, the gamma distribution closely approximates a normal distribution.

   2 
   Chapter 40.   Probability Distributions 73



The distribution function for the gamma distribution is:

where  is the Gamma function.

For example, this code constructs a GammaDistribution:

Code Example – C# gamma distribution

double alpha = 7;
double beta = 12;
var gamma = new GammaDistribution( alpha, beta );

Code Example – VB gamma distribution

Dim Alpha As Double = 7
Dim Beta As Double = 12
Dim Gamma As New GammaDistribution(Alpha, Beta)

The default constructor creates a GammaDistribution with  and  equal to 1:

Code Example – C# gamma distribution

var gamma = new GammaDistribution();

Code Example – VB gamma distribution

Dim Gamma As New GammaDistribution()

The provided Alpha and Beta properties can be used to get and set the shape 
parameters after construction:

Code Example – C# gamma distribution

gamma.Alpha = 10;
gamma.Beta = 15;

Code Example – VB gamma distribution

Gamma.Alpha = 10
Gamma.Beta = 15

Once you have constructed a GammaDistribution object, you can query it for the 
PDF, CDF, inverse CDF, and random variable moments, as described in 
Section 40.1.

f x    x
 1–

e

x–

------

  
--------------------=

 x 

 
74   NMath Stats User’s Guide



Geometric Distribution

Class GeometricDistribution represents the geometric distribution. The geometric 
distribution is the probability distribution of the number of failures before the first 
success. It is supported on the set .

A GeometricDistribution is constructed from a given probability of success p, 
where . For example:

Code Example – C# geometric distribution

double p = .25;
var geo = new GeometricDistribution( p );

Code Example – VB geometric distribution

Dim P As Double = 0.25
Dim Geo As New GeometricDistribution(P)

Class GeometricDistribution provides property P that gets and sets the 
probability for success for the distribution.

Code Example – C# geometric distribution

geo.P = .5;

Code Example – VB geometric distribution

Geo.P = 0.5

Once you have constructed a GeometricDistribution object, you can query it for 
the PDF, CDF, inverse CDF, and random variable moments, as described in 
Section 40.1.

Johnson Distribution

Class JohnsonDistribution represents the Johnson system of distributions. The 
Johnson system is based on three possible transformations of a normal random 
variable—exponential, logistic, and hyperbolic sine—plus the identity 
transformation:

where the transformation f() has four possible forms based on the distribution 
type:

0 1 2 3     

0 p 1

z  ln f u   where u+
x –


----------- 
 = =
   Chapter 40.   Probability Distributions 75



 Normal (SN): f(u) = exp(u)

 Log Normal (SL): f(u) = u

 Unbounded (SU):f(u) = u + sqrt(1+u^2)

 Bounded (SB):f(u) = u/(1-u)

A JohnsonDistribution instance is constructed from a set of distribution 
parameter values, and a JohnsonTransformationType enumerated value 
specifying the transformation type. For instance:

Code Example – C# Johnson distribution

double gamma = -0.18;
double delta = 2.55;
double xi = -0.14;
double lambda = 2.35;
JohnsonTransformationType type = JohnsonTransformationType.Normal;

var dist =
  new JohnsonDistribution( gamma, delta, xi, lambda, type );

Code Example – VB Johnson distribution

Dim Gamma As Double = -0.18
Dim Delta As Double = 2.55
Dim Xi As Double = -0.14
Dim Lambda As Double = 2.35
Dim Type As JohnsonTransformationType = 
  JohnsonTransformationType.Normal

Dim Dist As New JohnsonDistribution(Gamma, Delta, Xi, Lambda, Type)

Once you have constructed a JohnsonDistribution object, you can query it for the 
PDF, CDF, inverse CDF, and random variable moments, as described in 
Section 40.1.

Class JohnsonDistribution also provides a static Fit() method for fitting a 
Johnson distribution to a data set. Estimation of the Johnson parameters is done 
from quantiles that correspond to the cumulative probabilities [0.05, 0.206, 
0.5, 0.794, 0.95] using the method of Wheeler (1980).1 For example:

Code Example – C# Johnson distribution

var data = new DoubleVector(-0.09736927, 0.21615254, 
  0.88246516, 0.20559750, -0.61643584, -0.73479925, -0.13180279, 
  0.31001699, -1.03968035, -0.18430887, 0.96726726, -0.10828009, -
  0.69842067, -0.27594517, 1.11464855, 0.55004396, 1.23667580, 
  0.13909786, 0.41027510, -0.55845691);

1Wheeler, R.E. (1980). Quantile estimators of Johnson curve parameters. Biometrika. 67-3 725-728.
76   NMath Stats User’s Guide



var dist = JohnsonDistribution.Fit(data);

Code Example – VB Johnson distribution

Dim Data As New DoubleVector(-0.09736927, 0.21615254,
  0.88246516, 0.2055975, -0.61643584, -0.73479925, -0.13180279,
  0.31001699, -1.03968035, -0.18430887, 0.96726726, -0.10828009,
  -0.69842067, -0.27594517, 1.11464855, 0.55004396, 1.2366758,
  0.13909786, 0.4102751, -0.55845691)
Dim Dist As JohnsonDistribution = JohnsonDistribution.Fit(Data)

The Transform() method transforms data using a JohnsonDistribution object.

Logistic Distribution

Class LogisticDistribution represents the logistic probability distribution with a 
specified location (mean) and scale. The logistic distribution with location m and 
scale b has distribution function: 

and density:

 

For example, this code constructs a LogisticDistribution:

Code Example – C# logistic distribution

double loc = 2.0;
double scale = 1.5;
var logistic = new LogisticDistribution( loc, scale );

Code Example – VB logistic distribution

Dim Loc As Double = 2.0
Dim Scale As Double = 1.5
Dim Logistic As New LogisticDistribution(Loc, Scale)

The provided Location and Scale properties can be used to get and set 
distribution parameters after construction:

Code Example – C# logistic distribution

logistic.Location = 7.123;
logistic.Scale = 4.5;

f x  1

1 e
x m– – b

+
---------------------------------=

f x  e
x m– – b

b 1 e
x m– – b

+ 
2

--------------------------------------------=
   Chapter 40.   Probability Distributions 77



Code Example – VB logistic distribution

Logistic.Location = 7.123
Logistic.Scale = 4.5

Once you have constructed a LogisticDistribution object, you can query it for the 
PDF, CDF, inverse CDF, and random variable moments, as described in 
Section 40.1.

Log-Normal Distribution

Class LognormalDistribution represents the log-normal distribution. A log-
normal distribution has a normal distribution as its logarithm:

 

For example, this code constructs an LognormalDistribution whose associated 
normal distribution has the specified mean and standard deviation:

Code Example – C# log-normal distribution

double mu = -99;
double sigma = 6;
var ln = new LognormalDistribution( mu, sigma );

Code Example – VB log-normal distribution

Dim Mu As Double = -99
Dim Sigma As Double = 6
Dim LN As New LognormalDistribution(Mu, Sigma)

The default constructor creates a LognormalDistribution whose associated 
normal distribution has mean 0 and standard deviation 1:

Code Example – C# log-normal distribution

var ln = new LognormalDistribution();

Code Example – VB log-normal distribution

Dim LN As New LognormalDistribution()

The Mu and Sigma properties can be used to get and set the mean and standard 
deviation after construction:

Code Example – C# log-normal distribution

ln.Mu = 2.25;
ln.Sigma = .75;

Code Example – VB log-normal distribution

LN.Mu = 2.25

f x  e
normal   

=

78   NMath Stats User’s Guide



LN.Sigma = 0.75

Once you have constructed a LognormalDistribution object, you can query it for 
the PDF, CDF, inverse CDF, and random variable moments, as described in 
Section 40.1.

Negative Binomial Distribution

Class NegativeBinomialDistribution represents the discrete probability 
distribution of obtaining N successes in a series of x trials, where the probability of 
success on each trial is P.

For example, this code constructs an NegativeBinomialDistribution:

Code Example – C# negative binomial distribution

int n = 5;
double p = 0.25;
var negBin = new NegativeBinomialDistribution( n, p );

Code Example – VB negative binomial distribution

Dim N As Integer = 5
Dim P As Double = 0.25
Dim NegBin As New NegativeBinomialDistribution(N, P)

The default constructor creates an NegativeBinomialDistribution with  and 
:

Code Example – C# negative binomial distribution

var negBin = new NegativeBinomialDistribution();

Code Example – VB negative binomial distribution

Dim NegBin As New NegativeBinomialDistribution()

The provided N and P properties can be used to get and set the number of successes 
and the probability of success on each trial after construction:

Code Example – C# negative binomial distribution

negBin.N = 75;
negBin.P = 0.02;

Code Example – VB negative binomial distribution

Bin.N = 75
Bin.P = 0.02

Once you have constructed an NegativeBinomialDistribution object, you can 
query it for the PDF, CDF, inverse CDF, and random variable moments, as 
described in Section 40.1.

n 2=
p 0.5=
   Chapter 40.   Probability Distributions 79



Normal Distribution

Class NormalDistribution represents the normal (Gaussian) probability 
distribution. with a specified mean and variance. For example, this code creates a 
normal distribution with a mean of 1 and variance of 2.5:

Code Example – C# normal distribution

var norm = new NormalDistribution( 1, 2.5 );

Code Example – VB normal distribution

Dim Norm As New NormalDistribution(1, 2.5)

The default constructor creates a NormalDistribution with mean 0 and variance 1:

Code Example – C# normal distribution

var norm = new NormalDistribution();

Code Example – VB normal distribution

Dim Norm As New NormalDistribution()

The Mean and Variance properties inherited from IRandomVariableMoments can 
be used to get and set the mean and variance after construction:

Code Example – C# normal distribution

norm.Mean = 2.25;
norm.Variance = .75;

Code Example – VB normal distribution

Norm.Mean = 2.25
Norm.Variance = 0.75

Once you have constructed a NormalDistribution object, you can query it for the 
PDF, CDF, inverse CDF, and random variable moments, as described in 
Section 40.1.

Poisson Distribution

Class PoissonDistribution represents a poisson distribution with a specified  
parameter, which is both the mean and the variance of the distribution. The 
poisson distribution is the probability of obtaining exactly n successes in N trials. It 
is often used as a model for the number of events in a specific time period. Poisson 
(1837) showed that the Poisson distribution is the limiting case of a binomial 
distribution where N approaches infinity and p goes to zero while . The 
distribution function for the Poisson distribution is:



Np =

f x   e
– x

x!
-------------=
80   NMath Stats User’s Guide



For example, this code constructs a PoissonDistribution:

Code Example – C# poisson distribution

double lambda = 150;
var poisson = new PoissonDistribution( lambda );

Code Example – VB poisson distribution

Dim Lambda As Double = 150
Dim Poisson As New PoissonDistribution(Lambda)

The Mean and Variance properties inherited from IRandomVariableMoments can 
also be used to get and set  after construction:

Code Example – C# poisson distribution

poisson.Mean = 3;

Code Example – VB poisson distribution

Poisson.Mean = 3

Once you have constructed a PoissonDistribution object, you can query it for the 
PDF, CDF, inverse CDF, and random variable moments, as described in 
Section 40.1.

Student’s t Distribution

Class TDistribution represents Student's t distribution with specified degrees of 
freedom. As the number of degrees of freedom grows, the t distribution 
approaches the normal distribution with mean 0 and variance 1.

For example, this code constructs a TDistribution:

Code Example – C# t distribution

double df = 53;
var t = new TDistribution( df );

Code Example – VB t distribution

Dim DF As Double = 53
Dim T As New TDistribution(DF)

The default constructor creates a TDistribution with 1 degree of freedom:

Code Example – C# t distribution

var t = new TDistribution();

Code Example – VB t distribution

Dim T As New TDistribution()



   Chapter 40.   Probability Distributions 81



The provided DegreesOfFreedom property can be used to get and set the degrees 
of freedom of the distribution after construction:

Code Example – C# t distribution

t.DegreesOfFreedom = 54;

Code Example – VB t distribution

T.DegreesOfFreedom = 54

Once you have constructed a TDistribution object, you can query it for the PDF, 
CDF, inverse CDF, and random variable moments, as described in Section 40.1.

Triangular Distribution

Class TriangularDistribution represents the triangular distribution. The triangular 
distribution is defined by three parameters, a lower limit a, an upper limit b, and 
number c, between a and b, called the mode. The probability density function has 
the shape of a triangle in the X/Y plane with vertices (a, 0), (b, 0), and (c, y), where 
y is chosen so that the area of the triangle is 1.

For example, this code constructs an TriangularDistribution with the given 
parameters:

Code Example – C# triangular distribution

double lower = 3;
double upper = 10;
double mode = 8;
var td = new TriangularDistribution( lower, upper, mode );

Code Example – VB triangular distribution

Dim Lower As Double = 3
Dim Upper As Double = 10
Dim Mode As Double = 8
Dim TD As New TriangularDistribution(Lower, Upper, Mode)

If you don’t specify the mode, the midpoint of the lower and upper limits is used.

The default constructor creates a TriangularDistribution with lower limit 0, upper 
limit 1, and mode 0.5:

Code Example – C# triangular distribution

var td = new TriangularDistribution();

Code Example – VB triangular distribution

Dim TD As New TriangularDistribution()
82   NMath Stats User’s Guide



The LowerLimit, UpperLimit, and Mode properties can be used to get and set the 
distribution parameters after construction:

Code Example – C# triangular distribution

td.LowerLimit = 1.5;
td.UpperLimit = 3.5;
td.Mode = 2.75;

Code Example – VB triangular distribution

TD.LowerLimit = 1.5
TD.UpperLimit = 3.5
TD.Mode = 2.75

Once you have constructed a TriangularDistribution object, you can query it for 
the PDF, CDF, inverse CDF, and random variable moments, as described in 
Section 40.1.

Uniform Distribution

Class UniformDistribution represents the uniform distribution. For example, this 
code constructs an UniformDistribution with the specified lower and upper 
limits:

Code Example – C# uniform distribution

double lower = -.77;
double upper = 1.22;
var uni = new UniformDistribution( lower, upper );

Code Example – VB uniform distribution

Dim Lower As Double = -0.77
Dim Upper As Double = 1.22
Dim Uni As New UniformDistribution(Lower, Upper)

The default constructor creates a UniformDistribution with lower limit 0 and 
upper limit 1:

Code Example – C# uniform distribution

var uni = new UniformDistribution();

Code Example – VB uniform distribution

Dim Uni As New UniformDistribution()

The LowerLimit and UpperLimit properties can be used to get and set the lower 
and upper limits after construction:
   Chapter 40.   Probability Distributions 83



Code Example – C# uniform distribution

uni.LowerLimit = 0;
uni.UpperLimit = 2.0;

Code Example – VB uniform distribution

Uni.LowerLimit = 0
Uni.UpperLimit = 2.0

Once you have constructed a UniformDistribution object, you can query it for the 
PDF, CDF, inverse CDF, and random variable moments, as described in 
Section 40.1.

Weibull Distribution

Class WeibullDistribution represents the Weibull distribution. The probability 
density function of the Weibull distribution is given by:

where  is the shape parameter and  is the scale parameter of the 
distribution.

For example, this code constructs an WeibullDistribution with the specified 
distribution parameters:

Code Example – C# Weibull distribution

double scale = 1.5;
double shape = 3;
var wb = new WeibullDistribution( scale, shape );

Code Example – VB Weibull distribution

Dim Scale As Double = 1.5
Dim Shape As Double = 3
Dim WB As New WeibullDistribution(Scale, Shape)

The Scale and Shape properties can be used to get and set the distribution 
parameters after construction:

Code Example – C# Weibull distribution

wb.Scale = .5;
wb.Shape = 2;

Code Example – VB Weibull distribution

WB.Scale = 0.5
WB.Shape = 2

f x k   k


--- x


--- 
  k 1–

e
x  

k
–

=

k 0  0
84   NMath Stats User’s Guide



Once you have constructed a WeibullDistribution object, you can query it for the 
PDF, CDF, inverse CDF, and random variable moments, as described in 
Section 40.1.

40.2 Correlated Random Inputs

NMath Stats provides classes InputVariableCorrelator and 
ReducedVarianceInputCorrelator to induce a desired rank correlation among a 
set of random input variables. The correlated inputs retain the same marginal 
distributions as the original inputs but have a Spearman’s rank correlation matrix 
approximately equal to that specified by the user. The method used is that of Iman 
and Conover (1982).2

ReducedVarianceInputCorrelator performs the same function as 
InputVariableCorrelator class, but uses an algorithm that produces more accurate 
results, at some cost in performance.

Constructing Correlator Instances

Instances of InputVariableCorrelator and ReducedVarianceInputCorrelator are 
constructed from the number of samples and the desired correlation matrix. This 
code assume 500 samples of 6 input variables: 

Code Example – C# correlated random inputs

int numSamples = 500;
string str = "6x6 [1 0 0 0 0 0 " +
                  "0 1 0 0 0 0 " +
                  "0 0 1 0 0 0 " +
                  "0 0 0 1 .75 -.70 " +
                  "0 0 0 .75 1 -.95 " +
                  "0 0 0 -.7 -.95 1]";
var desiredCorrelations = new DoubleMatrix( str );

var correlator = new
  InputVariableCorrelator( numSamples, desiredCorrelations );

Code Example – VB correlated random inputs

Dim NumSamples As Integer = 500
Dim Str As String = "6x6 [1 0 0 0 0 0 " &
                         "0 1 0 0 0 0 " &

2Iman, Ronald L. and W. J. Conover, “A Distribution-Free Approach to Inducing Rank Correlation 
Amoung Input Variables”, Commun. Statist.-Simula. Computation 11(3), pp. 311-334 (1982)
   Chapter 40.   Probability Distributions 85



                         "0 0 1 0 0 0 " &
                         "0 0 0 1 .75 -.70 " &
                         "0 0 0 .75 1 -.95 " &
                         "0 0 0 -.7 -.95 1]"
Dim DesiredCorrelations As New DoubleMatrix(Str)

Dim Correlator As New
  InputVariableCorrelator(NumSamples, DesiredCorrelations)

Most of the work done by the correlation algorithm involves setting up a score 
matrix which has been transformed so that it's Spearman’s rank correlation matrix 
is equal to the desired correlation matrix. The computation of this score matrix 
requires only the number of samples and the desired correlation matrix, and is 
performed at construction time. Once you have constructed an 
InputVariableCorrelator or ReducedVarianceInputCorrelator instance, you can 
correlate batches of random inputs relatively quickly.

Correlating Random Inputs

The GetCorrelatedInputs() method on InputVariableCorrelator and 
ReducedVarianceInputCorrelator returns a matrix containing a given set of input 
variables values re-ordered so as to have the desired correlations.

For instance, this code creates a set of samples drawn from 4 different distributions 
(each row of the inputs matrix is a random sample of the 6 input variables), and 
induces the desired correlation:

Code Example – C# correlated random inputs

var betaRng = new RandGenBeta();
var uniformRng = new RandGenUniform();
var poissonRng = new RandGenPoisson();
var normalRng = new RandGenNormal();

var inputs = new DoubleMatrix( numSamples, 6 );
betaRng.Fill( inputs.Col( 0 ).DataBlock.Data );
uniformRng.Fill( inputs.Col( 1 ).DataBlock.Data );
poissonRng.Fill( inputs.Col( 2 ).DataBlock.Data );
normalRng.Fill( inputs.Col( 3 ).DataBlock.Data );
betaRng.Fill( inputs.Col( 4 ).DataBlock.Data );
uniformRng.Fill( inputs.Col( 5 ).DataBlock.Data );

DoubleMatrix correlatedInputs =
  correlator.GetCorrelatedInputs( inputs );

Code Example – VB correlated random inputs

Dim BetaRng As New RandGenBeta()
Dim UniformRng As New RandGenUniform()
Dim PoissonRng As New RandGenPoisson()
86   NMath Stats User’s Guide



Dim NormalRng As New RandGenNormal()

Dim Inputs As New DoubleMatrix(NumSamples, 6)
BetaRng.Fill(Inputs.Col(0).DataBlock.Data)
UniformRng.Fill(Inputs.Col(1).DataBlock.Data)
PoissonRng.Fill(Inputs.Col(2).DataBlock.Data)
NormalRng.Fill(Inputs.Col(3).DataBlock.Data)
BetaRng.Fill(Inputs.Col(4).DataBlock.Data)
UniformRng.Fill(Inputs.Col(5).DataBlock.Data)

Dim CorrelatedInputs As DoubleMatrix = 
  Correlator.GetCorrelatedInputs(Inputs)

You can compare the actual Spearman’s rank correlation matrix with the desired 
correlation matrix, like so:

Code Example – C# correlated random inputs

DoubleMatrix actualCorrelations =
  StatsFunctions.Spearmans( correlatedInputs );

Console.WriteLine( "Desired: " + desiredCorrelations );
Console.WriteLine( "Actual: " + actualCorrelations );

Code Example – VB correlated random inputs

Dim ActualCorrelations As DoubleMatrix = 
  StatsFunctions.Spearmans(CorrelatedInputs)

Console.WriteLine("Desired: " & DesiredCorrelations)
Console.WriteLine("Actual: " & ActualCorrelations)

Correlator Properties

InputVariableCorrelator and ReducedVarianceInputCorrelator provide the 
following read-only properties:

 Rstar gets the permuted score matrix which has been transformed to have 
the desired correlation matrix.

 NumInputVariables gets the number of input variables.

 SampleSize gets the sample size of the input variables.

Convenience Method

The static CorrelatedRandomInputs() convenience method is provided on class 
StatsFunctions for cases where you need only one set of correlated inputs. For 
example:
   Chapter 40.   Probability Distributions 87



Code Example – C# correlated random inputs

DoubleMatrix correlatedInputs =   
  StatsFunctions.CorrelatedRandomInputs( inputs, 
    desiredCorrelations );

Code Example – VB correlated random inputs

Dim CorrelatedInputs As DoubleMatrix = 
  StatsFunctions.CorrelatedRandomInputs(Inputs,
  DesiredCorrelations)

In the special case of two input variables, an additional overload obviates the need 
for setting up the original input sample matrix. For instance, this code creates two 
sequences of 100 normally distributed random numbers which have, 
approximately, the specified rank correlation coefficient 0.8:

Code Example – C# correlated random inputs

double mean1 = 43.2;
double var1 = 1.2;
var normalRng1 = new RandGenNormal( mean1, var1 );

double mean2 = 102.45;
double var2 = 8.098;
var normalRng2 = new RandGenNormal( mean2, var2 );

double desiredRankCorrelation = .8;

int numSamples = 100;

DoubleMatrix correlatedInputs = 
  StatsFunctions.CorrelatedRandomInputs( numSamples,
    desiredRankCorrelation, normalRng1, normalRng2 );

Code Example – VB correlated random inputs

Dim Mean1 As Double = 43.2
Dim Var1 As Double = 1.2
Dim NormalRng1 As New RandGenNormal(Mean1, Var1)

Dim Mean2 As Double = 102.45
Dim Var2 As Double = 8.098
Dim NormalRng2 As New RandGenNormal(Mean2, Var2)

Dim DesiredRankCorrelation As Double = 0.8

Dim NumSamples As Integer = 100

Dim CorrelatedInputs As DoubleMatrix =
  StatsFunctions.CorrelatedRandomInputs(NumSamples,
  DesiredRankCorrelation, NormalRng1, NormalRng2)
88   NMath Stats User’s Guide



40.3 Box-Cox Power Transformations

Box-Cox power transformations compute a rank-preserving transformation of 
data to stabilize variance and make the data more normal. The power 
transformation is defined as a continuously varying function, with respect to the 
power parameter , 

In NMath Stats, class BoxCox compute the Box-Cox power tranformations for a 
set of data points and parameter value . In addition, methods are provided for 
computing the corresponding log-likelihood function and the value of  which 
maximizes it.

For example:

Code Example – C# Box-Cox transformations

var data = new DoubleVector( "[.15 .09 .18 .10 .05 .12 .08 .05 .08 
.10 .07 .02 .01 .10 .10 .10 .02 .10 .01 .40 .10 .05 .03 .05 .15 .10 
.15 .09 .08 .18 .10 .20 .11 .30 .02 .20 .20 .30 .30 .40 .30 .05]" 
);

var interval = new Interval( -5, 5, Interval.Type.Closed );

var bc = new BoxCox( data, interval );

Console.WriteLine( bc.Lambda );
Console.WriteLine( bc.TransformedData );

Code Example – VB Box-Cox transformations

Dim Data As New DoubleVector("[.15 .09 .18 .10 .05 .12 .08 .05 .08 
.10 .07 .02 .01 .10 .10 .10 .02 .10 .01 .40 .10 .05 .03 .05 .15 .10 
.15 .09 .08 .18 .10 .20 .11 .30 .02 .20 .20 .30 .30 .40 .30 .05]"
)_

Dim Interval As New Interval(-5, 5, Interval.Type.Closed)

Dim BC As New BoxCox(Data, Interval)

Console.WriteLine(BC.Lambda)
Console.WriteLine(BC.TransformedData)

BoxCox searches from -5 to 5 until the best value of  is found (the value which 
maximizes the log-likelihood function). 



y   y


1–


--------------=






   Chapter 40.   Probability Distributions 89



90   NMath Stats User’s Guide



CHAPTER 41.  
HYPOTHESIS TESTS

Hypothesis tests use statistics to determine the probability that a given hypothesis 
is true. For example, could the differences between two sample means be 
explained away as sampling error? NMath Stats provides classes for many 
common hypothesis tests.

This chapter describes the hypothesis test classes. For non-parametric tests, see 
Chapter 45.

41.1 Common Interface

All hypothesis test classes share substantially the same interface. Once you learn 
how to use one test, it’s easy to use any of the others.

Static Properties

All hypothesis test classes have static DefaultAlpha properties that get and set the 
default alpha level associated with tests of that type. The default value is 0.01. For 
instance:

Code Example – C# hypothesis tests

var test1 = new OneSampleTTest();
// test1.Alpha == 0.01
OneSampleTTest.DefaultAlpha = 0.05;
var test2 = new OneSampleTTest();
// test2.Alpha == 0.05

Code Example – VB hypothesis tests

Dim Test1 As New OneSampleTTest()
'' test1.Alpha == 0.01
OneSampleTTest.DefaultAlpha = 0.05
Dim Test2 As New OneSampleTTest()
'' test2.Alpha == 0.05

Similarly, all hypothesis test classes have static DefaultType properties that get 
and set the default form of the alternative hypothesis. The form is specified using 
the HypothesisType enumeration, with the following enumerated values:

 Left indicates a one-sided form to the left, . 0
   Chapter 41.   Hypothesis Tests 91



 Right indicates a one-sided form to the right, .

 TwoSided indicates a two-sided form, .

The default value for all test classes is HypothesisType.TwoSided. For example:

Code Example – C# hypothesis tests

var test1 = new OneSampleTTest();
// test1.Type == HypothesisType.TwoSided
OneSampleTTest.DefaultType = HypothesisType.Left;
var test2 = new OneSampleTTest();
// test2.Type == HypothesisType.Left

Code Example – VB hypothesis tests

Dim Test1 As New OneSampleTTest()
'' test1.Type == HypothesisType.TwoSided
OneSampleTTest.DefaultType = HypothesisType.Left
Dim Test2 As New OneSampleTTest()
'' test2.Type == HypothesisType.Left

Creating Hypothesis Test Objects

All hypothesis test classes provide two paths for constructing instances of that 
type: 

 A parameter-based method, in which all necessary sample and population 
parameters are explicitly specified.

 A data-based method, in which sample parameters are computed from 
supplied sample data.

NOTE—In the data-based method, once sample parameters have been computed from 
the given data, the data is discarded, and cannot be recovered from the test object.

For example, a one-sample z-test compares a single sample mean to an expected 
mean from a normal distribution with known standard deviation. This code 
constructs a OneSampleZTest object by explicitly specifying a sample mean, 
sample size, population mean, and population standard deviation:

Code Example – C# hypothesis tests

double xbar = 112.8;
int n = 9;
double mu0 = 100;
double sigma = 15;
var test = new OneSampleZTest( xbar, n, mu0, sigma );

Code Example – VB hypothesis tests

Dim XBar As Double = 112.8

 0

 0
92   NMath Stats User’s Guide



Dim N As Integer = 9
Dim Mu0 As Double = 100
Dim Sigma As Double = 15
Dim Test As New OneSampleZTest(XBar, N, Mu0, Sigma)

This code constructs a OneSampleZTest object by supplying a vector of sample 
data, and the necessary population parameters:

Code Example – C# hypothesis tests

var data =
  new DoubleVector( “[ 116 110 111 113 112 113 111 109 121 ]” );
double mu0 = 100;
double sigma = 15;
var test = new OneSampleZTest( data, mu0, sigma );

Code Example – VB hypothesis tests

Dim MyData As New DoubleVector("[ 116 110 111 113 112 113 111 109 
121 ]")
Dim Mu0 As Double = 100
Dim Sigma As Double = 15
Dim Test As New OneSampleZTest(MyData, Mu0, Sigma)

In this case, the sample mean and sample size are calculated from the given data. 
The data-based method supports sample data in vectors, arrays, and data frame 
columns.

In both the parameter-based method and the data-based method, the alpha level 
for the hypothesis test is set to the current value specified by the static 
DefaultAlpha property, and the form of the hypothesis test is set to the current 
DefaultType, as described above.

Constructors are also provided for all test classes that enable you to set the alpha 
level and hypothesis type to non-default values. For example:

Code Example – C# hypothesis tests

var test = new OneSampleZTest( data, mu0, sigma, 0.05, 
  HypothesisType.Left );

Code Example – VB hypothesis tests

Dim Test As New OneSampleZTest(MyData, Mu0, Sigma, 0.05, 
  HypothesisType.Left)

Properties of Hypothesis Test Objects

All hypothesis test classes provide the following read-only properties:

 Distribution gets the distribution of the test statistic associated with the 
hypothesis test.  
   Chapter 41.   Hypothesis Tests 93



 Statistic gets the value of the test statistic associated with this hypothesis 
test.  

 P gets the p-value associated with the test statistic.  

 Reject tests whether the null hypothesis can be rejected, using the current 
hypothesis type and alpha level.  

 LeftCriticalValue gets the one-sided to the left critical value based on 
the current probability distribution and alpha level.

 RightCriticalValue gets the one-sided to the right critical value based on 
the current probability distribution and alpha level.  

 LeftProbability gets the area under the probability distribution to the 
left of the test statistic.

 RightProbability gets the area under the probability distribution to the 
right of the test statistic.

 LowerConfidenceLimit gets the  lower confidence limit for the true 
mean.

 UpperConfidenceLimit gets the  upper confidence limit for the true 
mean.

 SEM gets the standard error of the mean.

The following read-write properties are also provided: 

 Alpha gets and sets the alpha level associated with the hypothesis test.  

 Type gets and sets the form of the alternative hypothesis associated with 
the hypothesis test.

Additionally, each hypothesis test provides properties for accessing the specific 
sample and population parameters that define the test. For example, a 
OneSampleZTest has additional properties for accessing the sample mean, Xbar, 
the sample size, N, the population mean, Mu0, and the population standard 
deviation, Sigma. 

Modifying Hypothesis Test Objects

All hypothesis test classes provide Update() methods for modifying a test with 
new sample parameters or sample data, and new population parameters. For 
example, if test is a TwoSampleFTest instance, this code updates the test with 
two new samples, taken from two columns in a data frame df:

Code Example – C# hypothesis tests

test.Update( df[3], df[7]  );

1 –

1 –
94   NMath Stats User’s Guide



Code Example – VB hypothesis tests

Test.Update(DF(3), DF(7))

Printing Results

All hypothesis test classes provide a ToString() method that returns a formatted 
string representation of the test results. For instance:

Code Example – C# hypothesis tests

var data1 = new DoubleVector( "9.21 11.51 12.79 11.85 9.97 
  8.79 9.69 9.68 9.19" );
var data2 = new DoubleVector( "7.53 7.48 8.08 8.09 10.15 
  8.40 10.88 6.13 7.90 7.05 7.48 7.58 8.11" );
var test = new TwoSampleFTest( data1, data2, 0.05, 
  HypothesisType.TwoSided );
Console.WriteLine( test.ToString() );

Code Example – VB hypothesis tests

Dim MyData1 As New DoubleVector("9.21 11.51 12.79 11.85 9.97 8.79 
9.69 9.68 9.19")
Dim MyData2 As New DoubleVector("7.53 7.48 8.08 8.09 10.15 8.40 
10.88 6.13 7.90 7.05 7.48 7.58 8.11")
Dim Test As New TwoSampleFTest(MyData1, MyData2, 0.05, 
HypothesisType.TwoSided)
Console.WriteLine(Test.ToString())

The output is:

Two Sample F Test
-----------------

Sample Sizes = 9 and 13
Standard Deviations = 1.39787139767736 and 1.23808008936914
Variances = 1.95404444444444 and 1.53284230769231
Ratio of Variances = 1.27478504125206
Computed F statistic: 1.27478504125206, num df = 8, denom df = 12

Hypothesis type: two-sided
Null hypothesis: true ratio of variances = 1
Alt hypothesis: true ratio of variances != 1
P-value: 0.679745985376403
RETAIN the null hypothesis for alpha = 0.05
0.95 confidence interval: 0.363002872041806 5.3536732579205
   Chapter 41.   Hypothesis Tests 95



41.2 One Sample Z-Test

Class OneSampleZTest determines whether a sample from a normal distribution 
with known standard deviation could have a given mean. For example, suppose 
we wish to determine whether the IQs of children from a particular school are 
above average, given that Wechsler IQ scores are normally distributed with a mean 
of 100 and standard deviation of 15. Sample scores from 9 students are 116 110 
111 113 112 113 111 109 121, with a mean of 112.8.

As described Section 41.1, all hypothesis test classes provide two paths for 
constructing instances of that type: a parameter-based method and a data-based 
method. Thus, you can construct a OneSampleZTest object by explicitly 
specifying a sample mean ( ), sample size ( ), population mean ( ), and 
population standard deviation ( ), like so:

Code Example – C# z-test

double xbar = 112.8;
int n = 9;
double mu0 = 100;
double sigma = 15;
var test = new OneSampleZTest( xbar, n, mu0, sigma );

Code Example – VB z-test

Dim XBar As Double = 112.8
Dim N As Integer = 9
Dim Mu0 As Double = 100
Dim Sigma As Double = 15
Dim Test As New OneSampleZTest(XBar, N, Mu0, Sigma)

Or by supplying a set of sample data, and the necessary population parameters:

Code Example – C# z-test

var data =
  new DoubleVector( “[ 116 110 111 113 112 113 111 109 121 ]” );
double mu0 = 100;
double sigma = 15;
var test = new OneSampleZTest( data, mu0, sigma );

Code Example – VB z-test

Dim MYData As New DoubleVector("[ 116 110 111 113 112 113 111 109 
121 ]")
Dim Mu0 As Double = 100
Dim Sigma As Double = 15
Dim Test As New OneSampleZTest(MyData, Mu0, Sigma)

In this case, the sample mean and sample size are calculated from the given data.

x n 0



96   NMath Stats User’s Guide



In addition to the properties common to all hypothesis test objects (Section 41.1), a 
OneSampleZTest object provides the following read-only properties:

 Xbar gets the sample mean.

 N gets the sample size.

 Mu0 gets the population mean.

 Sigma gets the population standard deviation.

By default, a OneSampleZTest object performs a two-sided hypothesis test 
( ) with . In this example, we wish to test the one-sided form to 
the right ( ; that is, we wish to test whether the children in our sample 
have a higher than average IQ. Suppose also that we wish to set the alpha level to 
0.05. Non-default test parameters can be specified at the time of construction 
using constructor overloads, or after construction using the provided Alpha and 
Type properties, like so:

Code Example – C# z-test

test.Type = HypothesisType.Right;
test.Alpha = 0.05;

Code Example – VB z-test

Test.Type = HypothesisType.Right
test.Alpha = 0.05

Once you’ve constructed and configured a OneSampleZTest object, you can 
access the test results using the provided properties, as described in Section 41.1:

Code Example – C# z-test

Console.WriteLine( "z-statistic = " + test.Statistic );
Console.WriteLine( "p-value = " + test.P );
Console.WriteLine( "reject the null hypothesis? " + test.Reject);

Code Example – VB z-test

Console.WriteLine("z-statistic = " & Test.Statistic)
Console.WriteLine("p-value = " & Test.P)
Console.WriteLine("reject the null hypothesis? " & Test.Reject)

The output is:

z-statistic = 2.56
p-value = 0.00523360816355578
reject the null hypothesis? true

This indicates that we can reject the null hypotheses ( ). We can conclude 
that the children have IQs significantly above average.

H1: 0  0.01=
H1: 0

H0: 0=
   Chapter 41.   Hypothesis Tests 97



Finally, remember that the ToString() method returns a formatted string 
representation of the complete test results:

One Sample Z Test
-----------------

Sample mean = 112.8
Sample size = 9
Population mean = 100
Population standard deviation = 15
Computed Z statistic: 2.56

Hypothesis type: one-sided to the right
Null hypothesis: sample mean = population mean
Alt hypothesis: sample mean > population mean
P-value: 0.00523360816355578
REJECT the null hypothesis for alpha = 0.05
0.95 confidence interval: 104.575731865243 Infinity

41.3 One Sample T-Test

Class OneSampleTTest determines whether a sample from a normal distribution 
with unknown standard deviation could have a given mean. For example, suppose 
we wish to determine whether the self-esteem of children from a particular school 
differ from average, given a known population value of 3.9 on the Rosenberg 
Self-Esteem Scale. 113 children are tested, with a mean score of 4.0408 and a 
standard deviation of .6542.

As described Section 41.1, all hypothesis test classes provide two paths for 
constructing instances of that type: a parameter-based method and a data-based 
method. Thus, you can construct a OneSampleTTest object by explicitly 
specifying a sample mean ( ), sample standard deviation ( ), sample size ( ), and 
population mean ( ), like so:

Code Example – C# t-test

double xbar = 4.0408;
double s = .6542;
int n = 113;
double mu0 = 3.9;
var test = new OneSampleTTest( xbar, s, n, mu0 );

Code Example – VB t-test

Dim XBar As Double = 4.0408
Dim S As Double = 0.6542
Dim N As Integer = 113
Dim Mu0 As Double = 3.9

x s n
0
98   NMath Stats User’s Guide



Dim Test As New OneSampleTTest(XBar, S, N, Mu0)

Or by supplying a set of sample data, and the necessary population parameters. 
For instance, if the sample data is in column 3 of DataFrame df:

Code Example – C# t-test

double mu0 = 3.9;
var test = new OneSampleTTest( df[3], mu0 );

Code Example – VB t-test

Dim Mu0 As Double = 3.9
Dim Test As New OneSampleTTest(DF(3), Mu0)

In this case, the sample mean, standard deviation, and size are calculated from the 
given data.

In addition to the properties common to all hypothesis test objects (Section 41.1), a 
OneSampleTTest object provides the following read-only properties:

 Xbar gets the sample mean.

 S gets the sample standard deviation.

 N gets the sample size.

 Mu0 gets the population mean.

 DegreesOfFreedom gets the degrees of freedom.

By default, a OneSampleTTest object performs a two-sided hypothesis test 
( ) with . Non-default test parameters can be specified at the time 
of construction using constructor overloads, or after construction using the 
provided Alpha and Type properties, like so:

Code Example – C# t-test

test.Alpha = 0.05;

Code Example – VB t-test

Test.Alpha = 0.05

Once you’ve constructed and configured a OneSampleTTest object, you can 
access the various test results using the provided properties, as described in 
Section 41.1:

Code Example – C# t-test

Console.WriteLine( "t-statistic = " + test.Statistic );
Console.WriteLine( "deg of freedom = " + test.DegreesOfFreedom );
Console.WriteLine( "p-value = " + test.P );
Console.WriteLine( "reject the null hypothesis? " + test.Reject);

H1: 0  0.01=
   Chapter 41.   Hypothesis Tests 99



Code Example – VB t-test

Console.WriteLine("t-statistic = " & Test.Statistic)
Console.WriteLine("deg of freedom = " & Test.DegreesOfFreedom)
Console.WriteLine("p-value = " & Test.P)
Console.WriteLine("reject the null hypothesis? " & Test.Reject)

The output is:

t-statistic = 2.28786996397591
deg of freedom = 112
p-value = 0.0240223660991041
reject the null hypothesis? True

This indicates that we can reject the null hypotheses ( ). We can conclude 
that the children have self-esteem scores significantly different than average.

Finally, remember that the ToString() method returns a formatted string 
representation of the complete test results:

One Sample t Test
-----------------

Sample mean = 4.0408
Sample standard deviation = 0.6542
Sample size = 113
Population mean = 3.9
Computed t statistic: 2.28786996397591, df = 112

Hypothesis type: two-sided
Null hypothesis: sample mean = population mean
Alt hypothesis: sample mean != population mean
P-value: 0.0240223660991041
REJECT the null hypothesis for alpha = 0.05
0.95 confidence interval: 3.91886249658971 4.16273750341029

41.4 Two Sample Paired T-Test

Class TwoSamplePairedTTest tests the null hypothesis that the population mean 
of the paired differences of two samples is zero. Pairing involves matching up 
individuals in two samples so as to minimize their dissimilarity except in the 
factor under study. Paired samples often occur in pre-test/post-test studies in 
which subjects are measured before and after an intervention. They also occur in 
matched-pairs (for example, matching on age and sex), cross-over trials, and 
sequential observational samples. Paired samples are also called matched samples 
and dependent samples.

H0: 0=
100   NMath Stats User’s Guide



NOTE—TwoSamplePairedTTest is equivalent to performing a OneSampleTTest on the 
paired differences (see Section 41.3). 

For example, suppose we measure the thickness of plaque (mm) in the carotid 
artery of 10 randomly selected patients with mild atherosclerotic disease. Two 
measurements are taken: before treatment with Vitamin E (baseline), and after two 
years of taking Vitamin E daily. The mean difference between paired 
measurements is 0.045 with a standard deviation of 0.0264.

As described Section 41.1, all hypothesis test classes provide two paths for 
constructing instances of that type: a parameter-based method and a data-based 
method. Thus, you can construct a TwoSamplePairedTTest object by explicitly 
specifying the mean difference between paired observations ( ), the standard 
deviation of the differences ( ), and the sample size ( ), like so:

Code Example – C# paired t-test

double xbar = 0.045;
double s = 0.0264;
int n = 10;
var test = new TwoSamplePairedTTest( xbar, s, n );

Code Example – VB paired t-test

Dim XBar As Double = 0.045
Dim S As Double = 0.0264
Dim N As Integer = 10
Dim Test As New TwoSamplePairedTTest(XBar, S, N)

Alternatively, you can supply two sets of sample data. For instance, this code adds 
data to a DataFrame (Chapter 37):

Code Example – C# paired t-test

var df = new DataFrame();
df.AddColumn( new DFNumericColumn( "Baseline" ) );
df.AddColumn( new DFNumericColumn( "Vit E" ) );
df.AddRow( 1, 0.66, 0.60 );
df.AddRow( 2, 0.72, 0.65 );
df.AddRow( 3, 0.85, 0.79 );
df.AddRow( 4, 0.62, 0.63 );
df.AddRow( 5, 0.59, 0.54 );
df.AddRow( 6, 0.63, 0.55 );
df.AddRow( 7, 0.64, 0.62 );
df.AddRow( 8, 0.70, 0.67 );
df.AddRow( 9, 0.73, 0.68 );
df.AddRow( 10, 0.68, 0.64 );

Code Example – VB paired t-test

Dim DF As New DataFrame()
DF.AddColumn(New DFNumericColumn("Baseline"))
DF.AddColumn(New DFNumericColumn("Vit E"))

x
s n
   Chapter 41.   Hypothesis Tests 101



DF.AddRow(1, 0.66, 0.6)
DF.AddRow(2, 0.72, 0.65)
DF.AddRow(3, 0.85, 0.79)
DF.AddRow(4, 0.62, 0.63)
DF.AddRow(5, 0.59, 0.54)
DF.AddRow(6, 0.63, 0.55)
DF.AddRow(7, 0.64, 0.62)
DF.AddRow(8, 0.7, 0.67)
DF.AddRow(9, 0.73, 0.68)
DF.AddRow(10, 0.68, 0.64)

And this code constructs a TwoSamplePairedTTest from the two columns of data:

Code Example – C# paired t-test

var test =
   new TwoSamplePairedTTest( df[ “Baseline” ], df[ “Vit E” ] );

Code Example – VB paired t-test

Dim Test As New TwoSamplePairedTTest(DF("Baseline"), DF("Vit E"))

The mean difference between paired measurements, the standard deviation, and 
the sample size are calculated from the given data.

In addition to the properties common to all hypothesis test objects (Section 41.1), a 
TwoSamplePairedTTest object provides the following read-only properties:

 Xbar gets the mean of the differences between paired observations.

 S gets the standard deviation of the differences between paired 
observations.

 N gets the number of pairs.

 DegreesOfFreedom gets the degrees of freedom.

By default, a TwoSamplePairedTTest object performs a two-sided hypothesis test 
( ) with . Non-default test parameters can be specified at the time 
of construction using constructor overloads, or after construction using the 
provided Type and Alpha properties.

Once you’ve constructed and configured a TwoSamplePairedTTest object, you 
can access the various test results using the provided properties, as described in 
Section 41.1:

Code Example – C# paired t-test

Console.WriteLine( "t-statistic = " + test.Statistic );
Console.WriteLine( "deg of freedom = " + test.DegreesOfFreedom );
Console.WriteLine( "p-value = " + test.P );
Console.WriteLine( "reject the null hypothesis? " + test.Reject);

H1:d 0  0.01=
102   NMath Stats User’s Guide



Code Example – VB paired t-test

Console.WriteLine("t-statistic = " & Test.Statistic)
Console.WriteLine("deg of freedom = " & Test.DegreesOfFreedom)
Console.WriteLine("p-value = " & Test.P)
Console.WriteLine("reject the null hypothesis? " & Test.Reject)

The output is:

t-statistic = 5.4
deg of freedom = 9
p-value = 0.000433006432003502
reject the null hypothesis? True

This indicates that we can reject the null hypotheses ( ). We can conclude 
that the true mean thickness of plaque after two years treatment with Vitamin E is 
significantly different than before treatment.

Finally, remember that the ToString() method returns a formatted string 
representation of the complete test results:

Two Sample t Test (Paired)
--------------------------

Mean of differences between pairs = 0.045
Standard deviation of differences between pairs = 
0.0263523138347365
Sample size (number of pairs) = 10
Computed t statistic: 5.4, df = 9

Hypothesis type: two-sided
Null hypothesis: true mean of differences between pairs = 0
Alt hypothesis: true mean of differences between pairs != 0
P-value: 0.000433006432003502
REJECT the null hypothesis for alpha = 0.01
0.99 confidence interval: 0.0179180371533991 0.0720819628466008

41.5 Two Sample Unpaired T-Test

Class TwoSampleUnpairedTTest tests whether two samples from a normal 
distribution could have the same mean when the standard deviations are 
unknown but assumed to be equal, allowing for a pooled estimate of the variance.

Class TwoSampleUnpairedUnequalTTest assumes that the samples may come 
from populations with unequal variances, and the Welch-Satterthwaite 
approximation to the degrees of freedom is used. Unlike 
TwoSampleUnpairedTTest, a pooled estimate of the variance is not used.

H0:d 0=
   Chapter 41.   Hypothesis Tests 103



For example, suppose we work for a company that makes plastic widgets and we 
want to compare plastic samples from two suppliers for strength. We record the 
breaking strength in psi (pounds per square inch) for random samples from each 
supplier and obtain the following data: 11 samples from the first supplier having a 
mean strength of 4.2 psi and a standard deviation of 4.68; 8 samples from the 
second supplier have a mean strength of 5.6 and a standard deviation of 3.92.

As described Section 41.1, all hypothesis test classes provide two paths for 
constructing instances of that type: a parameter-based method and a data-based 
method. Thus, you can construct a TwoSampleUnpairedTTest object by explicitly 
specifying the mean ( ), standard deviation ( ), and size ( ) of each sample, like 
so:

Code Example – C# unpaired t-test

double xbar1 = 4.2;
double s1 = 4.68;
int n1 = 11;

double xbar2 = 5.6;
double s2 = 3.92;
int n2 = 8;

var test = new TwoSampleUnpairedTTest( xbar1, s1, n1, xbar2, s2, n2 
);

Code Example – VB unpaired t-test

Dim XBar1 As Double = 4.2
Dim S1 As Double = 4.68
Dim N1 As Integer = 11

Dim XBar2 As Double = 5.6
Dim S2 As Double = 3.92
Dim N2 As Integer = 8

Dim Test As New
  TwoSampleUnpairedTTest(XBar1, S1, N1, XBar2, S2, N2)

Or by supplying two sets of sample data. For instance, if the sample data is in two 
vectors supplier1 and supplier2:

Code Example – C# unpaired t-test

var test =
  new TwoSampleUnpairedTTest( supplier1, supplier2 );

Code Example – VB unpaired t-test

Dim Test As New TwoSampleUnpairedTTest(Supplier1, Supplier2)

x s n
104   NMath Stats User’s Guide



The sample means, standard deviations, and sizes are calculated from the given 
data.

In addition to the properties common to all hypothesis test objects (Section 41.1), a 
TwoSampleUnpairedTTest object provides the following read-only properties:

 Xbar1 and Xbar2 get the means of the samples.

 S1 and S2 get the standard deviations of the samples.

 SPooled gets the pooled estimate of the standard deviation.

 N1 and N2 get the sizes of the samples.

 DegreesOfFreedom gets the degrees of freedom.

By default, a TwoSampleUnpairedTTest object performs a two-sided hypothesis 
test ( ) with . Non-default test parameters can be specified at 
the time of construction using constructor overloads, or after construction using 
the provided Type and Alpha properties.

Once you’ve constructed and configured a TwoSampleUnpairedTTest object, you 
can access the various test results using the provided properties, as described in 
Section 41.1:

Code Example – C# unpaired t-test

Console.WriteLine( "t-statistic = " + test.Statistic );
Console.WriteLine( "pooled standard deviation = " + test.SPooled );
Console.WriteLine( "deg of freedom = " + test.DegreesOfFreedom );
Console.WriteLine( "p-value = " + test.P );
Console.WriteLine( "reject the null hypothesis? " + test.Reject);

Code Example – VB unpaired t-test

Console.WriteLine("t-statistic = " & Test.Statistic)
Console.WriteLine("pooled standard deviation = " & Test.SPooled)
Console.WriteLine("deg of freedom = " & Test.DegreesOfFreedom)
Console.WriteLine("p-value = " & Test.P)
Console.WriteLine("reject the null hypothesis? " & Test.Reject)

The output is:

t-statistic = -0.687410859118054
pooled standard deviation = 4.38304755647859
degrees of freedom = 17
p-value = 0.501095386120306
reject the null hypothesis? False

This indicates that we cannot reject the null hypotheses ( ).

Finally, remember that the ToString() method returns a formatted string 
representation of the complete test results:

H1:1 2– 0  0.01=

H0:1 2– 0=
   Chapter 41.   Hypothesis Tests 105



Two Sample t Test (Unpaired)
----------------------------

Sample means = 4.2 and 5.6
Sample standard deviations = 4.68 and 3.92
Sample sizes = 11 and 8
Difference in means = -1.4
Pooled standard deviation = 4.38304755647859
Computed t statistic: -0.687410859118054, df = 17

Hypothesis type: two-sided
Null hypothesis: true difference in means = 0
Alt hypothesis: true difference in means != 0
P-value: 0.501095386120306
Decision: RETAIN the null hypothesis for alpha = 0.05
0.95 confidence interval: -5.69690885703539 2.8969088570354

41.6 Two Sample F-Test

Class TwoSampleFTest tests whether the variances of two populations are equal. 
For example, suppose random samples from two normal populations are taken. 
The first sample consists of 10 observations with a standard deviation of 5.203; 
the second sample consists of 25 observations with a standard deviation of 2.623. 
At the 0.10 significance level, is there sufficient evidence to suggest that the 
populations from which these samples were drawn have equal variances?

As described Section 41.1, all hypothesis test classes provide two paths for 
constructing instances of that type: a parameter-based method and a data-based 
method. Thus, you can construct a TwoSampleFTest object by explicitly specifying 
the standard deviation ( ),and size ( ) of each sample, like so:

Code Example – C# F-test

double s1 = 5.203;
int n1 = 10;

double s2 = 2.623;
int n2 = 25;

var test = new TwoSampleFTest( s1, n1, s2, n2 );

Code Example – VB F-test

Dim S1 As Double = 5.203
Dim N1 As Integer = 10

Dim S2 As Double = 2.623

s n
106   NMath Stats User’s Guide



Dim N2 As Integer = 25

Dim Test As New TwoSampleFTest(S1, N1, S2, N2)

Or by supplying two sets of sample data. For instance, if the sample data is in two 
vectors v1 and v2:

Code Example – C# F-test

var test = new TwoSampleFTest( v1, v2 );

Code Example – VB F-test

Dim Test As New TwoSampleFTest(V1, V2)

The sample standard deviations and sizes are calculated from the given data.

In addition to the properties common to all hypothesis test objects (Section 41.1), a 
TwoSampleFTest object provides the following read-only properties:

 S1 and S2 get the standard deviations of the samples.

 N1 and N2 get the sizes of the samples.

 DegreesOfFreedom1 gets the numerator degrees of freedom.

 DegreesOfFreedom2 gets the denomenator degrees of freedom.

By default, a TwoSampleFTest object performs a two-sided hypothesis test 
( ) with . Non-default test parameters can be specified at the 
time of construction using constructor overloads, or after construction using the 
provided Type and Alpha properties.

Once you’ve constructed and configured a TwoSampleFTest object, you can access 
the various test results using the provided properties, as described in Section 41.1:

Code Example – C# F-test

Console.WriteLine( "t-statistic = " + test.Statistic );
Console.WriteLine( "numerator df = " + test.DegreesOfFreedom1 );
Console.WriteLine( "denomenator df = " + test.DegreesOfFreedom2 );
Console.WriteLine( "p-value = " + test.P );
Console.WriteLine( "reject the null hypothesis? " + test.Reject);

Code Example – VB F-test

Console.WriteLine("t-statistic = " & Test.Statistic)
Console.WriteLine("numerator df = " & Test.DegreesOfFreedom1)
Console.WriteLine("denomenator df = " & Test.DegreesOfFreedom2)
Console.WriteLine("p-value = " & Test.P)
Console.WriteLine("reject the null hypothesis? " & Test.Reject)

H1:s1
2

s2
2 1  0.01=
   Chapter 41.   Hypothesis Tests 107



The output is:

F-statistic = 3.93469497446923
numerator df = 9
denomenator df = 24
p-value = 0.00693561186501657
reject the null hypothesis? True

This indicates that we cannot reject the null hypotheses ( ).

Finally, remember that the ToString() method returns a formatted string 
representation of the complete test results:

Two Sample F Test
-----------------

Sample Sizes = 10 and 25
Standard Deviations = 5.203 and 2.623
Variances = 27.071209 and 6.880129
Computed F statistic: 3.93469497446923, num df = 9, denom df = 24

Hypothesis type: two-sided
Null hypothesis: true ratio of variances = 1
Alt hypothesis: true ratio of variances != 1
P-value: 0.00693561186501657
REJECT the null hypothesis for alpha = 0.01
0.99 confidence interval: 1.06490202325594 22.5425454339445

41.7 Pearson’s Chi-Square Test

NMath Stats provides class PearsonsChiSquareTest for performing Pearson's chi-
square test. Pearson's chi-square test is the most well-known of the chi-square 
tests, which are statistical procedures whose results are evaluated by reference to 
the chi-square distribution. It tests the null hypothesis that the frequency 
distribution of experimental outcomes are consistent with a particular theoretical 
distribution. The event outcomes considered must be mutually exclusive and have 
a total probability of 1. 

Instances of PearsonsChiSquareTest are constructed either from raw data or tables 
of counts. For example, this code constructs a PearsonsChiSquareTest using 
outcomes from a series of experiment runs, along with the expected frequencies:

Code Example – C# chi-square test

int[] outcomes = { 59, 20, 11, 10 };
var probs = new DoubleVector( 0.5625, 0.1875, 0.1875, 0.0625 );
var test = new PearsonsChiSquareTest( outcomes, probs );

H0:s1
2

s2
2 1=
108   NMath Stats User’s Guide



Code Example – VB chi-square test

Dim Outcomes() As Integer = {59, 20, 11, 10}
Dim Probs As New DoubleVector(0.5625, 0.1875, 0.1875, 0.0625)
Dim Test As New PearsonsChiSquareTest(Outcomes, Probs)

This code uses a contingency table (or cross tabulation) to store the relation between 
two or more categorical variables:

Code Example – C# chi-square test

var data = new int[2, 2];
data[0, 0] = 4298;
data[0, 1] = 767;
data[1, 0] = 7136;
data[1, 1] = 643;
bool yatesCorrect = true;
var test = new PearsonsChiSquareTest( data, yatesCorrect );

Code Example – VB chi-square test

Dim Data(2, 2) As Integer
Data(0, 0) = 4298
Data(0, 1) = 767
Data(1, 0) = 7136
Data(1, 1) = 643
Dim YatesCorrect As Boolean = True
Dim Test As New PearsonsChiSquareTest(Data, YatesCorrect)

The Yates’ correction for continuity may optionally be applied.

Once you’ve constructed and configured a PearsonsChiSquareTest object, you can 
access the various test results using the provided properties, as described in 
Section 41.1:

Code Example – C# chi-square test

Console.WriteLine( "chi-square statistic = " + 
    test.ChiSquareStatistic );
Console.WriteLine( "numerator df = " + test.DegreesOfFreedom );
Console.WriteLine( "p-value = " + test.P );
Console.WriteLine( "reject the null hypothesis? " + test.Reject );

Code Example – VB chi-square test

Console.WriteLine("chi-square statistic = " & 
Test.ChiSquareStatistic)
Console.WriteLine("numerator df = " & Test.DegreesOfFreedom)
Console.WriteLine("p-value = " & Test.P)
Console.WriteLine("reject the null hypothesis? " & Test.Reject)

The output is:

chi-square statistic = 147.761248704421
   Chapter 41.   Hypothesis Tests 109



numerator df = 1
p-value = 0
reject the null hypothesis? True

Again, the ToString() method returns a formatted string representation of the 
complete test results:

Pearson chi-square test
-----------------

Sample size = 12844
Yates corrected = True
Computed chi-square statistic: 147.761248704421, df = 1

P-value: 0
REJECT the null hypothesis for alpha = 0.01

41.8 Fisher’s Exact Test

StatsFunctions provides the FisherEactTest() method for performing a Fisher's 
Exact Test for a specified 2 x 2 contingency table. Fisher's Exact Test is a useful 
alternative to the chi-square test in cases where sample sizes are small.

Fisher's Exact Test is so-called because the significance of the deviation from a null 
hypothesis can be calculated exactly, rather than relying on an approximation. The 
usual rule of thumb for deciding whether the chi-squared approximation is good 
enough is whether the expected values in all cells of the contingency table is 
greater than or equal to 5.

You can perform a Fisher’s Exact Test by providing the cell values directly, plus an 
HypothesisType specifying the form of the alternative hypothesis:

Code Example – C# Fisher’s exact test

int a = 12, b = 17, c = 4, d = 25;
double pvalue = StatsFunctions.FishersExactTest( a, b, c, d, 
  HypothesisType.TwoSided );

Code Example – VB Fisher’s exact test

Dim A As Integer = 12
Dim B As Integer = 17
Dim C As Integer = 4
Dim D As Integer = 25
Dim PValue As Double = StatsFunctions.FishersExactTest(A, B, C, D, 
HypothesisType.TwoSided)

Values a, b, c and d are cell counts for contingency table:
110   NMath Stats User’s Guide



a  b
c  d

If no hypothesis type is specified, FisherExactTest() returns the lesser of the 
right and left tail p-value.

Overloads are also provided for data in an int[,] array or DataFrame containg 
two DFIntColumn.
   Chapter 41.   Hypothesis Tests 111



112   NMath Stats User’s Guide



CHAPTER 42.  
LINEAR REGRESSION

Class LinearRegression computes a multiple linear regression from an input 
matrix of independent variable values (the predictor matrix or regression matrix) and 
a vector of dependent variable values (the observation vector).

In a linear model, a quantity y depends on one or more independent variables a1, 
a2,...,an such that y = x0 + x1a1 + ... + xnan. (Parameter x0 is called the 
intercept parameter.) Several observations of the independent values ai are 
recorded, along with the corresponding values of the dependent variable y. If m 
observations are performed, and for the ith observation we denote the values of 
the independent variables ai1, ai2,...,ain and the corresponding dependent 
value of y as yi, then we form the linear system Ax = y, where matrix A = (aij) 
and vector y = (yi). The regression solution is the value of x that minimizes 
||Ax - y||.

This chapter describes how to use the LinearRegression class, and related 
supporting classes.

42.1 Creating Linear Regressions

A LinearRegression instance is constructed from a predictor matrix and 
observation vector, like so:

Code Example – C# linear regression

var predictors =
  new DoubleMatrix( “ 8x4 [ 1 1450 .50 70
                            1 1600 .50 70
                            1 1450 .70 70
                            1 1600 .70 70
                            1 1450 .50 120
                            1 1600 .50 120
                            1 1450 .70 120
                            1 1600 .70 120 ]” );
var obs =
  new DoubleVector( “[ 67 79 61 75 59 90 52 87 ]” );
var lr = new LinearRegression( predictors, obs );
   Chapter 42.   Linear Regression 113



Code Example – VB linear regression

Dim Predictors As New DoubleMatrix(" 8x4 [ 1 1450 .50 70
                                           1 1600 .50 70
                                           1 1450 .70 70
                                           1 1600 .70 70
                                           1 1450 .50 120
                                           1 1600 .50 120
                                           1 1450 .70 120
                                           1 1600 .70 120 ]")
Dim Obs As New DoubleVector("[ 67 79 61 75 59 90 52 87 ]")
Dim LR As New LinearRegression(Predictors, Obs)

A MismatchedSizeException is raised if the number of rows in the matrix A is not 
equal to the length of the vector obs.

You can also construct a LinearRegression instance from data in a DataFrame, by 
indicating which column contains the observations. Non-numeric columns are 
ignored. For instance, if column 8 contains the dependent variable, this code 
constructs a regression from the data:

Code Example – C# linear regression

var lr = new LinearRegression( df, 8 );

Code Example – VB linear regression

Dim LR As New LinearRegression(DF, 8)

Parameter Calculation by Least Squares Minimization

By default, class LinearRegression computes the model parameter values by the 
method of least squares using a QR factorization, but you may elect to use a complete 
orthogonal factorization or singular value decomposition instead.

IRegressionCalculation is the interface for classes used by LinearRegression to 
calculate regression parameters. NMath Stats includes three regression calculator 
classes: 

 Class QRRegressionCalculation (the default) solves the regression 
problem using a QR decomposition. 

 Class SVDRegressionCalculation solves the regression problem using a 
singular value decomposition. 

 Class CORegressionCalculation solves least squares problems using a 
complete orthogonal decomposition.

You can specify a non-default regression calculation object in the constructor. For 
example:
114   NMath Stats User’s Guide



Code Example – C# linear regression

var calcObj = new CORegressionCalculation();
calcObj.Tolerance = 1e-8;
var lr = new LinearRegression( predictors, obs, calcObj );

Code Example – VB linear regression

Dim CalcObj As New CORegressionCalculation()
CalcObj.Tolerance = 0.00000001
Dim LR As New LinearRegression(Predictors, Obs, CalcObj)

The Tolerance property is used for computing numerical rank. Values with less 
than the specified tolerance are considered zero when computing the effective 
rank.

After construction, the regression calculator used by a LinearRegression instance 
can be changed using the RegressionCalculator property.

Intercept Parameters

If the linear model Ax = y contains a non-zero intercept parameter, then the first 
column of matrix A must be all ones. Some of the LinearRegression constructors 
allow you to specify whether a column of ones should be prepended to the data in 
the input regression matrix, or whether the regression matrix should be used as it 
is given. Thus, this code prepends a column of ones:

Code Example – C# linear regression

var lr = new LinearRegression( predictors, obs, true );

Code Example – VB linear regression

Dim LR As New LinearRegression(Predictors, Obs, True)

This code does not:

Code Example – C# linear regression

var lr = new LinearRegression( predictors, obs, false );

Code Example – VB linear regression

Dim LR As New LinearRegression(Predictors, Obs, False)

42.2 Regression Results

Class LinearRegression provides the following properties for accessing the 
regression results:
   Chapter 42.   Linear Regression 115



 IsGood gets a boolean value indicating whether or not the model 
parameters were successfully computed.

 ParameterCalculationErrorMessage gets any error message produced 
by the regression calculation object.

 Parameters gets the vector of computed model parameters.

 ParameterEstimates gets an array of LinearRegressionParameter objects 
suitable for performing hypothesis testing on individual parameters (see 
Section 42.5).

 Residuals gets the vector of residuals. This is the difference between the 
vector of observed values and the values predicted by the model.

 Variance gets an estimate of the variance. This is the residual sum of 
squares divided by the degrees of freedom for the model. The degrees of 
freedom for the model is equal to the difference between the number of 
observations and the number of parameters.

 CovarianceMatrix gets the covariance matrix (sometimes called the 
dispersion matrix or variance-covariance matrix).

GetStandardizedResiduals() gets the standardized residuals (also known as the 
internally studentized residuals). The residuals are renormalized to have unit 
variance using an overall measure of error variance.

GetStudentizedResiduals() gets the (externally) studentized residuals, which 
renormalizes the residuals to have unit variance using a leave-one-out measure of 
error variance—that is, a vector of estimates of the residual variance obtained 
when the i-th case is dropped from the regression.

For more information about a linear regression fit, you can perform hypothesis 
tests on individual parameters (Section 42.5) or the overall model (Section 42.6).

You can also modify the model and recalculate the parameters, as described in 
Section 42.4.

Variance Inflation Factor

The variance inflation factor (VIF) quantifies the severity of multicollinearity in a 
least squares regression analysis—that is, how much the variance of a coefficient is 
increased because of collinearity. Class LinearRegression provides methods 
VarianceInflationFactor() and VarianceInflationFactors() for this 
purpose. For instance:

Code Example – C# linear regression

DoubleVector vif = lr.VarianceInflationFactors();
116   NMath Stats User’s Guide



Code Example – VB linear regression

Dim VIF As DoubleVector = LR.VarianceInflationFactors()

42.3 Predictions

You can use a LinearRegression object to generate predictions. The 
PredictedObservation() method returns the response predicted by the model 
for a given set of predictor variable values. For example:

Code Example – C# linear regression

var predictors =
  new DoubleVector( 150.0, 33.5, 0.66, 80.0 );
double predicted = lr.PredictedObservation( predictors );

Code Example – VB linear regression

Dim Predictors As New DoubleVector(150.0, 33.5, 0.66, 80.0)
Dim Predicted As Double = LR.PredictedObservation(Predictors)

A MismatchedSizeException is raised if the length of the given vector is not equal 
to the number of parameters in the model.

Similarly, the PredictedObservations() method returns the responses predicted 
by the model for a given collection of predictors:

Code Example – C# linear regression

var predictors =
  new DoubleMatrix( "3x4 [ 150.0 33.5 0.66 80.0 
                           160.0 24.5 0.88 70.0 
                           170.0 22.6 0.56 60.0 ]" );
DoubleVector predicted = lr.PredictedObservations( predictors );

Code Example – VB linear regression

Dim Predictors As New DoubleMatrix("3x4 [ 150.0 33.5 0.66 80.0 
                                          160.0 24.5 0.88 70.0 
                                          170.0 22.6 0.56 60.0 ]")
Dim Predicted As DoubleVector = 
LR.PredictedObservations(Predictors)

In the returned vector of predicted observations, the ith element is the predicted 
response for the set of predictor variable values in the ith row of the given matrix.
   Chapter 42.   Linear Regression 117



42.4 Accessing and Modifying the Model

 Class LinearRegression provides a variety of properties and member functions 
for accessing and modifying the predictors in the model, the observations, and the 
intercept option.

Accessing and Modifying Predictors

Class LinearRegression provides the following properties for accessing the 
predictors in the model:

 RegressionMatrix gets the regression matrix. 

 PredictorMatrix gets the predictor matrix. If the model contains an 
intercept parameter, then the predictor matrix is obtained from the 
regression matrix by removing the leading column of ones. If the model 
does not have an intercept parameter then the predictor matrix is the same 
as the regression matrix.

 NumberOfParameters gets the number of parameters in the model.

 NumberOfPredictors gets the number of predictors in the model. If the 
model contains an intercept parameter then the number of predictors is 
equal to the number of parameters minus one. If the model does not 
contain an intercept parameter, then the number of predictors is equal to 
the number of parameters.

If you modify the data in the regression or predictor matrix using the reference 
returned by RegressionMatrix or PredictorMatrix, respectively, invoke method 
RecalculateParameters() to recalculate the regression parameters. For instance:

Code Example – C# linear regression

lr.PredictorMatrix[2,13] = 15.4;
lr.RecalculateParameters();

Code Example – VB linear regression

LR.PredictorMatrix(2, 13) = 15.4
LR.RecalculateParameters()

Member functions are also provided for adding and removing one or more 
predictors. The AddPredictor() method appends a given column of predictor 
values to the predictor matrix, and recalculates the parameters:

Code Example – C# linear regression

var predictors = new DoubleVector( “[ 1.43 5.5 0.43 14.2 9.0 ]” );

lr.AddPredictor( predictors );
118   NMath Stats User’s Guide



Code Example – VB linear regression

Dim Predictors As New DoubleVector("[ 1.43 5.5 0.43 14.2 9.0 ]")

LR.AddPredictor(Predictors)

A MismatchedSizeException is thrown if the number of predictor values is not 
equal to the number of rows in the regression matrix (also equal to the length of 
the observation vector).

Similarly,  AddPredictors() adds a matrix of predictors. Each column of the input 
matrix is a set of observed predictor values. This, this code adds three predictors:

Code Example – C# linear regression

var predictors =
  new DoubleMatrix( “ 8x3 [ 1450 .50 70
                            1600 .50 70
                            1450 .70 70
                            1600 .70 70
                            1450 .50 120
                            1600 .50 120
                            1450 .70 120
                            1600 .70 120 ]” );
lr.AddPredictor( predictors );

Code Example – VB linear regression

Dim Predictors As New DoubleMatrix(" 8x3 [ 1450 .50 70
                                           1600 .50 70
                                           1450 .70 70
                                           1600 .70 70
                                           1450 .50 120
                                           1600 .50 120
                                           1450 .70 120
                                           1600 .70 120 ]")
LR.AddPredictor(predictors)

The RemovePredictor() method removes the ith predictor from the model and 
recalculates the parameters. This code removes the predictor at (zero-based) 
index 4:

Code Example – C# linear regression

lr.RemovePredictor( 4 );

Code Example – VB linear regression

LR.RemovePredictor(4)

If the model has an intercept parameter, removing the 0th predictor will not 
remove the intercept parameter. Use the RemoveInterceptParameter() method 
to remove the intercept parameter (see below).
   Chapter 42.   Linear Regression 119



RemovePredictors() removes the specified number of columns from the 
predictor matrix beginning with the specified column. Thus, this code removes the 
second, third, and fourth predictors:

Code Example – C# linear regression

lr.RemovePredictors( 1, 3 );

Code Example – VB linear regression

LR.RemovePredictors(1, 3)

Accessing and Modifying Observations

The Observations property gets the vector of observations. If you use the 
returned reference to modify the observation vector, invoke method 
RecalculateParameters() to recalculate the regression parameters. For instance:

Code Example – C# linear regression

lr.Observations[5] = 0.965;
lr.RecalculateParameters();

Code Example – VB linear regression

LR.Observations(5) = 0.965
LR.RecalculateParameters()

The NumberOfObservations property gets the number of observations, which is 
simply the length of the observation vector, and also the number of rows in the 
regression matrix.

Member functions are also provided for adding and removing one or more 
observations. The AddObservation() method appends a given row of predictor 
values to the predictor matrix and a given observation to the observation vector, 
and recalculates the parameters:

Code Example – C# linear regression

var predictors = 
  new DoubleVector( “[ 1.43 5.5 0.43 14.2 9.0 ]” );
double obs = 2.5;

lr.AddObservation( predictors, obs );

Code Example – VB linear regression

Dim Predictors As New DoubleVector("[ 1.43 5.5 0.43 14.2 9.0 ]")
Dim Obs As Double = 2.5

LR.AddObservation(Predictors, Obs)
120   NMath Stats User’s Guide



NOTE—If the model has an intercept parameter, do not include the leading one in the 
predictors vector. It will be accounted for in the model.

A MismatchedSizeException is thrown if the length of the predictors vector is not 
equal to the number of predictors in the model.

Similarly,  AddObservations() adds a collection of observations:

Code Example – C# linear regression

var predictors =
  new DoubleMatrix( "3x4 [ 150.0 33.5 0.66 80.0 
                           160.0 24.5 0.88 70.0 
                           170.0 22.6 0.56 60.0 ]" );
var obs = new DoubleVector( “14.2, 15.5, 10.3” );

lr.AddObservation( predictors, obs );

Code Example – VB linear regression

Dim Predictors As New DoubleMatrix("3x4 [ 150.0 33.5 0.66 80.0 
                                          160.0 24.5 0.88 70.0 
                                          170.0 22.6 0.56 60.0 ]")
Dim obs As New DoubleVector("14.2, 15.5, 10.3")

LR.AddObservation(Predictors, Obs)

RemoveObservation() removes the row at the indicated index from the predictor 
matrix and the corresponding element from the observation vector. This code 
removes the observation at (zero-based) index 3:

Code Example – C# linear regression

lr.RemoveObservation( 3 );

Code Example – VB linear regression

LR.RemoveObservation(3)

RemoveObservations() removes the specified number of rows from the predictor 
matrix beginning with the specified row. Thus, this code removes the third, fourth, 
fifth, and sixth observations:

Code Example – C# linear regression

lr.RemoveObservations( 2, 4 );

Code Example – VB linear regression

LR.RemoveObservations(2, 4)
   Chapter 42.   Linear Regression 121



Accessing and Modifying the Intercept Option

The HasInterceptParameter property gets a boolean value indicating whether or 
not the model already has an intercept parameter.

The AddInterceptParameter() method adds an intercept parameter to the model 
and recalculates the parameters. Thus, this code prepends a column of one to the 
regression matrix:

Code Example – C# linear regression

lr.AddInterceptParameter()

Code Example – VB linear regression

LR.AddInterceptParameter()

NOTE—If the model already has an intercept parameter AddInterceptParameter() has 
no effect.

The RemoveInterceptParameter() method removes the intercept parameter. 

Updating the Entire Model

Method SetRegressionData() updates the entire model by setting the regression 
matrix, the observation vector, and the intercept option to the specified values, and 
recalculating the model parameters. For instance:

Code Example – C# linear regression

var A = new DoubleMatrix( “ 8x4 [ 1 1450 .50 70
                                  1 1600 .50 70
                                  1 1450 .70 70
                                  1 1600 .70 70
                                  1 1450 .50 120
                                  1 1600 .50 120
                                  1 1450 .70 120
                                  1 1600 .70 120 ]” );
var obs = 
  new DoubleVector( “[ 67 79 61 75 59 90 52 87 ]” );

lr.SetRegressionData( A, obs, true );

Code Example – VB linear regression

Dim A As New DoubleMatrix(" 8x4 [ 1 1450 .50 70
                                  1 1600 .50 70
                                  1 1450 .70 70
                                  1 1600 .70 70
                                  1 1450 .50 120
                                  1 1600 .50 120
122   NMath Stats User’s Guide



                                  1 1450 .70 120
                                  1 1600 .70 120 ]")
Dim Obs As New DoubleVector("[ 67 79 61 75 59 90 52 87 ]")

LR.SetRegressionData(A, Obs, True)

42.5 Significance of Parameters

Instances of class LinearRegressionParameter test statistical hypothesis about 
individual parameters in a LinearRegression.

Creating Linear Regression Parameter Objects

You can construct a LinearRegressionParameter from a LinearRegression object 
and the index of the parameter you wish to test. For instance, this code creates a 
test object for the third parameter:

Code Example – C# linear regression

var param = new LinearRegressionParameter( lr, 2 );

Code Example – VB linear regression

Dim Param As New LinearRegressionParameter(LR, 2)

Alternatively, you can get an array of test objects for all parameters in a linear 
regression using the ParameterEstimates property on LinearRegression:

Code Example – C# linear regression

LinearRegressionParameter[] params = lr.ParameterEstimates;

Code Example – VB linear regression

Dim Params() As LinearRegressionParameter = LR.ParameterEstimates

Properties Linear Regression Parameters 

Class LinearRegressionParameter provides the following properties:

 Value gets the value of the parameter.

 StandardError gets the standard error of the parameter.

 ParameterIndex gets the index of the parameter in the linear regresssion.
   Chapter 42.   Linear Regression 123



Hypothesis Tests

Class LinearRegressionParameter provides the following methods for testing 
statistical hypotheses regarding parameter values:

 TStatisticPValue() returns the p-value for a two-sided t test with the 
null hypothesis that the parameter is equal to a given test value, versus the 
alternative hypothesis that it is not.

 TStatistic() returns the value of the t statistic for the null hypothesis that 
the parameter value is equal to a given test value.

 TStatisticCriticalValue() gets the critical value for the t-statistic for a 
given alpha level.

 ConfidenceInterval() returns a  confidence interval for the 
parameter for a given alpha level.

For example, this code tests whether the fifth parameter in a model is significantly 
different than zero:

Code Example – C# linear regression

var param = new LinearRegressionParameter( lr, 4 );
double tstat = param.TStatistic( 0.0 );
double pValue = param.TStatisticPValue( 0.0 );
double criticalValue = param.TStatisticCriticalValue( 0.05 );
Interval confidenceInterval = param.ConfidenceInterval( 0.05 );

Code Example – VB linear regression

Dim Param As New LinearRegressionParameter(LR, 4)
Dim TStat As Double = Param.TStatistic(0.0)
Dim PValue As Double = Param.TStatisticPValue(0.0)
Dim CriticalValue As Double = Param.TStatisticCriticalValue(0.05)
Dim ConfidenceInterval As Interval = Param.ConfidenceInterval(0.05)

Updating Linear Regression Parameters

The SetRegression() method updates the regression and parameter index in a 
parameter test object:

Code Example – C# linear regression

param.SetRegression( lr, 6 );

Code Example – VB linear regression

Param.SetRegression(LR, 6)

1 –
124   NMath Stats User’s Guide



42.6 Significance of the Overall Model

Class LinearRegressionAnova tests the overall model significance for linear 
regressions. Simply construct a LinearRegressionAnova from a LinearRegression 
object:

Code Example – C# linear regression

var lrAnova = new LinearRegressionAnova( lr );

Code Example – VB linear regression

Dim LRAnova As New LinearRegressionAnova(LR)

A variety of properties are provided for assessing the significance of the overall 
model:

 RegressionSumOfSquares gets the regression sum of squares. This 
quantity indicates the amount of variability explained by the model. It is 
the sum of the squares of the difference between the values predicted by 
the model and the mean.

 ResidualSumOfSquares gets the residual sum of squares. This is the sum 
of the squares of the differences between the predicted and actual 
observations.

 ModelDegreesOfFreedom gets the number of degrees of freedom for the 
model, which is equal to the number of predictors in the model.

 ErrorDegreesOfFreedom gets the number of degress of freedom for the 
model error, which is equal to the number of observations minus the 
number of model paramters.

 RSquared gets the coefficient of determination.

 AdjustedRsquared gets the adjusted coefficient of determination.

 MeanSquaredResidual gets the mean squared residual. This quantity is the 
equal to ResidualSumOfSquares / ErrorDegreesOfFreedom (equals the 
number of observations minus the number of model parameters).

 MeanSquaredRegression gets the mean squared for the regression. This is 
equal to RegressionSumOfSquares / ModelDegreesOfFreedom (equals 
the number of predictors in the model).

 FStatistic gets the overall F statistic for the model. This is equal to the 
ratio of MeanSquaredRegression / MeanSquaredResidual. This is the 
statistic for the hypothesis test where the null hypothesis,  is that all the 
parameters are equal to 0 and the alternative hypothesis is that at least one 
paramter is nonzero.   

H0
   Chapter 42.   Linear Regression 125



 FStatisticPValue gets the p-value for the F statistic.

For example:

Code Example – C# linear regression

var lrAnova = new LinearRegressionAnova( lr );
double sse = lrAnova.ResidualSumOfSquares;
double r2 = lrAnova.RSquared;
double fstat = lrAnova.FStatistic;
double fstatPval = lrAnova.FStatisticPValue;

Code Example – VB linear regression

Dim LRAnova As New LinearRegressionAnova(LR)
Dim SSE As Double = LRAnova.ResidualSumOfSquares
Dim R2 As Double = LRAnova.RSquared
Dim FStat As Double = LRAnova.FStatistic
Dim FStatPVal As Double = LRAnova.FStatisticPValue

Lastly, the FStatisticCriticalValue() function computes the critical value for 
the F statistic at a given significance level:

Code Example – C# linear regression

double critVal = lrAnova.FStatisticCriticalValue(.05);

Code Example – VB linear regression

Dim CritVal As Double = LRAnova.FStatisticCriticalValue(0.05)
126   NMath Stats User’s Guide



CHAPTER 43.  
LOGISTIC REGRESSION

Class LogisticRegression performs a binomial logistic regression. 

Logistic regression is used to model the relationship between a binary response 
variable and one or more predictor variables, which may be either discrete or 
continuous. Binary outcome data is common in medical applications. For example, 
the binary response variable might indicate whether or not a patient is alive five 
years after treatment for cancer or whether the patient has an adverse reaction to a 
new drug. As in multiple linear regression (Chapter 42), we are interested in 
finding an appropriate combination of predictor variables to help explain the 
binary outcome.

This chapter describes how to use the LogisticRegression class, and related 
supporting classes.

43.1 Regression Calculators

Class LogisticRegression is templatized on the ILogisticRegressionCalc 
calculator to use to calculate the parameters of the logistic regression model. Two 
implementations are provided:

 NewtonRaphsonParameterCalc computes the parameters to maximize the 
log likelihood function for the model using the Newton Raphson algorithm 
to compute the zeros of the first order partial derivatives of the log 
likelihood function. This algorithm is equivalent to, and sometimes 
referred to, as iteratively reweighted least squares. Each iteration involves 
solving a linear system of the form X'WX = b, where X is the regression 
matrix, X' is its transpose, and W is a diagonal matrix of weights.

The matrix X'WX will be singular if the matrix X does not have full rank. 
NewtonRaphsonParameterCalc has property FailIfNotFullRank which, 
if true, fails in this case. If FailIfNotFullRank is false, the linear system 
is solved using a pseudo-inverse, and the calculation will not fail.
   Chapter 43.   Logistic Regression 127



 TrustRegionParameterCalc computes the parameters to maximize the log 
likelihood function for the model, using a trust region optimization 
algorithm to compute the zeros of the first order partial derivative of the 
log likelihood function. This approach is more robust than Newton 
Raphson with design matrices of less than full rank.

The minimization is performed by an instance of TrustRegionMinimizer, 
and TrustRegionParameterCalc instances may be constructed with a given 
minimizer with the desired algorithm properties.

43.2 Creating Logistic Regressions

A LogisticRegression object is constructed from data in the following format: a 
matrix whose rows contain the predictor variable values, and an IList<bool> for 
the observed values.

Code Example – C# logistic regression

DoubleMatrix A = ...
bool[] obs = ...
var lr = new LogisticRegression<NewtonRaphsonParameterCalc>( 
  A, obs );

Code Example – VB logistic regression

Dim A As DoubleMatrix = ...
Dim Obs() As Boolean = ...
Dim LR As New LogisticRegression(Of NewtonRaphsonParameterCalc)(A, 
  Obs)

A MismatchedSizeException is raised if the number of rows in the matrix A is not 
equal to the length of the vector obs.

If you want the model to have an intercept parameter, you can specify that as well:

Code Example – C# logistic regression

bool addIntercept = true;
var lr = new LogisticRegression<NewtonRaphsonParameterCalc>( 
  A, obs, addIntercept );

Code Example – VB logistic regression

Dim AddIntercept As Boolean = True
Dim LR As New LogisticRegression(Of NewtonRaphsonParameterCalc)(A, 
  Obs, AddIntercept)
128   NMath Stats User’s Guide



If true, a column of ones is prepended onto the data in the regression matrix A, 
thus adding an intercept to the model. If false, the data in the regression matrix is 
used as given.

You can also provide a regression calculator instance to use. For example, if you 
want regression to fail consistently when the regression matrix is rank deficient, 
you can construct a NewtonRaphsonParameterCalc object with the 
FailIfNotFullRank property set to true (see Section 43.1), then construct a 
LogisticRegression object with the resulting parameter calculation object:

Code Example – C# logistic regression

var parameterCalc = new NewtonRaphsonParameterCalc() {   
  FailIfNotFullRank = true };
var lr = new LogisticRegression<NewtonRaphsonParameterCalc>(
  A, obs, addIntercept, parameterCalc );

Code Example – VB logistic regression

Dim ParameterCalc As New NewtonRaphsonParameterCalc()
ParameterCalc.FailIfNotFullRank = True
Dim LR As New LogisticRegression(Of NewtonRaphsonParameterCalc)(A, 
  Obs, AddIntercept, ParameterCalc)

Additional LogisticRegression constructors provide flexibility in how the 
observation values are specified. For example, you can provide a vector of floating 
point observation values, which is converted to dichotomous values using a 
supplied Predictate<double> function. This code uses a lambda expression to 
specify the predicate:

Code Example – C# logistic regression

DoubleVector v = ...
var lr = new LogisticRegression<NewtonRaphsonParameterCalc>(
  A, v, x => x >= 110.0, addIntercept);

Code Example – VB logistic regression

Dim V As DoubleVector = ...
Dim LR As New LogisticRegression(Of NewtonRaphsonParameterCalc)(A, 
  V, X = X >= 110.0, AddIntercept)

Similarly, you can provide the observation values as one of the columns of the 
regression matrix:

Code Example – C# logistic regression

int observationColIndex = 0;
var lr = new LogisticRegression<NewtonRaphsonParameterCalc>(
  A, observationColIndex, x => x != 0, addIntercept);

Code Example – VB logistic regression

Dim ObservationColIndex As Integer = 0
   Chapter 43.   Logistic Regression 129



Dim LR As New LogisticRegression(Of NewtonRaphsonParameterCalc)(A, 
  ObservationColIndex, X = X <> 0, AddIntercept)

Design Variables

LogisticRegression provides static convenience method DesignVariables() for 
producing design, or dummy, variables using reference cell coding. If the categorical 
variable has k levels, there will be k - 1 design variables created. Reference cell 
coding involves setting all the design variable values to 0 for the reference group, 
and then setting a single design variable equal to 1 for each of the other groups.

For example, suppose we have a DataFrame df with a column of race values, 
which has three levels.

Code Example – C# logistic regression

int raceColIndex = df.IndexOfColumn( "Race" );
DataFrame raceDesignVars = 
  LogisticRegression<NewtonRaphsonParameterCalc>.DesignVariables( 
    df[raceColIndex] );

Code Example – VB logistic regression

Dim RaceColIndex As Integer = DF.IndexOfColumn("Race")
Dim RaceDesignVars As DataFrame = LogisticRegression(Of 
  NewtonRaphsonParameterCalc).DesignVariables(DF(RaceColIndex))

Since the race variable has three levels there will be two design variables. By 
default they will be named Race_0 and Race_1.

We then replace the original race column with the two design variable columns, 
and convert the data frame to a matrix of floating point values.

Code Example – C# logistic regression

df.RemoveColumn( raceColIndex );
for ( int c = 0; c < raceDesignVars.Cols; c++ )
{
  df.InsertColumn( raceColIndex + c, raceDesignVars[c] );
}
DoubleMatrix matrixDat = data.ToDoubleMatrix();

Code Example – VB logistic regression

DF.RemoveColumn(RaceColIndex)
Dim C As Integer
For C = 0 To RaceDesignVars.Cols - 1
  DF.InsertColumn(RaceColIndex + C, RaceDesignVars(C))
Next
Dim MatrixDat As DoubleMatrix = DF.ToDoubleMatrix()
130   NMath Stats User’s Guide



43.3 Checking for Convergence

After constructing a LogisticRegression object, first check that the parameter 
calculation was successful. For example, this code checks the IsGood property, and 
if the calculation failed, prints out some diagnostic information using the 
ParameterCalculationErrorMessage property.

Code Example – C# logistic regression

if ( !lr.IsGood )
{
    Console.WriteLine(
      "Logistic regression parameter calculation failed:" );
    Console.WriteLine( lr.ParameterCalculationErrorMessage );

    var parameterCalc = lr.ParameterCalculator;
    Console.WriteLine( "Maximum iterations: " + 
      parameterCalc.MaxIterations );
    Console.WriteLine( "Number of iterations: " + 
      parameterCalc.Iterations );
    Console.WriteLine( "Converged? " + parameterCalc.Converged );
}

Code Example – VB logistic regression

If Not LR.IsGood Then
  Console.WriteLine("Logistic regression parameter calculation   
    failed:")
  Console.WriteLine(LR.ParameterCalculationErrorMessage)

  Dim ParameterCalc As ParameterCalc = LR.ParameterCalculator
  Console.WriteLine("Maximum iterations: " &
    ParameterCalc.MaxIterations)
  Console.WriteLine("Number of iterations: " & 
    ParameterCalc.Iterations)
  Console.WriteLine("Converged? " & ParameterCalc.Converged)
End If

43.4 Goodness of Fit

Class LogisticRegressionFitAnalysis calculates goodness of fit statistics for a 
logistic regression model.

Code Example – C# logistic regression

var fit = new 
  LogisticRegressionFitAnalysis<NewtonRaphsonParameterCalc>( lr );
   Chapter 43.   Logistic Regression 131



Code Example – VB logistic regression

Dim Fit As New LogisticRegressionFitAnalysis(Of 
  NewtonRaphsonParameterCalc)(LR)

Provided properties access the model statistics:

 GStatistic gets the G statistic for the model. The G statistic is
   
   G = -2*ln[(likelihood without the variables)/
             (likelihood with the variables)]

 GStatisticPValue gets the p-value for the G statistic.

 LogLikelihood gets the log likelihood for the model.

For instance:

Code Example – C# logistic regression

Console.WriteLine( "Log likelihood: " + fit.LogLikelihood );
Console.WriteLine( "G-statistic: " + fit.GStatistic );
Console.WriteLine( "G-statistic P-value: " + 
  fit.GStatisticPValue );

Code Example – VB logistic regression

Console.WriteLine("Log likelihood: " & Fit.LogLikelihood)
Console.WriteLine("G-statistic: " & Fit.GStatistic)
Console.WriteLine("G-statistic P-value: " & Fit.GStatisticPValue)

Two methods on LogisticRegressionFitAnalysis provide access to additional 
statistics:

 PearsonStatistic() computes the Pearson chi-square statistic, and 
related quantities from the Pearson residuals, to determine if two 
observations share the same covariate pattern. 

 HLStatistic() calculates the Hosmer Lemeshow statistic for the model. 
This test assesses whether or not the observed event rates match expected 
event rates in subgroups of the model population.

For instance, this code calculates the Hosmer Lemeshow statistic using 10 groups.

Code Example – C# logistic regression

var hosmerLemeshowStat = fit.HLStatistic(10);
Console.WriteLine(hosmerLemeshowStat);

Code Example – VB logistic regression

Dim HosmerLemeshowStat = Fit.HLStatistic(10)
Console.WriteLine(HosmerLemeshowStat)
132   NMath Stats User’s Guide



43.5 Parameter Estimates

The ParameterEstimates property on LogisticRegression gets an array of 
LogisticRegressionParameter estimate objects. This class tests statistical 
hypotheses about estimated parameters in logistic regressions:

 Value gets the value of the parameter.  

 StandardError gets the standard error of the parameter.

 ParameterIndex gets the index of the parameter in the linear regresssion. 

 Beta gets the standardized beta coefficient. Beta coefficients are weighted 
by the ratio of the standard deviation of the independent variable over the 
standard deviation of the dependent variable.

 ConfidenceInterval() returns the 1 - alpha confidence interval for the 
parameter.

 TStatistic() returns the t-statistic for the null hypothesis that the 
parameter is equal to a given test value. 

 TStatisticPValue() returns the p-value for a t-test with the null 
hypothesis that the parameter is equal to a given test value versus the 
alternative hypothesis that it is not.

 TStatisticCriticalValue() gets the critical value of the t-statistic for the 
specified alpha level.

For instance, this code prints out the model parameter estimates and standard 
error.

Code Example – C# logistic regression

var parameterEstimates = lr.ParameterEstimates;
for ( int i = 0; i < parameterEstimates.Length; i++ )
{
  var estimate = parameterEstimates[i];
  if ( i == 0 )
  {
    Console.WriteLine( "Constant term = {0}, SE = {1}", 
      estimate.Value, estimate.StandardError);
  }
  else
  {
    Console.WriteLine( "Coefficient for {0} = {1}, SE = {2}", 
      df[i].Name, estimate.Value, estimate.StandardError);
  }
}

   Chapter 43.   Logistic Regression 133



Code Example – VB logistic regression

Dim ParameterEstimates = LR.ParameterEstimates
For I As Integer = 0 To ParameterEstimates.Length - 1
  Dim Estimate = ParameterEstimates(I)
  If (I = 0) Then
    Console.WriteLine("Constant term = {0}, SE = {1}",
      Estimate.Value, Estimate.StandardError)
  Else
    Console.WriteLine("Coefficient for {0} = {1}, SE = {2}",
      DF(I).Name, Estimate.Value, Estimate.StandardError)
  End If
Next

43.6 Predicted Probabilities

You can use a LogisticRegression object to generate predictions. The 
PredictedProbability() method returns the probability of a positive outcome 
predicted by the model for a given set of predictor values. For example:

Code Example – C# logistic regression

 var predictors =
  new DoubleVector( 150.0, 33.5, 0.66, 80.0 );
double predicted = lr.PredictedProbability( predictors );

Code Example – VB logistic regression

Dim Predictors As New DoubleVector(150.0, 33.5, 0.66, 80.0)
Dim Predicted As Double = LR.PredictedProbability(Predictors)

A MismatchedSizeException is raised if the length of the given vector is not equal 
to the number of parameters in the model.

Similarly, the PredictedProbabilities() method returns a vector of predicted 
probabilities of a positive outcome for the predictor variable values contained in 
the rows of an input matrix.

Code Example – C# logistic regression

var predictors =
  new DoubleMatrix( "3x4 [ 150.0 33.5 0.66 80.0 
                           160.0 24.5 0.88 70.0 
                           170.0 22.6 0.56 60.0 ]" );
DoubleVector predicted = lr.PredictedProbabilities( predictors );
134   NMath Stats User’s Guide



Code Example – VB logistic regression

Dim Predictors As New DoubleMatrix("3x4 [ 150.0 33.5 0.66 80.0 
                                          160.0 24.5 0.88 70.0 
                                          170.0 22.6 0.56 60.0 ]")
Dim Predicted As DoubleVector = 
  LR.PredictedProbabilities(Predictors)

In the returned vector of predicted observations, the ith element is the predicted 
response for the set of predictor variable values in the ith row of the given matrix.

43.7 Auxiliary Statistics

Class LogisticRegressionAuxiliaryStats computes auxiliary statistics for logistic 
regressions, such as pseudo R-squared metrics and odds ratios for the computed 
coefficients.

Code Example – C# logistic regression auxiliary statistics

var auxStats = new 
LogisticRegressionAuxiliaryStats<NewtonRaphsonParameterCalc>( lr );

Code Example – VB logistic regression auxiliary statistics

Dim AuxStats As New LogisticRegressionAuxiliaryStats(Of 
  NewtonRaphsonParameterCalc)(LR)

Provided properties access the model statistics:

 CoxSnell gets the Cox and Snell pseudo R-squared statistic for the model.

 Nagelkerke gets the Nagelkerke pseudo R-squared statistic for the model.

 LogLikelihoodFullModel gets the log of the value of the likelihood 
function for the full model (estimated coefficients).

 LogLikelihoodInterceptOnly gets the log of the value of the likelihood 
function for the intercept-only model.

 OddsRatios gets the odds ratio values for the computed coefficients. The 
odds ratio for the intercept parameter, if there is one, is not computed.

Finally, property LikelihoodRatioStat gets the likelihood ratio statistic and 
related values for the logistic regression. The result is returns as an instance of 
LikelihoodRatioStatistic.
   Chapter 43.   Logistic Regression 135



Code Example – C# logistic regression auxiliary statistics

var lrs = auxStats.LikelihoodRatioStat;
Console.WriteLine( lrs.ChiSquareStatistic );
Console.WriteLine( lrs.RightTailProbability );

Code Example – VB logistic regression auxiliary statistics

Dim LRS = AuxStats.LikelihoodRatioStat
Console.WriteLine(LRS.ChiSquareStatistic)
Console.WriteLine(LRS.RightTailProbability)
136   NMath Stats User’s Guide



CHAPTER 44.  
ANALYSIS OF VARIANCE

Analysis of variance (ANOVA) is the multigroup generalization of the t test 
(Chapter 41). Like the t test, ANOVA assumes that samples are randomly drawn 
from normally distributed populations with the same standard deviations. If 
differences between the observed means of the samples are larger than one would 
expect from the underlying population variability, estimated by the standard 
deviations within the samples, you can conclude that at least one of the samples 
has a different mean than the others.

NMath Stats provides classes for both one-way (or one-factor) and two-way (or 
two-factor) ANOVAs, for both balanced and unbalanced designs, and with or 
without repeated measures (RANOVA).

This chapter describes the analysis of variance classes.

44.1 One-Way ANOVA

Class OneWayAnova computes and summarizes a traditional one-way (single 
factor) analysis of variance.

Creating One-Way ANOVA Objects

A OneWayAnova instance is constructed from numeric data organized into 
different groups. The groups need not contain the same number of observations. 
For example, this code constructs a OneWayAnova from an array of DoubleVector 
objects. Each vector in the array contains data for a single group:

Code Example – C# ANOVA

var data = new DoubleVector[5];

data[0] = new DoubleVector( "[24 15 21 27 33 23]" );
data[1] = new DoubleVector( "[14 7 12 17 14 16]" );
data[2] = new DoubleVector( "[11 9 7 13 12 18]" );
data[3] = new DoubleVector( "[7 7 4 7 12 18]" );
data[4] = new DoubleVector( "[19 24 19 15 10 20]" );

var anova = new OneWayAnova( data );
   Chapter 44.   Analysis of Variance 137



Code Example – VB ANOVA

Dim Data As New DoubleVector(5)

Data(0) = New DoubleVector("[24 15 21 27 33 23]")
Data(1) = New DoubleVector("[14 7 12 17 14 16]")
Data(2) = New DoubleVector("[11 9 7 13 12 18]")
Data(3) = New DoubleVector("[7 7 4 7 12 18]")
Data(4) = New DoubleVector("[19 24 19 15 10 20]")

Dim Anova As New OneWayAnova(Data)

This code constructs a OneWayAnova from a data frame df:

Code Example – C# ANOVA

var anova = new OneWayAnova( df, 1, 3 );

Code Example – VB ANOVA

Dim Anova As New OneWayAnova(DF, 1, 3)

Two column indices are also provided: a group column and a data column. A Factor 
is constructed from the group column using the DataFrame method GetFactor(), 
which creates a sorted array of the unique values. The specified data column must 
be of type DFNumericColumn.

Lastly, you can also construct a OneWayAnova from a DoubleMatrix:

Code Example – C# ANOVA

var data = new DoubleMatrix( "6 x 5 [ 24 14 11 7 19 
                                      15 7 9 7 24
                                      21 12 7 7 19
                                      27 17 13 12 15
                                      33 14 12 12 10
                                      23 16 18 18 20 ]" );
var anova = new OneWayAnova( data );

Code Example – VB ANOVA

Dim Data As New DoubleMatrix("6 x 5 [ 24 14 11 7 19 
                                      15 7 9 7 24 
                                      21 12 7 7 19
                                      27 17 13 12 15
                                      33 14 12 12 10
                                      23 16 18 18 20 ]")
Dim Anova As New OneWayAnova(Data)

Each column in the given matrix contains the data for a group. If your groups have 
different numbers of observations, you must pad the columns with Double.NaN 
values until they are all the same length, because a DoubleMatrix must be 
rectangular. Alternatively, use one of the other constructors described above. 
138   NMath Stats User’s Guide



The One-Way ANOVA Table

Once you’ve constructed a OneWayAnova, you can display the complete ANOVA 
table:

Code Example – C# ANOVA

Console.WriteLine( anova );

Code Example – VB ANOVA

Console.WriteLine(Anova)

For example:

Source     Deg of Freedom    Sum Of Sq  Mean Sq     F      P
Between groups    4          803.0000   200.7500  9.0076  0.0001
Within groups     25         557.1667   22.2867   .       .
Total             29         1360.1667  46.9023   .       .

Class OneWayAnovaTable is provided for summarizing the information in a 
traditional one-way ANOVA table. Class OneWayAnovaTable derives from 
DataFrame. An instance of OneWayAnovaTable can be obtained from a 
OneWayAnova object using the AnovaTable property. For example:

Code Example – C# ANOVA

OneWayAnovaTable myTable = anova.AnovaTable;

Code Example – VB ANOVA

Dim MyTable As OneWayAnovaTable = Anova.AnovaTable

Class OneWayAnovaTable provides the following read-only properties for 
accessing individual elements in the ANOVA table:

 DegreesOfFreedomBetween gets the between-groups degrees of freedom.

 DegreesOfFreedomWithin gets the within-groups degrees of freedom.

 DegreesOfFreedomTotal gets the total degrees of freedom.

 SumOfSquaresBetween gets the between-groups sum of squares.

 SumOfSquaresWithin gets the within-groups sum of squares.

 SumOfSquaresTotal gets the total sum of squares.

 MeanSquareBetween gets the between-groups mean square. The between-
groups mean square is the between-groups sum of squares divided by the 
between-groups degrees of freedom.
   Chapter 44.   Analysis of Variance 139



 MeanSquareWithin gets the within-group mean square. The within-groups 
mean square is the within-group sum of squares divided by the within-
group degrees of freedom.

 MeanSquareTotal gets the total mean square. The total mean square is the 
total sum of squares divided by the total degrees of freedom. 

 FStatistic gets the F statistic.  

 FStatisticPValue gets the p-value for the F statistic.

Grand Mean, Group Means, and Group Sizes

Class OneWayAnova provides properties and methods for retrieving the grand 
mean, group means, and group sizes:

 GrandMean gets the grand mean of the data. The grand mean is the mean of 
all of the data.

 GroupMeans gets a vector of group means.

 GroupSizes gets an array of group sizes.

 GroupNames gets an array of group names. If the anova was constructed 
from a data frame using a grouping column, the group names are the 
sorted, unique Factor levels created from the column values. If the anova 
object was constructed from a matrix or an array of vectors, the group 
names are simply Group_0, Group_1...Group_n.

 GetGroupMean() returns the mean for a specified group, identified either 
by group name or group number (a zero-based index into the GroupMeans 
vector).

 GetGroupSize() returns the mean for a specified group, identified either 
by group name or group number (a zero-based index into the GroupSizes 
array).

For example, if a OneWayAnova is constructed from a matrix, this code returns 
the mean for the group in the third column of the matrix:

Code Example – C# ANOVA

double maleMean = anova.GetGroupMean( 2 );

Code Example – VB ANOVA

Dim MaleMean As Double = Anova.GetGroupMean(2)

If a OneWayAnova is constructed from a data frame using a grouping column 
with values male and female, this code returns the mean for the male group:
140   NMath Stats User’s Guide



Code Example – C# ANOVA

double maleMean = anova.GetGroupMean( “male” );

Code Example – VB ANOVA

Dim MaleMean As Double = Anova.GetGroupMean("male")

Critical Value of the F Statistic

Class OneWayAnova provides the convenience function 
FStatisticCriticalValue() which computes the critical value for the ANOVA F 
statistic at a given significance level. Thus:

Code Example – C# ANOVA

double alpha = 0.05;
double critVal = anova.FStatisticCriticalValue( alpha );

Code Example – VB ANOVA

Dim Alpha As Double = 0.05
Dim CritVal As Double = Anova.FStatisticCriticalValue(Alpha)

Updating One-Way ANOVA Objects

Method SetData() updates an entire analysis of variance object with new data. As 
with the class constructors (see above), you can supply data as an array of group 
vectors, a matrix, or as a data frame. For instance, this code updates an ANOVA 
with data from DataFrame df, using column 2 as the group column and column 5 
as the data column:

Code Example – C# ANOVA

anova.SetData( df, 2, 5 );

Code Example – VB ANOVA

Anova.SetData(DF, 2, 5)

44.2 One-Way Repeated Measures ANOVA

Class OneWayRanova calculates and summarizes the information of a one-way 
repeated measures analysis of variance (RANOVA). 
   Chapter 44.   Analysis of Variance 141



Creating One-Way RANOVA Objects

A OneWayRanova instance is constructed from numeric data for multiple 
treatments applied to each experimental subject. For example, this code constructs 
a OneWayRanova from a DoubleMatrix:

Code Example – C# RANOVA

var data = new DoubleMatrix( "8x4 [ 180 200 160 200
                                    230 250 200 220
                                    280 310 260 270
                                    180 200 160 200
                                    190 210 170 210
                                    140 160 120 110
                                    270 300 250 260 
                                    110 130 100 100 ]" );
var ranova = new OneWayRanova( data );

Code Example – VB RANOVA

Dim Data As New DoubleMatrix("8x4 [ 180 200 160 200
                                    230 250 200 220
                                    280 310 260 270
                                    180 200 160 200
                                    190 210 170 210
                                    140 160 120 110
                                    270 300 250 260 
                                    110 130 100 100 ]")
Dim Ranova As New OneWayRanova(Data)

Each row of the matrix contains the data for an individual subject. There should be 
one column for each treatment. The example above shows 4 different 
measurements for each of 8 subjects.

NOTE—Data rows containing missing values (NaNs) are ignored by class 
OneWayRanova.

Similarly, you can also construct a OneWayRanova from a DataFrame:

Code Example – C# RANOVA

var ranova = new OneWayRanova( df );

Code Example – VB RANOVA

Dim Ranova As New OneWayRanova(DF)

Each row in the DataFrame contains the data for an individual subject. There 
should be one column for each treatment.

Note that all numeric columns in the given DataFrame are interpreted as 
treatments; only non-numeric columns are ignored. If you have numeric columns 
142   NMath Stats User’s Guide



in the data frame that you also wish to ignore, apply the appropriate Subset first. 
For instance:

Code Example – C# RANOVA

var colIndices = new Subset( new int[] { 3, 14, 5, 8, 4 } );
var ranova = new OneWayRanova( df.GetColumns( colIndices ) );

Code Example – VB RANOVA

Dim ColIndices As New Subset(New Integer() {3, 14, 5, 8, 4})
Dim Ranova As New OneWayRanova(DF.GetColumns(ColIndices))

The One-Way RANOVA Table

Once you’ve constructed a OneWayRanova, you can display the complete 
RANOVA table:

Code Example – C# RANOVA

Console.WriteLine( ranova );

Code Example – VB RANOVA

Console.WriteLine(Ranova)

For example:

Source   Deg of Freedom  Sum Of Sq   Mean Square     F       P
Subjects      9         102822.5000  11424.7222    .        .
Treatment     3         9247.5000    3082.5000     31.6755  0.0000
Error        27         2627.5000    97.3148       .        .
Total        39         114697.5000  2940.9615     .        .

Class OneWayRanovaTable is provided for summarizing the information in a 
traditional one-way RANOVA table. Class OneWayRanovaTable derives from 
DataFrame. An instance of OneWayRanovaTable can be obtained from a 
OneWayRanova object using the RanovaTable property. For example:

Code Example – C# RANOVA

OneWayRanovaTable myTable = ranova.RanovaTable;

Code Example – VB RANOVA

Dim MyTable As OneWayRanovaTable = Ranova.RanovaTable

Class OneWayRanovaTable provides the following read-only properties for 
accessing individual elements in the RANOVA table:

 DegreesOfFreedomTreatment gets the treatment degrees of freedom.
   Chapter 44.   Analysis of Variance 143



 DegreesOfFreedomWithinSubject gets the within-subject degrees of 
freedom.

 DegreesOfFreedomError gets the error degrees of freedom.

 DegreesOfFreedomTotal gets the total degrees of freedom.

 SumOfSquaresTreatment gets the treatment sum of squares.

 SumOfSquaresWithinSubject gets the within-subject sum of squares.

 SumOfSquaresTotal gets the total sum of squares.

 SumOfSquaresError gets the error sum of squares.

 MeanSquareTreatment gets the treatment mean square.

 MeanSquareWithinSubject gets the within-subject mean square.

 MeanSquareError gets the error mean square.

 MeanSquareTotal gets the total mean square.

 FStatistic gets the F statistic for the RANOVA.

 FStatisticPValue gets the p-value for the F statistic.

Grand Mean, Subject Means, and Treatment Means

Class OneWayRanova provides properties for retrieving the grand mean, subject 
means, and treatment means:

 GrandMean gets the grand mean of the data. The grand mean is the mean of 
all of the data.

 SubjectMeans gets a vector of means for each subject.

 TreatmentMeans gets a vector of means for each treatment.

Critical Value of the F Statistic

Class OneWayRanova provides the convenience function 
FStatisticCriticalValue() which computes the critical value for the RANOVA 
F statistic at a given significance level. Thus:

Code Example – C# RANOVA

double alpha = 0.01;
double critVal = ranova.FStatisticCriticalValue( alpha );
144   NMath Stats User’s Guide



Code Example – VB RANOVA

Dim Alpha As Double = 0.01
Dim CritVal As Double = Ranova.FStatisticCriticalValue(Alpha)

Updating One-Way RANOVA Objects

Method SetData() updates an entire repeated measures analysis of variance 
object with new data. As with the class constructors (see above), you can supply 
data as a matrix or as a data frame. For instance, this code updates a RANOVA 
with data from matrix A:

Code Example – C# RANOVA

ranova.SetData( A );

Code Example – VB RANOVA

Ranova.SetData(A)

44.3 Two-Way Balanced ANOVA

Class TwoWayAnova performs a balanced two-way analysis of variance. Two-way 
analysis of variance is a direct extension of one-way analysis of variance 
(Section 44.1). In this case, data are grouped according to two factors—for 
example, sex and age group—rather than a single factor. The total variability is 
partitioned into components associated with each of the two factors, their 
interaction, and the residual (or error).

Creating Two-Way ANOVA Objects

A TwoWayAnova instance is constructed from data in a data frame. Three column 
indices are specified in the data frame: the column containing the first factor, the 
column containing the second factor, and the column containing the numeric data. 
For example, this code groups the numeric data in column 3 of DataFrame df by 
factors constructed from columns 0 and 4:

Code Example – C# ANOVA

var anova = new TwoWayAnova( df, 0, 4, 3 );

Code Example – VB ANOVA

Dim Anova As New TwoWayAnova(DF, 0, 4, 3)

Factor objects are constructed from the factor columns using the DataFrame 
method GetFactor(), which creates a sorted array of the unique values 
   Chapter 44.   Analysis of Variance 145



(Section 37.10). The indicated data column must be of type DFNumericColumn.

NOTE—Class TwoWayAnova throws an InvalidArgumentException if the data contains 
missing values (NaNs).

The Two-Way ANOVA Table

Once you’ve constructed a TwoWayAnova, you can display the complete ANOVA 
table:

Code Example – C# ANOVA

Console.WriteLine( anova );

Code Example – VB ANOVA

Console.WriteLine(Anova)

For example:

Source  Deg of Freedom  SumOfSq    Mean Square  F         P
FactorA      1          1782.0450  1782.0450    14.2121   0.0008
FactorB      1          2838.8113  2838.8113    22.6399   0.0001
Interaction  1          108.0450   108.0450     0.8617    0.3612
Error        28         3510.9075  125.3896     .         .
Total        31         8239.8088  .            .         .

Class TwoWayAnovaTable is provided for summarizing the information in a 
traditional two-way ANOVA table. Class TwoWayAnovaTable derives from 
DataFrame. An instance of TwoWayAnovaTable can be obtained from a 
TwoWayAnova object using the AnovaTable property. For example:

Code Example – C# ANOVA

TwoWayAnovaTable myTable = anova.AnovaTable;

Code Example – VB ANOVA

Dim MyTable As TwoWayAnovaTable = Anova.AnovaTable

Class TwoWayAnovaTable provides the following member functions and 
read-only properties for accessing individual elements in the ANOVA table:

 DegreesOfFreedom() gets the degrees of freedom for a specified factor.

 ErrorDegreesOfFreedom gets the number of degrees of freedom for the 
error.

 InteractionDegreesOfFreedom gets the number of degrees of freedom 
for the interactions.

 TotalDegreesOfFreedom gets the total number of degrees of freedom.
146   NMath Stats User’s Guide



 SumOfSquares() gets the sum of squares for a specified factor.

 InteractionSumOfSquares gets the sum of squares for the interaction.

 ErrorSumOfSquares gets the sum of squares for the error.

 TotalSumOfSquares gets the total sum of squares.

 MeanSquare() gets the mean square for a specified factor.

 InteractionMeanSquare gets the mean square for the interaction.

 ErrorMeanSquare gets the mean square for the error.

 Fstatistic() gets the F statistic for a specified factor.

 InteractionFstatistic gets the F statistic for the interaction.

 FstatisticPvalue() gets the p-value for the F statistic for a specified 
factor.

 InteractionFstatisticPvalue gets the p-value for the F statistic for the 
interaction.

Factors are identified to accessor methods by name, which corresponds to the 
name of the column in the original data frame that was used to create the Factor. 
For instance, if one factor in the ANOVA is named Dosage, this code gets the 
F statistic and p-value for that factor:

Code Example – C# ANOVA

double Fstatistic = anova.AnovaTable.Fstatistic( “Dosage” );
double Pvalue = anova.AnovaTable.FstatisticPvalue( “Dosage” );

Code Example – VB ANOVA

Dim FStatistic As Double = Anova.AnovaTable.FStatistic("Dosage")
Dim PValue As Double = Anova.AnovaTable.FStatisticPValue("Dosage")

Cell Data

Class TwoWayAnova provides the GetCellData() method for accessing the data 
in a cell, as defined by a specified level of each of the factors in the ANOVA. For 
example, if anova has factor Sex with levels Male and Female, and factor AgeGroup 
with levels Child, Adult, and Senior, this code gets the data for adult females:

Code Example – C# ANOVA

DFNumericColumn data =
  anova.GetCellData( “Sex”, “Female”, “AgeGroup”, “Adult” );
   Chapter 44.   Analysis of Variance 147



Code Example – VB ANOVA

Dim Data As DFNumericColumn =
  Anova.GetCellData("Sex", "Female", "AgeGroup", "Adult")

A copy of the data is returned as a DFNumericColumn object.

Grand Mean, Cell Means, and Group Means

Class TwoWayAnova provides the following properties and member functions for 
accessing the grand mean, cell means, and group means: 

 GrandMean gets the grand mean. The grand mean is the mean of all the 
data.

 GetMeanForCell() returns the mean for a specified cell.

 GetMeanForFactorLevel() returns the mean for a specified factor level.

Again, factors and factor levels are identified to accessor methods by name. For 
example, if anova has factor Sex with levels Male and Female, and factor AgeGroup 
with levels Child, Adult, and Senior, this code gets the mean for all males:

Code Example – C# ANOVA

double meanM = anova.GetMeanForFactorLevel( “Sex”, “Male” );

Code Example – VB ANOVA

Dim MeanM As Double = Anova.GetMeanForFactorLevel("Sex", "Male")

This code gets the mean for male children:

Code Example – C# ANOVA

double meanMChild =
  anova.GetMeanForCell( “Sex”, “Male”, “AgeGroup”, “Child” );

Code Example – VB ANOVA

Dim MeanMChild As Double =
  Anova.GetMeanForCell("Sex", "Male", "AgeGroup", "Child")

ANOVA Regression Parameters

NMath Stats solves the two-way ANOVA problem using multiple linear 
regression. If all you wish to know is the information in the standard ANOVA 
table, you can safely ignore the regression details, but properties and member 
functions are provided for retrieving information about the underlying regression 
parameters.
148   NMath Stats User’s Guide



To solve the two-way ANOVA problem using multiple linear regression, NMath 
Stats creates a series of dummy variables to encode the different levels of each of the 
two factors. The specific encoding used, known as effects encoding, encodes dummy 
variables so that the coefficients of the dummy variables in the regression model 
quantify deviations of each group from the grand mean.1

In the effects encoding,  dummy variables are defined to encode the  levels 
of a factor, like so:

and so on, up to  for group .

For example, suppose we have an experimental design with two factors: FactorA 
and FactorB. FactorA has two levels, labelled A1 and A1. Effects encoding defines 
one dummy variable for FactorA:

FactorB has three levels, labelled B1, B2, and B3. Effects encoding defines two 
dummy variable for FactorB:

1S. A. Glantz and B. K. Slinker, Primer of Applied Regression & Analysis of Variance (2nd ed.), NewYork, 
McGraw-Hill, 2001, pp. 357-358.

k 1– k

E1

1 if group 1

1–  if group k

0 othewise





=

E2

1 if group 2

1–  if group k

0 othewise





=

Ek 1–
k 1–

A
1 if group A1

1–  if group A2



=

B1

1 if group B1

0 if group B2

1 if group B3–





=

B2

0 if group B1

1 if group B2

1 if group B3–





=

   Chapter 44.   Analysis of Variance 149



Combined, these three dummy variables completely identify all the combinations 
of FactorA and FactorB. The multiple regression model is then:

where 

 the intercept  is an estimate of the grand mean

  estimates the difference between the grand mean and the mean of A1

  is the difference between the grand mean and the mean of A2

  estimates the difference between the grand mean and the mean of B1

  estimates the difference between the grand mean and the mean of B2

  estimates the difference between the grand mean and the mean 
of B3

NMath Stats includes several classes that derive from 
LinearRegressionParameter, and provide access to the dummy variable regression 
parameters in an ANOVA analysis of variance:

 Class AnovaRegressionParameter provides a SumOfSquares property that 
gets the sum of squares due to a parameter.

 Class AnovaRegressionFactorParam derives from 
AnovaRegressionParameter and provides the additional properties 
FactorName, which gets the name of the ANOVA factor encoded by a 
dummy variable, FactorLevel, which gets the level of the ANOVA factor 
encoded by a dummy variable, and Encoding, which gets the actual 
encoding. The encoding is the value the dummy variable assumes when an 
ANOVA observation is made with the factor at that level.

 Class AnovaRegressionInteractionParam also derives from 
AnovaRegressionParameter and provides the additional properties  
FactorAName and FactorALevel, which get the name and level of the first 
factor in the interaction, and FactorBName and FactorBLevel, which get 
the name and level of the second factor in the interaction.

Of course, these classes also inherit from LinearRegressionParameter methods 
such as TStatisticPValue(), TStatistic(), TStatisticCriticalValue(), and 
ConfidenceInterval() for testing statistical hypotheses regarding parameter 
values in a linear regression (Section 42.5).

Instances of these classes cannot be constructed independently. Instead, they are 
returned by properties and member functions on class TwoWayAnova:

 RegressionInterceptParameter gets the intercept parameter in the linear 
regression as an AnovaRegressionParameter.

Â b0 bAA bB1
B1 bB2

B2 bAB1
AB1 bAB2

AB2+ + + + +=

b0

bA

bA–

bB11

bB21

bB1
bB2

+ –
150   NMath Stats User’s Guide



 GetRegressionFactorParameter() returns the 
AnovaRegressionFactorParam associated with a specified factor level.

 RegressionFactorParameters gets a complete array of 
AnovaRegressionFactorParam estimates for the different factor levels.

 GetRegressionInteractionParameter() returns the 
AnovaRegressionInteractionParam associated with the specified 
interaction.

 RegressionInteractionParameters gets a complete array of 
AnovaRegressionInteractionParam estimates for the interactions.

For example, this code gets the regression parameter for FactorA at level A1:

Code Example – C# ANOVA

AnovaRegressionFactorParam param =
  anova.GetRegressionFactorParameter( "FactorA", "A1" );
Console.WriteLine( param );

Code Example – VB ANOVA

Dim Param As AnovaRegressionFactorParam =
  Anova.GetRegressionFactorParameter("FactorA", "A1")
Console.WriteLine(Param)

Example output:

Value                          : 4.375
Standard Error                 : 1.63741694728596
t-Statistic for parameter = 0  : 2.67189124141632
p-value for t-Statistic        : 0.0155516784650136
0.05 confidence interval       : [9.3491E-001, 7.8151E+000]

Note that method GetRegressionFactorParameter() may return null. In the 
effects encoding method, there are  dummy variables defined to encode the  
levels of a factor. Hence, one level does not have a dummy variable associated with 
it in the linear regression, and a null reference may be returned even though a 
valid factor level is specified. Thus:

Code Example – C# ANOVA

AnovaRegressionFactorParam param = 
  anova.GetRegressionFactorParameter( "FactorA", "A2" );
// param == null

Code Example – VB ANOVA

Dim Param As AnovaRegressionFactorParam = 
  Anova.GetRegressionFactorParameter("FactorA", "A2")
'' param == null

k 1– k
   Chapter 44.   Analysis of Variance 151



Similarly, method GetRegressionInteractionParameter() may return null. If 
there are  different levels for the first factor and  different levels for the second 
factor, there are  dummy variables corresponding to the interactions. 
Hence, some interactions do not have a dummy variable associated with them in 
the linear regression, and a null reference may be returned even though valid 
interactions are specified.

This code prints out the intercept regression parameter, all factor regression 
parameters, and all interaction regression parameters:

Code Example – C# ANOVA

Console.WriteLine( "Intercept" );
Console.WriteLine( anova.RegressionInterceptParameter );
Console.WriteLine();

AnovaRegressionFactorParam[] factorParams = 
  anova.RegressionFactorParameters;
for ( int i = 0; i < factorParams.Length; i++ )
{
  Console.WriteLine( factorParams[i].FactorLevel );
  Console.WriteLine( factorParams[i] );
  Console.WriteLine();
}

AnovaRegressionInteractionParam[] interactionParams = 
  anova.RegressionInteractionParameters;
for ( int i = 0; i < interactionParams.Length; i++ )
{
  Console.WriteLine( interactionParams[i].FactorALevel +  " x " + 
                     interactionParams[i].FactorBLevel );
  Console.WriteLine( interactionParams[i] );
  Console.WriteLine();
}

Code Example – VB ANOVA

Console.WriteLine("Intercept")
Console.WriteLine(Anova.RegressionInterceptParameter)
Console.WriteLine()

Dim FactorParams As AnovaRegressionFactorParam() =
  Anova.RegressionFactorParameters
For I As Integer = 0 To FactorParams.Length - 1
  Console.WriteLine(FactorParams(I).FactorLevel)
  Console.WriteLine(FactorParams(I))
  Console.WriteLine()
Next

Dim InteractionParams As AnovaRegressionInteractionParam() =
  Anova.RegressionInteractionParameters

j k
j 1–  k 1– 
152   NMath Stats User’s Guide



For I As Integer = 0 To InteractionParams.Length - 1
  Console.WriteLine(InteractionParams(I).FactorALevel & " x " &
InteractionParams(I).FactorBLevel)
  Console.WriteLine(InteractionParams(I))
  Console.WriteLine()
Next

Example output:

Intercept
Value                        : 28.875
Standard Error               : 1.63741694728596
t-Statistic for parameter = 0: 17.6344821933477
p-value for t-Statistic      : 8.35997937542743E-13
0.05 confidence interval     : [2.5435E+001, 3.2315E+001]

A1
Value                        : 4.375
Standard Error               : 1.63741694728596
t-Statistic for parameter = 0: 2.67189124141632
p-value for t-Statistic      : 0.0155516784650136
0.05 confidence interval     : [9.3491E-001, 7.8151E+000]

B1
Value                        : 25.5
Standard Error               : 2.31565725411135
t-Statistic for parameter = 0: 11.0119923640365
p-value for t-Statistic      : 1.98637151171965E-09
0.05 confidence interval     : [2.0635E+001, 3.0365E+001]

B2
Value                        : -7.25
Standard Error               : 2.31565725411135
t-Statistic for parameter = 0: -3.13086057408882
p-value for t-Statistic      : 0.00577563474636933
0.05 confidence interval     : [-1.2115E+001, -2.3850E+000]

A1 x B1
Value                        : 6
Standard Error               : 2.31565725411135
t-Statistic for parameter = 0: 2.59105702683213
p-value for t-Statistic      : 0.0184427158909004
0.05 confidence interval     : [1.1350E+000, 1.0865E+001]

A1 x B2
Value                        : -0.999999999999999
Standard Error               : 2.31565725411135
t-Statistic for parameter = 0: -0.431842837805354
p-value for t-Statistic      : 0.670984111233603
0.05 confidence interval     : [-5.8650E+000, 3.8650E+000]
   Chapter 44.   Analysis of Variance 153



44.4 Two-Way Unbalanced ANOVA

Class TwoWayAnovaUnbalanced is the base class for performing a two-way 
ANOVA when the number of observations in each cell is not the same—an 
unbalanced design. Three derived classes are provided:

 TwoWayAnovaTypeI performs a Type I ANOVA on unbalanced data. Type 
I, also called sequential sum of squares, tests the main effect of factor A, 
followed by the main effect of factor B after the main effect of A, followed 
by the interaction effect AB after the main effects.

 TwoWayAnovaTypeII performs a Type II ANOVA on unbalanced data. 
This type tests for each main effect after the other main effect. No 
significant interaction is assumed.

 TwoWayAnovaTypeIII performs a Type III ANOVA on unbalanced data. 
This type tests for the presence of a main effect after the other main effect 
and interaction.

Creating UnbalancedTwo-Way ANOVA Objects

Unbalanced two-way ANOVA instances are constructed in the same manner as 
balanced TwoWayAnova objects (Section 44.3). For example, this code groups the 
numeric data in column 3 of DataFrame df by factors constructed from columns 0 
and 1:

Code Example – C# Unbalanced ANOVA

var type1anova = new TwoWayAnovaTypeI( df, 0, 1, 2 );

Code Example – VB Unbalanced ANOVA

Dim Type1Anova As New TwoWayAnovaType(DF, 0, 1, 2)

Unbalanced Two-Way ANOVA Tables and Regression 
Parameters

Using an unbalanced two-way ANOVA object is similar to using a balanced 
TwoWayAnova object (Section 44.3). For instance, this code prints the ANOVA 
table.

Code Example – C# Unbalanced ANOVA

Console.WriteLine( type1anova.AnovaTable );

Code Example – VB Unbalanced ANOVA

Console.WriteLine(Type1Anova.AnovaTable)
154   NMath Stats User’s Guide



This code prints the regression parameters.

Code Example – C# Unbalanced ANOVA

Console.WriteLine( "FACTOR A ANOVA --------" );
var fa = type1anova.FactorARegressionFactorParameters;
for ( int i = 0; i < fa.Length; i++ )
{
  Console.WriteLine( fa[i] );
  Console.WriteLine();
}

Console.WriteLine( "\nFACTOR B ANOVA --------" );
var fb = type1anova.FactorBRegressionFactorParameters;
for ( int i = 0; i < fb.Length; i++ )
{
  Console.WriteLine( fb[i] );
  Console.WriteLine();
}

Console.WriteLine( "\nINTERACTION FACTOR ANOVA --------" );
var fi = type2anova.InteractionRegressionFactorParameters;
for ( int i = 0; i < fi.Length; i++ )
{
  Console.WriteLine( fi[i] );
  Console.WriteLine();
}

Code Example – VB Unbalanced ANOVA

Console.WriteLine("FACTOR A ANOVA --------")
Dim FA As AnovaRegressionFactorParam() = 
Type1Anova.FactorARegressionFactorParameters
For I As Integer = 0 To FA.Length - 1
  Console.WriteLine(FA(I))
  Console.WriteLine()
Next

Console.WriteLine("\nFACTOR B ANOVA --------")
Dim FB As AnovaRegressionFactorParam() = 
Type1Anova.FactorBRegressionFactorParameters
For I As Integer = 0 To FB.Length - 1
  Console.WriteLine(FB(I))
  Console.WriteLine()
Next

Console.WriteLine("\nINTERACTION FACTOR ANOVA --------")
Dim FI As AnovaRegressionInteractionParam() = 
Type2Anova.InteractionRegressionFactorParameters
For I As Integer = 0 To FI.Length - 1
  Console.WriteLine(FI(I))
   Chapter 44.   Analysis of Variance 155



  Console.WriteLine()
Next

44.5  Two-Way Repeated Measures ANOVA

NMath Stats provides two classes for calculating a two-way analysis of variance 
with repeated measures (RANOVA):

 Class TwoWayRanova performs a balanced two-way analysis of variance 
with repeated measures on one factor.

 Class TwoWayRanovaTwo performs a balanced two-way analysis of 
variance with repeated measures on both factors.

Both classes extend TwoWayAnova, and so inherit the methods and properties 
described in Section 44.3. Like TwoWayAnova, both TwoWayRanova and 
TwoWayRanovaTwo use multiple linear regression to compute the RANOVA 
values.

Creating Two-Way RANOVA Objects

Instances of both TwoWayRanova and TwoWayRanovaTwo are constructed from 
data in a data frame. Three column indices are specified in the data frame: the 
column containing the first factor, the column containing the second factor, and the 
column containing the numeric data. For TwoWayRanova, the first factor is the 
repeated factor; for TwoWayRanovaTwo, both factors are repeated.

For example, this code groups the numeric data in column 3 of DataFrame df by 
factors constructed from columns 0 and 4:

Code Example – C# RANOVA

var ranova = new TwoWayRanova( df, 0, 4, 3 );

Code Example – VB RANOVA

Dim Ranova As New TwoWayRanova(DF, 0, 4, 3)

The factor constructed from column 0 is the repeated factor. In the following 
example, both factors are repeated:

Code Example – C# RANOVA

var ranova2 = new TwoWayRanovaTwo( df, 0, 4, 3 );

Code Example – VB RANOVA

Dim Ranova2 As New TwoWayRanovaTwo(DF, 0, 4, 3)
156   NMath Stats User’s Guide



NOTE—Both TwoWayRanova and TwoWayRanovaTwo throw an InvalidArgumentEx-
ception if the data contains missing values (NaNs).

Two-Way RANOVA Tables

Once you’ve constructed a TwoWayRanova, you can display the complete 
RANOVA table:

Code Example – C# RANOVA

var ranova = new TwoWayRanova( df, 0, 4, 3 );
Console.WriteLine( ranova );

Code Example – VB RANOVA

Dim Ranova As New TwoWayRanova(DF, 0, 4, 3)
Console.WriteLine(Ranova)

For instance:

Source  Deg of Freedom  SumOfSqu   Mean Square  F         P
FactorA      1          0.2032     0.2032       29.2322   0.0001
Subjects     14         1.7559     0.1254       .         .
FactorB      1          0.0205     0.0205       0.1635    0.6921
Interaction  1          0.0830     0.0830       11.9442   0.0039
Error        14         0.0973     0.0070       .         .
Total        31         2.1599     .            .         .

Class TwoWayRanovaTable summarizes the information in a traditional two-way 
RANOVA table with repeated measures on one factor. An instance of 
TwoWayRanovaTable can be obtained from a TwoWayRanova object using the 
RanovaTable property. For example:

Code Example – C# RANOVA

TwoWayRanovaTable myTable = ranova.RanovaTable;

Code Example – VB RANOVA

Dim MyTable As TwoWayRanovaTable = Ranova.RanovaTable

Class TwoWayRanovaTable derives from TwoWayAnovaTable, and so inherits 
the properties described in Section 44.3. In addition, TwoWayRanovaTable 
provides the following properties for accessing the new row in the RANOVA table 
for repeated measures on one factor:

 SubjectsDegreesOfFreedom gets the subjects degrees of freedom.

 SubjectsSumOfSquares gets the sum of squares for the subjects.

 SubjectsMeanSquare gets the mean square for the subjects.
   Chapter 44.   Analysis of Variance 157



Similarly, once you’ve constructed a TwoWayRanovaTwo, you can display the 
RANOVA table:

Code Example – C# RANOVA

var ranova2 = new TwoWayRanovaTwo( df, 0, 4, 3 );
Console.WriteLine( ranova2 );

Code Example – VB RANOVA

Dim Ranova2 As New TwoWayRanovaTwo(DF, 0, 4, 3)
Console.WriteLine(Ranova2)

For example:

Source  Deg of Freedom  SumOfSq    Mean Square  F         P
FactorA      1          1.4700     1.4700       88.2000   0.0000
FactorB      2         14.5654     7.2827       59.2348   0.0000
Interaction  2          3.3387     1.6694       18.9305   0.0001
A x Subject  14         1.7213     0.1229       .         .
B x Subject  7          0.1167     0.0167       .         .
Error        14         1.2346     0.0882       .         .
Total        47        29.3592     .            .         .

An instance of TwoWayRanovaTwoTable can be obtained from a 
TwoWayRanovaTwo object using the RanovaTable property. For example:

Code Example – C# RANOVA

TwoWayRanovaTwoTable myTable = ranova2.RanovaTable;

Code Example – VB RANOVA

Dim MyTable As TwoWayRanovaTwoTable = Ranova2.RanovaTable

Class TwoWayRanovaTwoTable also derives from TwoWayAnovaTable, and 
provides the following methods for accessing the additional rows in the RANOVA 
table with repeated measures on both factors:

 SubjectInteractionDegreesOfFreedom() returns the degrees of freedom 
for the interaction between subjects and the specified factor.

 SubjectInteractionSumOfSquares() returns the sum of squares for the 
interaction between subjects and the specified factor.

 SubjectInteractionMeanSquare returns the mean square for the 
interaction between subjects and the specified factor.
158   NMath Stats User’s Guide



CHAPTER 45.  
NON-PARAMETRIC TESTS

Non-parametric (or distribution-free) tests make no assumptions about the 
probability distributions of the variables being assessed. NMath Stats provides 
classes for several common non-parametric tests:

 Class OneSampleKSTest performs a Kolmogorov-Smirnov test of the 
distribution of one sample.

 Class TwoSampleKSTest performs a two-sample Kolmogorov-Smirnov 
test to compare the distributions of values in two data sets.

 Class ShapiroWilkTest tests the null hypothesis that the sample comes 
from a normally distributed population.

 Class OneSampleAndersonDarlingTest performs a Anderson-Darling test 
of the distribution of one sample.

 Class KruskalWallisTest performs a Kruskal-Wallis rank sum test.

 Class WilcoxonSignedRankTest performs a Wilcoxon signed-rank test for 
comparing the means between two paired samples, or repeated 
measurements on a single sample.

This chapter describes the non-parametric test classes.

See Section 38.9 for Spearman’s rank correlation coefficient, commonly known as 
Spearman’s rho.

45.1 One Sample Kolmogorov-Smirnov Test

Class OneSampleKSTest performs a Kolmogorov-Smirnov test of the distribution 
of one sample. This class compares the distribution of a given sample to the 
hypothesized distribution defined by a specified cumulative distribution function 
(CDF). For each potential value x, the Kolmogorov-Smirnov test compares the 
proportion of values less than x with the expected number predicted by the 
specified CDF. The null hypothesis is that the given sample data follow the 
specified distribution. The alternative hypothesis that the data do not have that 
distribution.

Sample data can be passed to the constructor as a vector, numeric column in a data 
frame, or an array of doubles. The hypothesized distribution can be specified 
   Chapter 45.   Non-Parametric Tests 159



either by using an instance of ProbabilityDistribution or by supplying a delegate 
that encapsulates the CDF of the hypothesized distribution. For example, this code 
creates a OneSampleKSTest instance that compares the distribution of  data to a 
standard normal distribution:

Code Example – C# Kolmogorov-Smirnov test

var norm = new NormalDistribution();
var ks = new OneSampleKSTest( data, norm );

Code Example – VB Kolmogorov-Smirnov test

Dim Norm As New NormalDistribution()
Dim KS As New OneSampleKSTest(Data, Norm)

If myDist.CDF() is the CDF for some distribution, this code creates a 
OneSampleKSTest instance that compares the distribution of the data in column 3 
of DataFrame df to the hypothesized distribution:

Code Example – C# Kolmogorov-Smirnov test

var ks = new OneSampleKSTest( df[3],
  new Func<double, double>(myDist.CDF) );

Code Example – VB Kolmogorov-Smirnov test

Dim KS As New OneSampleKSTest(DF(3), New Func(Of Double, 
  Double)(AddressOf MyDist.CDF))

By default, a OneSampleKSTest object performs the Kolmogorov-Smirnov test 
with . A different alpha level can be specified at the time of construction 
using constructor overloads, or after construction using the provided Alpha 
property.

Once you’ve constructed and configured a OneSampleKSTest object, you can 
access the various test results using the provided properties:

Code Example – C# Kolmogorov-Smirnov test

Console.WriteLine( "statistic = " + test.Statistic );
Console.WriteLine( "p-value = " + test.P );
Console.WriteLine( “alpha = “ + test.Alpha );
Console.WriteLine( "reject the null hypothesis? " + test.Reject);

Code Example – VB Kolmogorov-Smirnov test

Console.WriteLine("statistic = " & Test.Statistic)
Console.WriteLine("p-value = " & Test.P)
Console.WriteLine("alpha = " & Test.Alpha)
Console.WriteLine("reject the null hypothesis? " & Test.Reject)

 0.01=
160   NMath Stats User’s Guide



45.2 Two Sample Kolmogorov-Smirnov Test

Class TwoSampleKSTest performs a two-sample Kolmogorov-Smirnov test to 
compare the distributions of values in two data sets. For each potential value x, the 
Kolmogorov-Smirnov test compares the proportion of values in the first sample 
less than x with the proportion of values in the second sample less than x. The null 
hypothesis is that the two samples have the same continuous distribution. The 
alternative hypothesis is that they have different continuous distributions.

Sample data can be passed to the constructor as vectors, numeric columns in a data 
frame, or arrays of doubles. Thus:

Code Example – C# Kolmogorov-Smirnov test

var ks = new TwoSampleKSTest( data1, data2 );

Code Example – VB Kolmogorov-Smirnov test

Dim KS As New TwoSampleKSTest(Data1, Data2)

By default, a TwoSampleKSTest object performs the Kolmogorov-Smirnov test 
with . A different alpha level can be specified at the time of construction 
using constructor overloads, or after construction using the provided Alpha 
property.

Once you’ve constructed and configured a TwoSampleKSTest object, you can 
access the various test results using the provided properties:

Code Example – C# Kolmogorov-Smirnov test

Console.WriteLine( "statistic = " + test.Statistic );
Console.WriteLine( "p-value = " + test.P );
Console.WriteLine( “alpha = “ + test.Alpha );
Console.WriteLine( "reject the null hypothesis? " + test.Reject);

Code Example – VB Kolmogorov-Smirnov test

Console.WriteLine("statistic = " & Test.Statistic)
Console.WriteLine("p-value = " & Test.P)
Console.WriteLine("alpha = " & Test.Alpha)
Console.WriteLine("reject the null hypothesis? " & Test.Reject)

45.3 Shapiro-Wilk Test

Class ShapiroWilkTest tests the null hypothesis that a sample comes from a 
normally distributed population. The sample data provided must be of size 
between 3 and 5000. If the size becomes too large, then the test begins to perform 
poorly.

 0.01=
   Chapter 45.   Non-Parametric Tests 161



Code Example – C# Shapiro-Wilk test

var data = new DoubleVector(
  "4.6057571 5.0352571 2.5780990 3.8300667 3.9096730 0.3203129 " +
  "0.7165054 9.8681061 3.8967762 9.4639023 6.4092569 2.9835816 " +
  "8.1763496 8.5650066 10.2810477 7.7123572 2.6411587 2.5043797 " +
  "7.5617508 11.2223571" );

double alpha = 0.1;
var test = new ShapiroWilkTest( data, alpha );

Code Example – VB Shapiro-Wilk test

Dim Data As New DoubleVector(
  "4.6057571 5.0352571 2.5780990 3.8300667 3.9096730 0.3203129 " &
  "0.7165054 9.8681061 3.8967762 9.4639023 6.4092569 2.9835816 " &
  "8.1763496 8.5650066 10.2810477 7.7123572 2.6411587 2.5043797 " &
  "7.5617508 11.2223571")

Dim Alpha As Double = 0.1
Dim Test As New ShapiroWilkTest(Data, Alpha)

Once you’ve constructed and configured a TwoSampleKSTest object, you can 
access the various test results using the provided properties:

Code Example – C# Shapiro-Wilk test

Console.WriteLine( "statistic = " + test.Statistic );
Console.WriteLine( "p-value = " + test.P );
Console.WriteLine( “alpha = “ + test.Alpha );
Console.WriteLine( "reject the null hypothesis? " + test.Reject);

Code Example – VB Shapiro-Wilk test

Console.WriteLine("statistic = " & Test.Statistic)
Console.WriteLine("p-value = " & Test.P)
Console.WriteLine("alpha = " & Test.Alpha)
Console.WriteLine("reject the null hypothesis? " & Test.Reject)

45.4 One Sample Anderson-Darling Test

Class OneSampleAndersonDarlingTest performs a Anderson-Darling test of the 
distribution of one sample. An Anderson-Darling test compares the distribution of 
a given sample to normal distribution function (CDF). The alternative hypothesis 
that the data do not have a normal distribution.

Code Example – C# Anderson-Darling test

int n = 100;
var data = new DoubleVector( n, new RandGenGamma( 23.0 ) );
162   NMath Stats User’s Guide



var test = new OneSampleAndersonDarlingTest( data );

Console.WriteLine( "statistic = " + test.Statistic );
Console.WriteLine( "p-value = " + test.P );
Console.WriteLine( “alpha = “ + test.Alpha );
Console.WriteLine( "reject the null hypothesis? " + test.Reject);

Code Example – VB Anderson-Darling test

Dim N As Integer = 100
Dim Data As New DoubleVector(N, New RandGenGamma(23.0))
Dim Test As New OneSampleAndersonDarlingTest(Data)

Console.WriteLine("statistic = " & Test.Statistic)
Console.WriteLine("p-value = " & Test.P)
Console.WriteLine("alpha = " & Test.Alpha)
Console.WriteLine("reject the null hypothesis? " & Test.Reject)

45.5 Kruskal-Wallis Test

Class KruskalWallisTest performs a Kruskal-Wallis rank sum test. The Kruskal-
Wallis test is a non-parametric test for equality of population medians among 
groups. It is a non-parametric version of the classical one-way ANOVA. The 
interface for KruskalWallisTest is nearly identical to OneWayAnova.

Creating Kruskal-Wallis Objects

A KruskalWallisTest instance is constructed from numeric data organized into 
different groups. The groups need not contain the same number of observations. 
For example, this code constructs a KruskalWallisTest from an array of 
DoubleVector objects. Each vector in the array contains data for a single group:

Code Example – C# Kruskal-Wallis test

var a =
  new DoubleVector(6.4, 6.8, 7.2, 8.3, 8.4, 9.1, 9.4, 9.7);
var b =
  new DoubleVector(2.5, 3.7, 4.9, 5.4, 5.9, 8.1, 8.2);
var c = 
  new DoubleVector(1.3, 4.1, 4.9, 5.2, 5.5, 8.2);

var data_ = new DoubleVector[] { a, b, c };

var test = new KruskalWallisTest( data_);
   Chapter 45.   Non-Parametric Tests 163



Code Example – VB Kruskal-Wallis test

Dim A As New DoubleVector(6.4, 6.8, 7.2, 8.3, 8.4, 9.1, 9.4, 9.7)
Dim B As New DoubleVector(2.5, 3.7, 4.9, 5.4, 5.9, 8.1, 8.2)
Dim C As New DoubleVector(1.3, 4.1, 4.9, 5.2, 5.5, 8.2)

Dim Data_() As DoubleVector = {A, B, C}

Dim Test As New KruskalWallisTest(Data )

An optional boolean parameter may also be supplied to the constructor. If true, a 
standard correction for ties is applied.

Code Example – C# Kruskal-Wallis test

bool correct_for_ties = true;
var test = new KruskalWallisTest( data, correct_for_ties_);

Code Example – VB Kruskal-Wallis test

Dim CorrectForTies As Boolean = True
Dim Test As New KruskalWallisTest(Data, CorrectForTies)

This correction usually makes little difference in the value of the test statistic, 
unless there are a large number of ties.

This code constructs a KruskalWallisTest from a data frame df:

Code Example – C# Kruskal-Wallis test

var test = new KruskalWallisTest( df, 1, 3 );

Code Example – VB Kruskal-Wallis test

Dim Test As New KruskalWallisTest(DF, 1, 3)

Two column indices are also provided: a group column and a data column. A Factor 
is constructed from the group column using the DataFrame method GetFactor(), 
which creates a sorted array of the unique values. The specified data column must 
be of type DFNumericColumn.

Lastly, you can also construct a KruskalWallisTest from a DoubleMatrix:

Code Example – C# Kruskal-Wallis test

var data = new DoubleMatrix( "6 x 5 [ 24 14 11 7 19 
                                      15 7 9 7 24
                                      21 12 7 7 19
                                      27 17 13 12 15
                                      33 14 12 12 10
                                      23 16 18 18 20 ]" );

bool correct_for_ties = true;
var test = new KruskalWallisTest( data, correct_for_ties );
164   NMath Stats User’s Guide



Code Example – VB Kruskal-Wallis test

Dim Data As New DoubleMatrix("6 x 5 [ 24 14 11 7 19 
                                      15 7 9 7 24
                                      21 12 7 7 19
                                      27 17 13 12 15
                                      33 14 12 12 10
                                      23 16 18 18 20 ]")

Dim CorrectForTies As Boolean = True
Dim Test As New KruskalWallisTest(Data, CorrectForTies)

Each column in the given matrix contains the data for a group. If your groups have 
different numbers of observations, you must pad the columns with Double.NaN 
values until they are all the same length, because a DoubleMatrix must be 
rectangular. Alternatively, use one of the other constructors described above. 

The Kruskal-Wallis Table

Once you’ve constructed a KruskalWallisTest, you can display the complete 
results table:

Code Example – C# Kruskal-Wallis test

Console.WriteLine( test );

Code Example – VB Kruskal-Wallis test

Console.WriteLine(Test)

For example:

Source     Deg of Freedom    Sum Of Sq  Mean Sq    Chi-sq   P
Between groups    2          13.5000   6.7500      0.7714   0.6800
Within groups     11         214       19.4545     .        .
Total             13         227.5000  .           .        .

Class KruskalWallisTable is provided for summarizing the information in the 
results table. Class KruskalWallisTable derives from DataFrame. An instance of 
KruskalWallisTable can be obtained from a KruskalWallisTest object using the 
Table property. For example:

Code Example – C# Kruskal-Wallis test

KruskalWallisTable table = test.Table;

Code Example – VB Kruskal-Wallis test

Dim Table As KruskalWallisTable = Test.Table
   Chapter 45.   Non-Parametric Tests 165



Class KruskalWallisTable provides the following read-only properties for 
accessing individual elements in the results table:

 DegreesOfFreedomBetween gets the between-groups degrees of freedom.

 DegreesOfFreedomWithin gets the within-groups degrees of freedom.

 DegreesOfFreedomTotal gets the total degrees of freedom.

 SumOfSquaresBetween gets the between-groups sum of squares.

 SumOfSquaresWithin gets the within-groups sum of squares.

 SumOfSquaresTotal gets the total sum of squares.

 MeanSquareBetween gets the between-groups mean square. The between-
groups mean square is the between-groups sum of squares divided by the 
between-groups degrees of freedom.

 MeanSquareWithin gets the within-group mean square. The within-groups 
mean square is the within-group sum of squares divided by the within-
group degrees of freedom.

 MeanSquareTotal gets the total mean square. The total mean square is the 
total sum of squares divided by the total degrees of freedom. 

 Statistic gets the test statistic.  

 PValue gets the p-value for the test statistic.

Ranks, Grand Mean Ranks, Group Means Ranks, and 
Group Sizes

Class KruskalWallisTest provides properties and methods for retrieving the ranks, 
grand mean ranks, group means ranks, and group sizes:

 Ranks gets an array of vectors containing the ranks of the data.

 GrandMeanRank gets the grand mean rank of the data. The grand mean  
rank is the mean of all of the data ranks.

 GroupMeanRanks gets a vector of group mean ranks.

 GroupSizes gets an array of group sizes.

 GroupNames gets an array of group names. If the test was constructed from 
a data frame using a grouping column, the group names are the sorted, 
unique Factor levels created from the column values. If the test object was 
constructed from a matrix or an array of vectors, the group names are 
simply Group_0, Group_1...Group_n.
166   NMath Stats User’s Guide



 GetGroupRanks() returns the ranks for a specified group, identified either 
by group name or group number (a zero-based index into the Ranks array).

 GetGroupMeanRank() returns the mean rank for a specified group, 
identified either by group name or group number (a zero-based index into 
the GroupMeanRanks vector).

 GetGroupSize() returns the mean for a specified group, identified either 
by group name or group number (a zero-based index into the GroupSizes 
array).

For example, if a KruskalWallisTest is constructed from a matrix, this code returns 
the mean rank for the group in the third column of the matrix:

Code Example – C# Kruskal-Wallis test

double mean = test.GetGroupMeanRank( 2 );

Code Example – VB Kruskal-Wallis test

Dim Mean As Double = Test.GetGroupMeanRank(2)

If a KruskalWallisTest is constructed from a data frame using a grouping column 
with values male and female, this code returns the mean rank for the male group:

Code Example – C# Kruskal-Wallis test

double maleMean = test.GetGroupMeanRank( “male” );

Code Example – VB Kruskal-Wallis test

Dim MaleMean As Double = Test.GetGroupMeanRank("male")

Critical Value of the Test Statistic

Class KruskalWallisTest provides the convenience function 
StatisticCriticalValue() which computes the critical value for the test statistic 
at a given significance level. Thus:

Code Example – C# Kruskal-Wallis test

double alpha = 0.05;
double critVal = test.StatisticCriticalValue( alpha );

Code Example – VB Kruskal-Wallis test

Dim Alpha As Double = 0.05
Dim CritVal As Double = Test.StatisticCriticalValue(Alpha)
   Chapter 45.   Non-Parametric Tests 167



Updating Kruskal-Wallis Test Objects

Method SetData() updates an entire test object with new data. As with the class 
constructors (see above), you can supply data as an array of group vectors, a 
matrix, or as a data frame. For instance, this code updates a test with data from 
DataFrame df, using column 2 as the group column and column 5 as the data 
column:

Code Example – C# Kruskal-Wallis test

test.SetData( df, 2, 5 );

Code Example – VB Kruskal-Wallis test

Test.SetData(DF, 2, 5)

45.6 Wilcoxon Signed-Rank Test

The Wilcoxon signed-rank test is a non-parametric statistical hypothesis test for 
comparing the means between two paired samples, or repeated measurements on 
a single sample. It can be used as an alternative to TwoSamplePairedTTest when 
the population cannot be assumed to be normally distributed.

Class WilcoxonSignedRankTest tests if two paired sets of observed values differ 
from each other in a significant way. The null hypothesis is that the distribution x - 
y is symmetric about 0.

Creating Wilcoxon Signed-Rank Objects

A WilcoxonSignedRankTest instance is constructed from paired vectors of sample 
data.

Code Example – C# Wilcoxon signed-rank test

var a = new DoubleVector( 78, 24, 64, 45, 64, 52, 30, 50, 64, 50, 
  78, 22, 84, 40, 90, 72 );
var b = new DoubleVector( 78, 24, 62, 48, 68, 56, 25, 44, 56, 40, 
  68, 36, 68, 20, 58, 32 );

double alpha = 0.05;
var type = HypothesisType.TwoSided;
bool exactPValue = false;
var test =
  new WilcoxonSignedRankTest( a, b, alpha, type, exactPValue  );
168   NMath Stats User’s Guide



Code Example – VB Wilcoxon signed-rank test

TODO

Note that paired observations where either value is missing, or where the 
difference between values is zero, are ignored. In the example above, a normal 
approximation is used to compute p-value. For , the sampling distribution of 
the test statistic converges to a normal distribution. For smaller sample sizes, an 
exact p-value can be calculated by enumerating all possible combinations of the 
test statistic given n.

Code Example – C# Wilcoxon signed-rank test

var x = new DoubleVector( 1.83, 0.50, 1.62, 2.48, 1.68, 1.88, 1.55, 
  3.06, 1.30 );
var y = new DoubleVector( 0.878, 0.647, 0.598, 2.050, 1.060, 1.290, 
  1.060, 3.140, 1.290 );

alpha = 0.01;
exactPValue = true;
test =
  new WilcoxonSignedRankTest( x, y, alpha, type, exactPValue );

Code Example – VB Wilcoxon signed-rank test

TODO

An InvalidArgumentException is raised if the given data contains zero valid pairs 
(valid pairs are non-NaN and unequal), or if an exact p-value is specified for 

.

n 10

n 30
   Chapter 45.   Non-Parametric Tests 169



170   NMath Stats User’s Guide



CHAPTER 46.  
MULTIVARIATE TECHNIQUES

Multivariate statistical analysis techniques are useful when you need a concise 
understanding of large amounts of data. NMath Stats provides classes for 
dimension reduction using principal component analysis or factor analysis, and case 
reduction using hierarchical cluster analysis and k-means clustering.

This chapter describes the multivariate statistical analysis classes.

46.1 Principal Component Analysis

Principal component analysis (PCA) finds a smaller set of synthetic variables that 
capture the variance in an original data set. The first principal component accounts 
for as much of the variability in the data as possible, and each succeeding 
orthogonal component accounts for as much of the remaining variability as 
possible. In NMath Stats, classes DoublePCA and FloatPCA perform principal 
component analyses.

Creating Principal Component Analyses

A DoublePCA or FloatPCA instance is constructed from a matrix or a dataframe 
containing numeric data. Each column represents a variable, and each row 
represents an observation:

Code Example – C# principal component analysis (PCA)

var pca = new DoublePCA( data );

Code Example – VB principal component analysis (PCA)

Dim PCA As New DoublePCA(Data)

The data may optionally be zero-centered and scaled to have unit variance:

Code Example – C# principal component analysis (PCA)

bool center = true;
bool scale = true;
var pca = new DoublePCA( data, center, scale );

Code Example – VB principal component analysis (PCA)

Dim Center As Boolean = True
   Chapter 46.   Multivariate Techniques 171



Dim Scale As Boolean = True
Dim PCA As New DoublePCA(Data, Center, Scale)

By default, variables are centered but not scaled.

After construction, you can retrieve information about the data set using the 
provided read-only properties:

 Data gets the data matrix. If centering or scaling were specified at 
construction time, the returned matrix may not match the original data.

 NumberOfObservations gets the number of observations in the data 
matrix.

 NumberOfVariables gets the number of variables in the data matrix.

 IsCentered returns true if the data supplied at construction time was 
shifted to be zero-centered.

 IsScaled returns true if the data supplied at construction time was scaled 
to have unit variance.

 Means gets the column means of the data matrix. If centering is specified, 
the column means are substracted from the column values before analysis 
takes place.

 Norms gets the column norms (1-norm). If scaling is specified, column 
values are scaled to have unit variance before analysis by dividing by the 
column norm.

Principal Component Analysis Results   

The Loadings property gets the complete loading matrix. Each column in the 
loading matrix is a principal component. The first principal component accounts 
for as much of the variability in the data as possible, and each succeeding 
orthogonal component accounts for as much of the remaining variability as 
possible. 

Code Example – C# principal component analysis (PCA)

Console.WriteLine( "Loading Martrix = " + pca.Loadings );

Code Example – VB principal component analysis (PCA)

Console.WriteLine("Loading Matrix = " & PCA.Loadings)

The provided indexer also gets a specified principal component, referenced by 
zero-based index. For example:

Code Example – C# principal component analysis (PCA)

Console.WriteLine( "First principal component = " + pca[0] );
172   NMath Stats User’s Guide



Console.WriteLine( "Second principal component = " + pca[1] );

Code Example – VB principal component analysis (PCA)

Console.WriteLine("First principal component = " & PCA(0))
Console.WriteLine("Second principal component = " & PCA(1))

The VarianceProportions property gets an ordered vector containing the 
proportion of the total variance accounted for by each principal component. 
CumulativeVarianceProportions gets the cumulative variance proportions. 
Thus:

Code Example – C# principal component analysis (PCA)

Console.WriteLine( "Variance Proportions = " + 
                   pca.VarianceProportions ); 
Console.WriteLine( "Cumulative Variance Proportions = " + 
                   pca.CumulativeVarianceProportions );

Code Example – VB principal component analysis (PCA)

Console.WriteLine("Variance Proportions = " & 
  PCA.VarianceProportions)
Console.WriteLine("Cumulative Variance Proportions = " & 
  PCA.CumulativeVarianceProportions)

The Threshold() method calculates the number of principal components required 
to account for a given proportion of the total variance:

Code Example – C# principal component analysis (PCA)

Console.WriteLine( "PCs that account for 99% of the variance = " +
                   pca.Threshold( .99 ) );

Code Example – VB principal component analysis (PCA)

Console.WriteLine("PCs that account for 99% of the variance = " & 
  PCA.Threshold(0.99))

The StandardDeviations property gets the standard deviations of the principal 
components. Eigenvalues gets the eigenvalues of the covariance/correlation 
matrix, though the calculation is actually performed using the singular values of 
the data matrix. The eigenvalues of the covariance/correlation matrix are equal to 
the squares of the standard deviations of the principal components. 

Lastly, the Scores property gets the score matrix. The scores are the data formed 
by transforming the original data into the space of the principal components:

Code Example – C# principal component analysis (PCA)

Console.WriteLine( "Scores = " + pca.Scores );

Code Example – VB principal component analysis (PCA)

Console.WriteLine("Scores = " & PCA.Scores)
   Chapter 46.   Multivariate Techniques 173



This code displays the data in the minimal synthetic dimensions required to 
account for 99% of the variance: 

Code Example – C# principal component analysis (PCA)

Slice rowSlice = Slice.All;
var colSlice = new Slice( 0, pca.Threshold( .99 ) );
Console.WriteLine( pca.Scores[ rowSlice, colSlice ] );

Code Example – VB principal component analysis (PCA)

Dim RowSlice As Slice = Slice.All
Dim ColSlice As New Slice(0, PCA.Threshold(0.99))
Console.WriteLine(PCA.Scores(RowSlice, ColSlice))

46.2 Factor Analysis

Factor analysis describes the variability among observed, correlated variables in 
terms of a potentially lower number of unobserved variables, called factors.

In general, factor analysis consists of two steps:

 In the extraction step, factors are extracted from the data.

In NMath Stats, IFactorExtraction is the interface for factor extraction algo-
rithms. Class PCFactorExtraction implements the principle component 
(PC) algorithm for factor extraction.

 In the rotation step, the factors are rotated in order to maximize the 
relationship between the variables and the factors.

In NMath Stats, IFactorRotation is the interface for factor rotation algo-
rithms. Class VarimaxRotation computes the varimax rotation of the 
factors. Factors are rotated to maximize the sum of the variances of the 
squared loadings. Kaiser normalization is optionally performed. Class 
NoRotation can be used when no rotation is desired.

Creating Factor Analyses

NMath Stats provides three classes for performing factor analysis:

 FactorAnalysisCorrelation performs a factor analysis on given case data 
by forming the correlation matrix for the variables.

 FactorAnalysisCovariance performs a factor analysis on given case data 
using the covariance matrix.
174   NMath Stats User’s Guide



 DoubleFactorAnalysis performs a factor analysis on a symmetric matrix of 
data, assumed to be either a correlation or covariance matrix, if you don’t 
have access to the original case data.

When case data is used, the data should provided in matrix form—the variable 
values in columns and each row representing a case.

All factor analysis are templatized on the extraction and rotation algorithm to use. 
For example:

Code Example – C# factor analysis

var fa = new FactorAnalysisCorrelation<PCFactorExtraction, 
  VarimaxRotation>( data );

Code Example – VB factor analysis

Dim FA As New FactorAnalysisCorrelation(Of PCFactorExtraction, 
  VarimaxRotation)(Data)

For greater control, construct the extraction and rotation objects explicitly. For 
example, a PCFactorExtraction instance can be constructed from a delegate for 
determining the number of factors to extract. The type of this argument is 
Func<DoubleVector, DoubleMatrix, int>. It takes as arguments the vector of 
eigenvalues and the matrix of eigenvectors, and returns the number of factors to 
extract. Class NumberOfFactors contains static methods for creating functors for 
several common strategies. This code extracts factors whose eigenvalues are 
greater than 1.2 times the mean of the eigenvalues:

Code Example – C# factor analysis

var factorExtraction = new PCFactorExtraction( 
  NumberOfFactors.EigenvaluesGreaterThanMean( 1.2 ) );

Code Example – VB factor analysis

Dim FactorExtraction As New PCFactorExtraction( 
  NumberOfFactors.EigenvaluesGreaterThanMean(1.2))

The following code constructs a VarimaxRotation instance with a specified 
tolerance. Iteration stops when the relative change in the sum of the singular 
values is less than this number. We also specify that we do not want Kaiser 
normalization to be performed.

Code Example – C# factor analysis

var factorRotation = new VarimaxRotation
{
  Tolerance = 1e-6,
  Normalize = false
};
   Chapter 46.   Multivariate Techniques 175



Code Example – VB factor analysis

Dim FactorRotation As New VarimaxRotation()
FactorRotation.Tolerance = 0.000001
FactorRotation.Normalize = False

Once you’ve constructed your extraction and rotation objects, you can construct 
the factor analysis instance:

Code Example – C# factor analysis

var fa = new FactorAnalysisCovariance<PCFactorExtraction, 
  VarimaxRotation>( data, BiasType.Biased, factorExtraction, 
    factorRotation );

Code Example – VB factor analysis

Dim FA As New FactorAnalysisCovariance(Of PCFactorExtraction, 
  VarimaxRotation)(Data, BiasType.Biased, FactorExtraction,
  FactorRotation)

Factor Analysis Results

Once you’ve constructed a factor analysis instance, you can access the results using 
the following properties:

 NumberOfFactors get the number of factors extracted.

 Factors gets the extracted factors. Each column of the matrix is a factor.  

 RotatedFactors gets the rotated factors. Each column of the matrix is a 
factor. 

 VarianceProportions gets a vector of proportion of variance explained by 
each factor.

 CumulativeVarianceProportions gets the cumulative variance 
proportions. 

 ExtractedCommunalities get the proportion of each variable's variance 
that can be explained by the extracted factors jointly. 

 InitialCommunalities get the proportion of each variable's variance that 
can be explained by the factors jointly.

 SumOfSquaredLoadings gets the sum of squared loadings for each 
extracted factor.

 RotatedSumOfSquaredLoadings gets the sum of squared loadings for each 
rotated extracted factor.
176   NMath Stats User’s Guide



For instance:

Code Example – C# factor analysis

DoubleVector extractedCommunalities = fa.ExtractedCommunalities;
for ( int i = 0; i < data.Cols; i++ )
{
  Console.WriteLine( "{0}\t{1}", data[i].Name, 
    extractedCommunalities[i] );
}
Console.WriteLine();

for ( int i = 0; i < fa.VarianceProportions.Length; i++ )
{
  double varProportion = fa.VarianceProportions[i] * 100.0;
  double cummlativeVarProportion = 
    fa.CumulativeVarianceProportions[i] * 100.0;
  double eigenValue = fa.FactorExtraction.Eigenvalues[i];
  Console.WriteLine( "{0}\t\t{1}\t{2}\t\t{3}", i, eigenValue, 
    varProportion, cummlativeVarProportion );
}
Console.WriteLine();

double eigenValueSum =
  NMathFunctions.Sum( fa.FactorExtraction.Eigenvalues );
DoubleVector RotatedSSLoadingsVarianceProportions = 
  fa.RotatedSumOfSquaredLoadings / eigenValueSum;
Console.WriteLine(
  "\nRotated Extraction Sums of Squared Loadings - " );
Console.WriteLine( "factor\tTotal\t% of Variance\tCummlative %" );
Console.WriteLine(
  "----------------------------------------------------" );
double cummlative = 0;

for ( int i = 0; i < fa.NumberOfFactors; i++ )
{
  double varProportion =
    RotatedSSLoadingsVarianceProportions[i] * 100.0;
  cummlative += RotatedSSLoadingsVarianceProportions[i];
  double cummlativeVarProportion = cummlative * 100.0;
  double sumSquaredLoading = fa.RotatedSumOfSquaredLoadings[i];
  Console.WriteLine( "{0}\t\t{1}\t{2}\t\t{3}", i, 
    sumSquaredLoading, varProportion, cummlativeVarProportion );
}
Console.WriteLine();
   Chapter 46.   Multivariate Techniques 177



DoubleMatrix rotatedComponentMatrix = fa.RotatedFactors;
for ( int i = 0; i < data.Cols; i++ )
{
  var formatString = "{0}\t\t{1}\t{2}\t{3}";
  double comp0 = rotatedComponentMatrix.Row( i )[0];
  double comp1 = rotatedComponentMatrix.Row( i )[1];
  double comp2 = rotatedComponentMatrix.Row( i )[2];
  Console.WriteLine( "{0}\t{1}\t{2}\t{3}", data[i].Name,
    comp0, comp1, comp2 );
}

Code Example – VB factor analysis

Dim ExtractedCommunalities As DoubleVector = 
  FA.ExtractedCommunalities
For I As Integer = 0 To Data.Cols - 1
  Console.WriteLine("{0}\t{1}", Data(I).Name,   
    ExtractedCommunalities(I))
Next
Console.WriteLine()

For I As Integer = 0 To FA.VarianceProportions.Length - 1
  Dim VarProportion As Double = FA.VarianceProportions(I) * 100.0
  Dim CumulativeVarProportion = FA.CumulativeVarianceProportions(I) 
    * 100.0
  Dim EigenValue As Double = FA.FactorExtraction.Eigenvalues(I)
  Console.WriteLine("{0}\t\t{1}\t{2}\t\t{3}", I, EigenValue,
    VarProportion, CumulativeVarProportion)
Next
Console.WriteLine()

Dim EigenValueSum As Double = 
  NMathFunctions.Sum(FA.FactorExtraction.Eigenvalues)
Dim RotatedSSLoadingsVarianceProportions As DoubleVector =

  FA.RotatedSumOfSquaredLoadings / EigenValueSum
Console.WriteLine(
"\nRotated Extraction Sums of Squared Loadings - ")
Console.WriteLine("factor\tTotal\t% of Variance\tCumulative %")
Console.WriteLine(
"----------------------------------------------------")
Dim Cumulative As Double = 0

For I As Integer = 0 To FA.NumberOfFactors - 1
  Dim VarProportion As Double = 
    RotatedSSLoadingsVarianceProportions(I) * 100.0;
  Cumulative += RotatedSSLoadingsVarianceProportions(I)
  Dim CumulativeVarProportion As Double = Cumulative * 100.0
  Dim SumSquaredLoading As Double = 
    FA.RotatedSumOfSquaredLoadings(I)
  Console.WriteLine("{0}\t\t{1}\t{2}\t\t{3}", I, SumSquaredLoading, 
178   NMath Stats User’s Guide



    VarProportion, CumulativeVarProportion)
Next

Console.WriteLine()

Dim RotatedComponentMatrix As DoubleMatrix = FA.RotatedFactors
For I As Integer = 0 To Data.Cols - 1
  Dim formatString As String = "{0}\t\t{1}\t{2}\t{3}"
  Dim Comp0 As Double = RotatedComponentMatrix.Row(I)(0)
  Dim Comp1 As Double = RotatedComponentMatrix.Row(I)(1)
  Dim Comp2 As Double = RotatedComponentMatrix.Row(I)(2)
  Console.WriteLine("{0}\t{1}\t{2}\t{3}", Data(I).Name, Comp0, 
    Comp1, Comp2)
Next

Factor Scores

The case data values for new factor variables are contained in the factor scores 
matrix. The score for a given factor is a linear combination of all of the measures, 
weighted by the corresponding factor loading.

There are different algorithms for producing the factors scores. The 
FactorScores()method can be passed an object implementing the IFactorScores 
interface, specifying the algorithm to be used. If no argument is passed, the 
regression algorithm for computing factor scores is used, implemented in class 
RegressionFactorScores.

For example, this code print the factor scores for the first three cases. Data is 
normalized.

Code Example – C# factor analysis

var rowSlice = new Slice( 0, 3 );
Console.WriteLine(
  fa.FactorScores()[rowSlice, Slice.All].ToTabDelimited() );

Code Example – VB factor analysis

Dim RowSlice As New Slice(0, 3)
Console.WriteLine(FA.FactorScores()(RowSlice, 
  Slice.All).ToTabDelimited())

Factor scores are a linear combination of the original variable values. The 
coefficients used for the linear combination are found in the factor score coefficients 
matrix. This matrix may be obtained from the FactorScoreCoefficients() 
method on the factor analysis class. Like factor scores, the algorithm to use may be 
specified by passing an object implementing the IFactorScores interface to this 
method. By default, the regression algorithm is used.
   Chapter 46.   Multivariate Techniques 179



The factor score coefficients can be used to compute scores for novel case data. For 
instance:

Code Example – C# factor analysis

DoubleMatrix scoreCoefficients = fa.FactorScoreCoefficients();
var newCaseData = new DoubleMatrix(
  "2x10 [0.0 38.9 3.8 196.0 115.4 71.9 177.0 3.972 17.5 27.8  " + 
        "1.0 46.0 2.5 220.0 101.6 73.4 168.6 3.75  19.0 20.0]" );
Console.WriteLine(
  NMathFunctions.Product( newCaseData, scoreCoefficients ) );

Code Example – VB factor analysis

Dim ScoreCoefficients As DoubleMatrix = 
  FA.FactorScoreCoefficients()
Dim NewCaseData As New DoubleMatrix(
  "2x10 [0.0 38.9 3.8 196.0 115.4 71.9 177.0 3.972 17.5 27.8  " &
  "1.0 46.0 2.5 220.0 101.6 73.4 168.6 3.75  19.0 20.0]")
Console.WriteLine(NMathFunctions.Product(NewCaseData, 
  ScoreCoefficients))

46.3 Hierarchical Cluster Analysis

Cluster analysis detects natural groupings in data. In hierarchical cluster analysis, 
each object is initially assigned to its own singleton cluster. The analysis then 
proceeds iteratively, at each stage joining the two most similar clusters into a new 
cluster, continuing until there is one overall cluster. In NMath Stats, class 
ClusterAnalysis performs hierarchical cluster analyses.

Distance Functions

During clustering, the distance between individual objects is computed using a 
distance function. The distance function is encapsulated in a Distance.Function 
delegate, which takes two vectors and returns a measure of the distance 
(similarity) between them:

Code Example – C# hierarchical cluster analysis

public delegate double Function( DoubleVector data1,
                                 DoubleVector data2 );

Code Example – VB hierarchical cluster analysis

Delegate Function(Data1 As DoubleVector, Data2 As DoubleVector) As 
  Double
180   NMath Stats User’s Guide



Delegates are provided as static variables on class Distance for many common 
distance functions:

 Distance.EuclideanFunction computes the Euclidean distance between 
two data vectors (2 norm): 

Euclidean distance is simply the geometric distance in the multidimen-
sional space.

 Distance.SquaredEuclideanFunction computes the squared Euclidean 
distance between two vectors: 

Squaring the simple Euclidean distance places progressively greater weight 
on objects that are further apart.

 Distance.CityBlockFunction computes the city-block (Manhattan) 
distance between two vectors (1 norm): 

In most cases, the city-block distance measure yields results similar to the 
simple Euclidean distance. Note, however, that the effect of outliers is 
dampened, since they are not squared. 

 Distance.MaximumFunction computes the maximum (Chebychev) 
distance between two vectors: 

This distance measure may be appropriate in cases when you want to 
define two objects as different if they differ on any one of the dimensions. 

 Distance.PowerFunction( double p, double r ) computes the power 
distance between two vectors:

where p and r are user-defined parameters. Parameter p controls the pro-
gressive weight that is placed on differences on individual dimensions; 

dxy xi yi– 2=

dxy xi yi– 2=

dxy xi yi–=

dxy maximum xi yi–=

dxy xi yi–
p

 
1 r

=

   Chapter 46.   Multivariate Techniques 181



parameter r controls the progressive weight that is placed on larger differ-
ences between objects. Appropriate selections of p and r yield Euclidean, 
squared Euclidean, Minkowski, city-block, and many other distance met-
rics. For example, if p and r are equal to 2, the power distance is equal to 
the Euclidean distance. 

All provided distance functions allow missing values. Pairs of elements are 
excluded from the distance measure when their comparison returns NaN. If all 
pairs are excluded, NaN is returned for the distance measure.

You can also define your own Distance.Function delegate and use it to cluster 
your data. For example, if you have function MyDistance() that computes the 
distance between two vectors:

Code Example – C# hierarchical cluster analysis

public double MyDistance( DoubleVector x, DoubleVector y );

Code Example – VB hierarchical cluster analysis

Public Function MyDistance(X As DoubleVector, Y As DoubleVector) As 
  Double

You can define a Distance.Function delegate like so:

Code Example – C# hierarchical cluster analysis

var MyDistanceFunction = new Distance.Function( MyDistance );

Code Example – VB hierarchical cluster analysis

Dim MyDistanceFunction As New Distance.Function(AddressOf 
  MyDistance)

Linkage Functions

During clustering, the distances between clusters of objects are computed using a 
linkage function. The linkage function is encapsulated in a Linkage.Function 
delegate. When two groups P and Q are united, a linkage function computes the 
distance between the new combined group P + Q and another group R. 
182   NMath Stats User’s Guide



Figure 6 – Computing the distance between clusters using a linkage function

The parameters to the Linkage.Function—which may not necessarily all be used 
to calculate the result—are the distance between R and P, the distance between R 
and Q, the distance between P and Q, and the sizes (n) of all three groups:

Code Example – C# hierarchical cluster analysis

public delegate double Function( double Drp, double Drq,
  double Dpq, double Nr, double Np, double Nq );

Code Example – VB hierarchical cluster analysis

Delegate Function(DRP As Double, DRQ As Double,
  DPQ As Double, NR As Double, NP As Double, NQ As Double) As 
  Double

Delegates are provided as static variables on class Linkage for many common 
linkage functions:

 Linkage.SingleFunction computes the distance between two clusters as 
the distance of the two closest objects (nearest neighbors) in the clusters. 
Adopting a friends-of-friends clustering strategy closely related to the 
minimal spanning tree, the single linkage method tends to result in long 
chains of clusters. 

 Linkage.CompleteFunction computes the distance between two clusters 
as the greatest distance between any two objects in the different clusters 
(furthest neighbors). The complete linkage method tends to work well in 
cases where objects form naturally distinct clumps.  

 Linkage.UnweightedAverageFunction computes the distance between 
two clusters as the average distance between all pairs of objects in the two 
different clusters. This method is sometimes referred to as unweighted 
pair-group method using arithmetic averages, and abbreviated UPGMA. 

 Linkage.WeightedAverageFunction computes the distance between two 
clusters as the average distance between all pairs of objects in the two 
different clusters, using the size of each cluster as a weighting factor. This 
method is sometimes referred to as weighted pair-group method using 
arithmetic averages, and abbreviated WPGMA. 
   Chapter 46.   Multivariate Techniques 183



 Linkage.CentroidFunction computes the distance between two clusters 
as the difference between centroids. The centroid of a cluster is the average 
point in the multidimensional space. The centroid method is sometimes 
referred to as unweighted pair-group method using the centroid average, and 
abbreviated UPGMC. 

 Linkage.MedianFunction computes the distance between two clusters as 
the difference between centroids, using the size of each cluster as a 
weighting factor. This is sometimes referred to as weighted pair-group method 
using the centroid average, and abbreviated WPGMC. 

 Linkage.WardFunction computes the distance between two clusters using 
Ward’s method. Ward’s method uses an analysis of variance approach to 
evaluate the distances between clusters. The smaller the increase in the 
total within-group sum of squares as a result of joining two clusters, the 
closer they are. The within-group sum of squares of a cluster is defined as 
the sum of the squares of the distance between all objects in the cluster and 
the centroid of the cluster. Ward's method tends to produce compact 
groups of well-distributed size.

You can also define your own Linkage.Function delegate and use it to cluster 
your data. For example, if you have function MyLinkage() that computes the 
distance between two clusters:

Code Example – C# hierarchical cluster analysis

public double MyLinkage( double Drp, double Drq, double Dpq,
                         double Nr, double Np, double Nq );

Code Example – VB hierarchical cluster analysis

Public Function MyLinkage(DRP As Double, DRQ As Double, DPQ As 
  Double, NR As Double, NP As Double, NQ As Double) As Double

You can define a Linkage.Function delegate like so:

Code Example – C# hierarchical cluster analysis

var MyLinkageFunction = new Linkage.Function( MyLinkage );

Code Example – VB hierarchical cluster analysis

Dim MyLinkageFunction As New Linkage.Function(AddressOf MyLinkage)

Creating Cluster Analyses

A ClusterAnalysis instance is constructed from a matrix or a dataframe containing 
numeric data. Each row in the data set represents an object to be clustered.
184   NMath Stats User’s Guide



Code Example – C# hierarchical cluster analysis

var ca = new ClusterAnalysis( data );

Code Example – VB hierarchical cluster analysis

Dim CA As New ClusterAnalysis(Data)

The current default distance and linkage delegates are used. The default distance 
and linkage delegates are Distance.EuclideanFunction and 
Linkage.SingleFunction, unless the defaults have been changed using the static 
DefaultDistanceFunction and DefaultLinkageFunction properties. For 
example:

Code Example – C# hierarchical cluster analysis

ClusterAnalysis.DefaultDistanceFunction = Distance.MaximumFunction;
ClusterAnalysis.DefaultLinkageFunction = Linkage.CentroidFunction;

Code Example – VB hierarchical cluster analysis

ClusterAnalysis.DefaultDistanceFunction = Distance.MaximumFunction
ClusterAnalysis.DefaultLinkageFunction = Linkage.CentroidFunction

This changes the default distance and linkage functions for all subsequently 
constructed ClusterAnalysis objects.

You can also specify non-default distance and linkage functions in the constructor:

Code Example – C# hierarchical cluster analysis

var ca = new ClusterAnalysis( data,   
  Distance.PowerFunction( 1.25, 2.0 ), Linkage.CompleteFunction );

Code Example – VB hierarchical cluster analysis

Dim CA As New ClusterAnalysis(Data,
  Distance.PowerFunction(1.25, 2.0), Linkage.CompleteFunction)

After construction, you can retrieve information about the ClusterAnalysis 
configuration using the provided properties:

 N gets the total number of objects being clustered.

 DistanceFunction gets and sets the distance function delegate used to 
measure the distance between individual objects. Setting the distance 
function using the DistanceFunction property has no effect until 
Update() is called with new data. (See below.)

 LinkageFunction gets and sets the linkage function used to measure the 
distance between clusters of objects. Setting the linkage delegate using the 
LinkageFunction property has no effect until Update() is called with new 
data. (See below.)
   Chapter 46.   Multivariate Techniques 185



Cluster Analysis Results

The Distances property gets the vector of distances between all possible object 
pairs, computed using the current distance delegate. For n objects, the distance 
vector is of length (n-1)(n/2), with distances arranged in the order:

(1,2), (1,3), ..., (1,n), (2,3), ..., (2,n), ..., ..., (n-1,n)

Linkages gets an (n-1) x 3 matrix containing the complete hierarchical linkage 
tree, computed from Distances using the current linkage delegate. At each level 
in the tree, columns 1 and 2 contain the indices of the clusters linked to form the 
next cluster. Column 3 contains the distances between the clusters. For example, 
this code clusters 8 random vectors of length 3, then shows a sample output of the 
hierarchical cluster tree:

Code Example – C# hierarchical cluster analysis

var data = new DoubleMatrix( 8, 3, new RandGenUniform() );
var ca = new ClusterAnalysis( data );
Console.WriteLine( ca.Linkages );

Code Example – VB hierarchical cluster analysis

Dim Data As New DoubleMatrix(8, 3, New RandGenUniform())
Dim CA As New ClusterAnalysis(Data)
Console.WriteLine(ca.Linkages)

Sample output:

7x3 [
      4 7 0.194409151975696
      3 5 0.290431894003636
      2 9 0.495557235783239
      1 6 0.508966210536187
      0 11 0.522321103698264
      8 10 0.590187697768796
      12 13 0.621675638177606 ]

Each object is initially assigned to its own singleton cluster, numbered 0 to 7. The 
analysis then proceeds iteratively, at each stage joining the two most similar 
clusters into a new cluster, continuing until there is one overall cluster. The first 
new cluster formed by the linkage function is assigned index 8, the second is 
assigned index 9, and so forth. When these indices appear later in the tree, the 
clusters are being combined again into a still larger cluster.

The CutTree() method constructs a set of clusters by cutting the hierarchical 
linkage tree either at the specified height, or into the specified number of clusters. 
For example, this code cuts the linkage tree to form 3 clusters:
186   NMath Stats User’s Guide



Code Example – C# hierarchical cluster analysis

ca.CutTree( 3 );

Code Example – VB hierarchical cluster analysis

CA.CutTree(3)

This code cuts the linkage tree at a height of 0.75:

Code Example – C# hierarchical cluster analysis

ca.CutTree( 0.75 );

Code Example – VB hierarchical cluster analysis

CA.CutTree(0.75)

The CutTree() method returns a ClusterSet object, which represents a collection 
of objects assigned to a finite number of clusters. The NumberOfClusters property

gets the number of clusters into which objects are grouped; N gets the number of 
objects. The Clusters property returns an array of integers that identifies the 
cluster into which each object was grouped. Cluster numbers are arbitrary, and 
range from 0 to NumberOfClusters - 1. The indexer gets the cluster to which a 
given object is assigned. The Cluster() method returns the objects assigned to a 
given cluster as an array of integers. For instance:

Code Example – C# hierarchical cluster analysis

// Cluster 10 random vectors of length 4:
var data = new DoubleMatrix( 10, 4, new RandGenUniform() );
var ca = new ClusterAnalysis( data );

// Cut the tree into 5 clusters
ClusterSet cut = ca.CutTree( 5 );

Console.WriteLine( "ClusterSet = " + cut );
Console.WriteLine( "Object 0 is in cluster: " + cut[0] );
Console.WriteLine( "Object 3 is in cluster: " + cut[3] );
Console.WriteLine( "Object 8 is in cluster: " + cut[8] );
int[] objects = cut.Cluster( 1 );
Console.Write( "Objects in cluster 1: " );
for (int i = 0; i < objects.Length; i++ )
{
  Console.Write( objects[i] + " " );
}
Console.WriteLine();

Code Example – VB hierarchical cluster analysis

'' Cluster 10 random vectors of length 4:
Dim Data As New DoubleMatrix(10, 4, New RandGenUniform())
Dim ca As New ClusterAnalysis(Data)
   Chapter 46.   Multivariate Techniques 187



'' Cut the tree into 5 clusters
Dim Cut As ClusterSet = CA.CutTree(5)

Console.WriteLine("ClusterSet = " & cut)
Console.WriteLine("Object 0 is in cluster: " & Cut(0))
Console.WriteLine("Object 3 is in cluster: " & Cut(3))
Console.WriteLine("Object 8 is in cluster: " & Cut(8))
Dim Objects() As Integer = Cut.Cluster(1)
Console.Write("Objects in cluster 1: ")
For I As Integer = 0 To Objects.Length - 1
  Console.Write(Objects(I) & " ")
Next
Console.WriteLine()

Sample output:

ClusterSet = 0,1,2,1,1,1,3,1,4,1
Object 0 is in cluster: 0
Object 3 is in cluster: 1
Object 8 is in cluster: 4
Objects in cluster 1: 1 3 4 5 7 9

Lastly, the CopheneticDistances property on class ClusterAnalysis gets the 
vector of cophenetic distances between all possible object pairs. The cophenetic 
distance between two objects is defined to be the intergroup distance when the 
objects are first combined into a single cluster in the linkage tree. The format is the 
same as the distance vector returned by Distances.

The correlation between the original Distances and the CopheneticDistances is 
sometimes taken as a measure of the appropriateness of a cluster analysis relative 
to the original data:

Code Example – C# hierarchical cluster analysis

var ca = new ClusterAnalysis( data );
double r = StatsFunctions.Correlation( ca.Distances, 
                                       ca.CopheneticDistances );

Code Example – VB hierarchical cluster analysis

Dim CA As New ClusterAnalysis(Data)
Dim R As Double = StatsFunctions.Correlation(CA.Distances,
 CA.CopheneticDistances)

Reusing Cluster Analysis Objects

Method Update() updates an existing ClusterAnalysis instance with new data, 
and optionally with new distance and linkage functions. For example:
188   NMath Stats User’s Guide



Code Example – C# hierarchical cluster analysis

var ca = new ClusterAnalysis( data, Linkage.SingleFunction );
Console.WriteLine( ca.Linkages );

ca.Update( data, Linkage.CompleteFunction );
Console.WriteLine( ca.Linkages );

Code Example – VB hierarchical cluster analysis

Dim CA As New ClusterAnalysis(Data, Linkage.SingleFunction)
Console.WriteLine(CA.Linkages)

CA.Update(Data, Linkage.CompleteFunction)
Console.WriteLine(CA.Linkages)

46.4 K-Means Clustering

The k-means clustering method assigns data points into k groups such that the sum 
of squares from points to the computed cluster centers is minimized. In NMath 
Stats, class KMeansClustering performs k-means clustering.

The algorithm used is that of Hartigan and Wong (A K-means clustering algorithm. 
Applied Statistics 28, 100–108. 1979):

1. For each point, move it to another cluster if that would lower the sum of 
squares from points to the computed cluster centers.

2. If a point is moved, immediately update the cluster centers of the two 
affected clusters.

3. Repeat until no points are moved, or the specified maximum number of 
iterations is reached.

Creating KMeansClustering Objects

A KMeansClustering instance is constructed from a matrix or a dataframe 
containing numeric data. Each row in the data set represents an object to be 
clustered.

Code Example – C# k-means clustering

var km = new KMeansClustering( data );

Code Example – VB k-means clustering

Dim KM As New KMeansClustering(Data)
   Chapter 46.   Multivariate Techniques 189



After construction, you can retrieve information about the KMeansClustering 
data using the provided properties:

 N gets the total number of objects being clustered.

 Data gets and set the data matrix

Stopping Criteria

Iteration stops when either clustering stabilizes, or the maximum number of 
iterations is reached. You can specify the maximum number of iterations in several 
ways:

 The static DefaultMaxIterations property gets and sets the default 
maximum number of iterations for instances of KMeansClustering. 
(Initially set to 1000.)

 You can specify a non-default maximum in the KMeansClustering 
constructor. For instance:

   var km = new KMeansClustering( data, 100 );

 The MaxIterations property gets and sets the maximum number of 
iterations on an existing KMeansClustering instance.

Clustering

The Cluster() method clusters the data into the specified number of clusters. The 
method accepts either k, the number of clusters, or a matrix of initial cluster 
centers:

 If k is given, a set of distinct rows in the data matrix are chosen as the initial 
centers using the algorithm specified by a KMeanClustering.Start 
enumerated value. By default, rows are chosen at random.

 If a matrix of initial cluster centers is given, k is inferred from the number of 
rows.

For example, this code clusters eight random vectors of length three into two 
clusters, using random starting cluster centers:

Code Example – C# k-means clustering

var data = new DoubleMatrix( 8, 3, new RandGenUniform() );
var cl = new KMeansClustering( data );
ClusterSet clusters = cl.Cluster( 2 );
190   NMath Stats User’s Guide



Code Example – VB k-means clustering

Dim Data As New DoubleMatrix(8, 3, New RandGenUniform())
Dim CL As New KMeansClustering(Data)
Dim Clusters As ClusterSet = CL.Cluster(2)

This code specifies the two starting centers:

Code Example – C# k-means clustering

var centers = new DoubleMatrix("2x3 [ 0 0 0  1 1 1 ]");
ClusterSet clusters = cl.Cluster( centers );

Code Example – VB k-means clustering

Dim Centers As New DoubleMatrix("2x3 [ 0 0 0  1 1 1 ]")
Dim Clusters As ClusterSet = CL.Cluster(Centers)

Cluster Analysis Results

The Cluster() method returns a ClusterSet object, which represents a collection 
of objects assigned to a finite number of clusters. Properties on the 
KMeansClustering instance give additional information about the clustering just 
performed:

 K gets the number of clusters.

 InitialCenters gets the matrix of initial cluster centers.

 FinalCenters gets the matrix of final cluster centers.

 Clusters gets the cluster assignments.

 WithinSumOfSquares gets the within-cluster sum of squares for each 
cluster.

 Sizes gets the number of points in each cluster.

 Iterations gets the number of iterations performed.

 MaxIterationsMet returns true if the clustering stopped because the 
maximum number of iterations was reached; otherwise, false.

For instance, this code clusters 30 random vectors of length three into three 
clusters, and prints out the results:

Code Example – C# k-means clustering

var data = new DoubleMatrix(30, 3, new RandGenUniform());
var km = new KMeansClustering(data);
km.Cluster(3);

Console.WriteLine( "k = {0}", km.K );
   Chapter 46.   Multivariate Techniques 191



Console.WriteLine( "Initial cluster centers:" );
Console.WriteLine( km.InitialCenters.ToTabDelimited() );
Console.WriteLine( "{0} iterations", km.Iterations );
Console.WriteLine("Stopped because max iterations of {0} met? {1}",
  km.MaxIterations, km.MaxIterationsMet);
Console.WriteLine( "Final cluster centers:" );
Console.WriteLine( km.FinalCenters.ToTabDelimited() );
Console.WriteLine( "Clustering assignments:" );
Console.WriteLine( km.Clusters );
for (int i = 0; i < km.K; i++) {
  Console.WriteLine( "Cluster {0} has {1} items", i, km.Sizes[i] );
}

Code Example – VB k-means clustering

Dim Data As New DoubleMatrix(30, 3, New RandGenUniform())
Dim KM As New KMeansClustering(Data)
KM.Cluster(3)

Console.WriteLine("k = {0}", KM.K)
Console.WriteLine("Initial cluster centers:")
Console.WriteLine(KM.InitialCenters.ToTabDelimited())
Console.WriteLine("{0} iterations", KM.Iterations)
Console.WriteLine("Stopped because max iterations of {0} met? {1}",
  KM.MaxIterations, KM.MaxIterationsMet)
Console.WriteLine("Final cluster centers:")
Console.WriteLine(KM.FinalCenters.ToTabDelimited())
Console.WriteLine("Clustering assignments:")
Console.WriteLine(KM.Clusters)
For I As Integer = 0 To KM.K - 1
  Console.WriteLine("Cluster {0} has {1} items", I, KM.Sizes(I))
Next
192   NMath Stats User’s Guide



CHAPTER 47.  
NONNEGATIVE MATRIX FACTORIZATION

Nonnegative matrix factorization (NMF) approximately factors a matrix V into 
two matrices, W and H:

NMF differs from many other factorizations by enforcing the constraint that the 
factors W and H must be non-negative—that is, all elements must be equal to or 
greater than zero.

If a set of m n-dimensional data vectors are placed in an n x m matrix V, then NMF 
can be used to approximately factor V into an n x r matrix W and an r x m matrix H. 
Usually r is chosen to be much smaller than either m or n, so that W and H are 
smaller than the original matrix V. Thus, each column v of V is approximated by a 
linear combination of the columns of W, with the coefficients being the 
corresponding column h of H, v  Wh. This extracts underlying features of the data 
as basis vectors in W, which can then be used for identification, classification, and 
compression. By not allowing negative entries in W and H, NMF enables a non-
subtractive combination of the parts to form a whole.

NMath Stats provides classes for basic NMF, and for data clustering using NMF. 
This chapter describes how to use the NMF classes.

47.1 Nonnegative Matrix Factorization

NMath Stats provides class NMFact for performing basic nonnegative matrix 
factorization (NMF). NMFact uses an iterative algorithm with the goal of 
minimizing a cost function. The cost function is usually , where  
denotes the Frobenius matrix norm.

NMFact objects can factor data contained in either a DoubleMatrix or a 
DataFrame object. The factors W and H are then accessed through properties:

Code Example – C# nonnegative matrix factorization (NMF)

DataFrame data;      // data to be factored
int k;               // number of columns in W

var fact = new NMFact();
fact.Factor( data, k );
Console.WriteLine( “W = “ + fact.W );

V WH

V WH– .
   Chapter 47.   Nonnegative Matrix Factorization 193



Console.WriteLine( “H = “ + fact.H );

Code Example – VB nonnegative matrix factorization (NMF)

Dim Data As DataFrame '' data to be factored
Dim K As Integer '' number of columns in W

Dim Fact As New NMFact()
Fact.Factor(Data, K)
Console.WriteLine("W = " & Fact.W)
Console.WriteLine("H = " & Fact.H)

Parameters governing aspects of the computation are set through properties or 
passed as constructor arguments. ComputeCostAtEachStep determines whether 
or not the cost is computed at each step of the iteration. This can be an expensive 
calculation and so should generally be done only when you want to investigate 
convergence properties, such as the convergence rate. If ComputeCostAtEachStep 
is true, the DoubleVector of costs can be accessed through the StepCost property.

NumIterations specifies the number of iterations performed in the computing of 
the factorization. 

For example:

Code Example – C# nonnegative matrix factorization (NMF)

fact.ComputeCostAtEachStep = true;
fact.NumIterations = numIterations;

Code Example – VB nonnegative matrix factorization (NMF)

Fact.ComputeCostAtEachStep = True
Fact.NumIterations = NumIterations

Update Algorithms

The iterative update step and cost function are specified in a class implementing 
the INMFUpdateAlgorithm interface. NMath Stats provides four such 
implementations. All matrices of uniform (0,1) random deviants as the initial 
values for W and H.

 Class NMFAlsUpdate uses the Alternating Least Squares (ALS) update 
algorithm. ALS takes advantage of the fact that while the optimization 
problem is not simultaneously convex in W and H, it is convex in either W 
or H. Thus, given one matrix, the other can be found with a simple least 
squares computation:

1. Solve for H in matrix equation WTWH = WTV.

2. Set all negative elements of H to 0.
194   NMath Stats User’s Guide



3. Solve for W in the matrix equation HHTWT = HVT.

4. Set all negative elements of W to 0.

 Class NMFDivergenceUpdate minimizes a divergence functional. The 
functional is related to the Poisson likelihood of generating V from W and 
H:

For more information, see Brunet, Jean-Philippe et al., “Metagenes and 
Molecular Pattern Discovery Using Matrix Factorization”, Proceedings of the 
National Academy of Sciences 101, no. 12 (March 23, 2004): 4164-4169. 

 Class NMFGdClsUpdate uses the Gradient Descent - Constrained Least 
Squares (GDCLS) algorithm. In some cases it may be desirable to enforce a 
statistical sparsity constraint on the H matrix. As the sparsity of H 
increases, the basis vectors become more localized—that is, the parts-based 
representation of the data in W becomes more and more enhanced. The 
GDCLS algorithm enforces sparsity in H using a scheme that penalizes the 
number of non-zero entries in H. It is a hybrid algorithm that uses the 
multiplicative update rule for updating W, while H is calculated using a 
constrained least squares model as the metric. The algorithm follows:

Wic  Wic((VHT)ic / (WHHT)ic)

Solve for H in the constrained least squares problem

(WTW + I)H = WTV

Rephrase the constrained least squares step for finding H as 

MinH {||V - WH||2 + ||H||2}

From this it is seen that the parameter  is a regularization value that is 
used to balance the reduction of the metric

||V - WH||

with the enforcement of smoothness and sparsity of H.

 Class NMFMultiplicativeUpdate uses a multiplicative update rule for W 
and H, as proposed by Lee and Seung.

Hcj  Hcj( (W
TV)cj / (WTWH)cj )

Wic  Wic((VHT)ic / (WHHT)ic)

D Vi j
Vi j

WH i j
-------------------- 
 log Vi j– WH i j+

i j
=
   Chapter 47.   Nonnegative Matrix Factorization 195



This multiplicative method can be classified as a diagonally-scaled gradient 
descent method.

The update algorithm can be specified either as a constructor argument, or using 
the UpdateAlgorithm property. For instance:

Code Example – C# nonnegative matrix factorization (NMF)

var alg = new NMFAlsUpdate();
var fact = new NMFact( alg );
fact.Factor( data, k );
Console.WriteLine( “ALS W = “ + fact.W );
Console.WriteLine( “ALS H = “ + fact.H );

fact.UpdateAlgorithm = new NMFGdClsUpdate();
fact.Factor( data, k );
Console.WriteLine( “GDCLS W = “ + fact.W );
Console.WriteLine( “GDCLS H = “ + fact.H );

Code Example – VB nonnegative matrix factorization (NMF)

Dim Alg As New NMFAlsUpdate()
Dim Fact As New NMFact(Alg)
Fact.Factor(Data, K)
Console.WriteLine("ALS W = " & Fact.W)
Console.WriteLine("ALS H = " & Fact.H)

Fact.UpdateAlgorithm = New NMFGdClsUpdate()
Fact.Factor(Data, K)
Console.WriteLine("GDCLS W = " & Fact.W )
Console.WriteLine("GDCLS H = " & Fact.H )

47.2 Data Clustering Using NMF

NMath Stats provides class NMFClustering for performing data clustering using 
iterative nonnegative matrix factorization (NMF), where each iteration step 
produces a new W and H. At each iteration, each column v of V is placed into a 
cluster corresponding to the column w of W which has the largest coefficient in H. 
That is, column v of V is placed in cluster i if the entry hij in H is the largest entry in 
column hj of H. Results are returned as an adjacency matrix whose i, jth value is 1 if 
columns i and j of V are in the same cluster, and 0 if they are not.

Iteration stops when the clustering of the columns of the matrix V stabilizes. There 
are three parameters that control iteration:

 the maximum number of iterations to perform
196   NMath Stats User’s Guide



 the stopping adjacency, which is the number of consecutive times the 
adjacency matrix remains unchanged before it is considered stabilized

 the convergence check period. Computing the adjacency matrix can be a 
somewhat expensive operation, so you may want to perform this operation 
only every nth iteration.

For example, running a NMFClustering instance with maximum iterations 2000, 
stopping adjacency 40, and convergence check period 10, computes a new 
adjacency matrix every 10 iterations, and checks it against the previous adjacency 
matrix. If they are the same, a count is incremented. The iteration stops when 40 
consecutive unchanged adjacency matrices are recorded, or the maximum 2000 
iterations are reached.

Creating NMFClustering Instances

Class NMFClustering is parameterized on the NMF update algorithm to use 
(Section 47.1). For instance:

Code Example – C# nonnegative matrix factorization (NMF)

var nmfClustering = new NMFClustering<NMFDivergenceUpdate>();

Code Example – VB nonnegative matrix factorization (NMF)

Dim NMFClustering As New NMFClustering(Of NMFDivergenceUpdate)()

The update algorithm can be changed post-construction using the Updater 
property.

Code Example – C# nonnegative matrix factorization (NMF)

nmfClustering.Updater = new NMFGdClsUpdate();

Code Example – VB nonnegative matrix factorization (NMF)

NMFClustering.Updater = New NMFGdClsUpdate()

The maximum iterations, stopping adjacency, and convergence check period can 
be specified either as constructor parameters, or post-construction using the 
MaxFactorizationIterations, StoppingAdjacency, and 
ConvergenceCheckPeriod properties, respectively. The default maximum number 
of iterations is 2000, the default stopping adjacency is 40, and the default 
convergence check period is 10.

Performing the Factorization

The Factor() method performs the actual iterative factorization:
   Chapter 47.   Nonnegative Matrix Factorization 197



Code Example – C# nonnegative matrix factorization (NMF)

DoubleMatrix data;   // data to be factored
int k;               // number of columns in W
nmfClustering.Factor( data, k );

Code Example – VB nonnegative matrix factorization (NMF)

Dim Data As DoubleMatrix...   '' data to be factored
Dim K As Integer...           '' number of columns in W
NMFClustering.Factor(Data, K)

NMFClustering objects can factor data contained in either a DoubleMatrix or a 
DataFrame object. 

Cluster Results

After clustering, the Converged property checks if the iterative factorization 
converged before hitting the default maximum number of iterations. Iterations 
gets the total number of iterations performed in the most recent calculation. For 
example:

Code Example – C# nonnegative matrix factorization (NMF)

if ( nmfClustering.Converged ) {
  Console.WriteLine( "Factorization converged in {0} iterations.", 
    nmfClustering.Iterations );
}
else {
  Console.WriteLine( 
    "Factorization failed to converge in {0} iterations.", 
    nmfClustering.MaxFactorizationIterations );
}

Code Example – VB nonnegative matrix factorization (NMF)

If (NMFClustering.Converged) Then
  Console.WriteLine("Factorization converged in {0} iterations.", 
    NMFClustering.Iterations)
Else
  Console.WriteLine("Factorization failed to converge in {0} 
    iterations.", NMFClustering.MaxFactorizationIterations)
End If

If clustering converged, the final factors W and H are accessed through properties 
W and H:

Code Example – C# nonnegative matrix factorization (NMF)

Console.WriteLine( “W = “ + nmfClustering.W );
Console.WriteLine( “H = “ + nmfClustering.H );
198   NMath Stats User’s Guide



Code Example – VB nonnegative matrix factorization (NMF)

Console.WriteLine("W = " & NMFClustering.W)
Console.WriteLine("H = " & NMFClustering.H)

The Connectivity property returns the final adjacency matrix as an instance of 
ConnectivityMatrix. The connectivity matrix is an adjacency matrix, A, such that 
columns of the factored matrix are in the same cluster if A[i,j] == 1, and are in 
different clusters if A[i,j] == 0. For instance:

Code Example – C# nonnegative matrix factorization (NMF)

ConnectivityMatrix connectivity = nmfClustering.Connectivity;  
Console.WriteLine( "Connectivity Matrix: " );
Console.WriteLine( connectivity.ToTabDelimited() );

Code Example – VB nonnegative matrix factorization (NMF)

Dim Connectivity As ConnectivityMatrix = NMFClustering.Connectivity
Console.WriteLine("Connectivity Matrix: ")
Console.WriteLine(Connectivity.ToTabDelimited())

The ClusterSet property returns a ClusterSet (Section 46.3) describing the final 
clusters:    

Code Example – C# nonnegative matrix factorization (NMF)

ClusterSet cs = nmfClustering.ClusterSet;

// Print out the cluster each column belongs to
for ( int i = 0; i < cs.N; i++ ) {
  Console.WriteLine( "Column {0} belongs to cluster {1}",
    i, cs[i] );
}

// Print out the the members of each cluster
for ( int i = 0; i < cs.NumberOfClusters; i++ ) {
  int[] members = cs.Cluster( i );
  Console.Write( "Cluster number {0} contains: ", i );
  for ( int j = 0; j < members.Length; j++ ) {
    Console.Write( "{0} ", j );
  }
  Console.WriteLine();
}

Code Example – VB nonnegative matrix factorization (NMF)

Dim CS As ClusterSet = NMFClustering.ClusterSet

'' Print out the cluster each column belongs to
For I As Integer = 0 To CS.N - 1
  Console.WriteLine("Column {0} belongs to cluster {1}", I, CS(I))
Next
   Chapter 47.   Nonnegative Matrix Factorization 199



'' Print out the the members of each cluster
For I As Integer = 0 To CS.NumberOfClusters - 1
  Dim Members() As Integer = CS.Cluster(I)
  Console.Write("Cluster number {0} contains: ", I)
  For J As Integer = 0 To Members.Length - 1
    Console.Write("{0} ", J)
    Next
  Console.WriteLine()
Next

Lastly, the Cost property gets the value of the cost function for the factorization.

Code Example – C# nonnegative matrix factorization (NMF)

double cost = nmfClustering.Cost;

Code Example – VB nonnegative matrix factorization (NMF)

Dim Cost As Double = NMFClustering.Cost

The cost function is the function that is minimized by the NMF update algorithm.

Computing a Consensus Matrix

NMF uses an iterative algorithm with random starting values for W and H. This, 
coupled with the fact that the factorization is not unique, means that if you cluster 
the columns of V multiple times, you may get different final clusterings. The 
consensus matrix is a way to average multiple clusterings, to produce a probability 
estimate that any pair of columns will be clustered together.

To compute the consensus matrix, the columns of V are clustered using NMF n 
times. Each clustering yields a connectivity matrix. Recall that the connectivity 
matrix is a symmetric matrix whose i, jth entry is 1 if columns i and j of V are 
clustered together, and 0 if they are not. The consensus matrix is also a symmetric 
matrix, whose i, jth entry is formed by taking the average of the i, jth entries of the 
n connectivity matrices. 

Thus, each i, jth entry of the consensus matrix is a value between 0, when columns 
i and j are not clustered together on any of the runs, and 1, when columns i and j 
were clustered together on all runs. The i, jth entry of a consensus matrix may be 
considered, in some sense, a “probability” that columns i and j belong to the same 
cluster. 

NMath Stats provides class NMFConsensusMatrix for compute a consensus 
matrix. NMFConsensusMatrix is parameterized on the NMF update algorithm to 
use (Section 47.1). Additional constructor parameters specify the matrix to factor, 
the order k of the NMF factorization (the number of columns in W), and the 
number of clustering runs. For example:
200   NMath Stats User’s Guide



Code Example – C# nonnegative matrix factorization (NMF)

DoubleMatrix data;   // data to be factored
int k;               // number of columns in W
int numberOfRuns = 70;

var consensusMatrix = 
  new NMFConsensusMatrix<NMFDivergenceUpdate>(data, k, 
    numberOfRuns);

Code Example – VB nonnegative matrix factorization (NMF)

Dim Data As DoubleMatrix...   '' data to be factored
Dim K As Integer...   '' number of columns in W
Dim NumberOfRuns As Integer = 70

Dim ConsensusMatrix As New NMFConsensusMatrix(Of 
  NMFDivergenceUpdate)(Data, K, NumberOfRuns)

The consensus matrix is computed at construction time, so be aware that this may 
be an expensive operation. Post-construction, the NumberOfConvergedRuns 
property gets the number of clustering runs where the NMF computation 
converged:

Code Example – C# nonnegative matrix factorization (NMF)

Console.WriteLine( "{0} runs out of {1} converged.", 
  consensusMatrix.NumberOfConvergedRuns, numberOfRuns );

Code Example – VB nonnegative matrix factorization (NMF)

Console.WriteLine("{0} runs out of {1} converged.", 
  ConsensusMatrix.NumberOfConvergedRuns, NumberOfRuns)

NMFConsensusMatrix provides a standard indexer for getting the element value 
at a specified row and column in the consensus matrix. For example, this code gets 
the probability that columns 2 and 7 will be clustered together:

Code Example – C# nonnegative matrix factorization (NMF)

double p = consensusMatrix[2, 7];

Code Example – VB nonnegative matrix factorization (NMF)

Dim P As Double = ConsensusMatrix(2, 7)

This code prints the entire consensus matrix:

Code Example – C# nonnegative matrix factorization (NMF)

Console.WriteLine( "Consensus Matrix:" );
Console.WriteLine( consensusMatrix.ToTabDelimited() );
   Chapter 47.   Nonnegative Matrix Factorization 201



Code Example – VB nonnegative matrix factorization (NMF)

Console.WriteLine("Consensus Matrix:")
Console.WriteLine(ConsensusMatrix.ToTabDelimited())

A consensus matrix, C, can also used to perform a hierarhical clustering of the 
columns of V (Section 46.3), using the distance function:

A ClusterAnalysis instance is constructed from a matrix containing numeric data. 
Each row in the data set represents an object to be clustered. In this case, you’re 
simply clustering the column numbers of V, so construct a matrix with one colunm 
containing the numbers 0 to n-1, where n is the number of columns of V (and the 
order of of the consensus matrix):

Code Example – C# nonnegative matrix factorization (NMF)

var colNumbers = 
  new DoubleMatrix( consensusMatrix.Order, 1, 0, 1 );

Distance.Function distance =
  delegate( DoubleVector data1, DoubleVector data2 ) {
    int i = (int)data1[0];
    int j = (int)data2[0];
    return 1.0 - consensusMatrix[i, j];
  };

var ca = new ClusterAnalysis( colNumbers, distance );

Code Example – VB nonnegative matrix factorization (NMF)

Dim ColNumbers As New DoubleMatrix(ConsensusMatrix.Order, 1, 0, 1)

Dim distance As Distance.Function = Function(Data1 As DoubleVector, 
  Data2 As DoubleVector)
  Dim I As Integer = CType(Data1(0), Integer)
  Dim J As Integer = CType(Data2(0), Integer)
  Return 1.0 - ConsensusMatrix(I, J)
End Function

Dim CA As New ClusterAnalysis(ColNumbers, distance)

After you’ve created a ClusterAnalysis object, the CutTree() method constructs a 
set of clusters by cutting the hierarchical linkage tree either at the specified height, 
or into the specified number of clusters. For example, this code cuts the linkage 
tree to form three clusters: 

Code Example – C# nonnegative matrix factorization (NMF)

ClusterSet clusters = ca.CutTree( 3 );

distancei j 1.0 Ci j–=
202   NMath Stats User’s Guide



for ( int i = 0; i < clusters.NumberOfClusters; i++ ) {
  int[] members = clusters.Cluster( i );
  Console.Write( "Cluster {0} contains: ", i );
  for ( int j = 0; j < members.Length; j++ ) {
    Console.Write( "{0} ", members[j] );
  }
  Console.WriteLine();
}

Code Example – VB nonnegative matrix factorization (NMF)

Dim Clusters As ClusterSet = CA.CutTree(3)

For I As Integer = 0 To Clusters.NumberOfClusters - 1
  Dim Members() As Integer = Clusters.Cluster(I)
  Console.Write("Cluster {0} contains: ", I)
  For J As Integer = 0 To Members.Length - 1
    Console.Write("{0} ", Members(J))
  Next
  Console.WriteLine()
Next
   Chapter 47.   Nonnegative Matrix Factorization 203



204   NMath Stats User’s Guide



CHAPTER 48.  
PARTIAL LEAST SQUARES

Partial Least Squares (PLS) is a technique that generalizes and combines features 
from principal component analysis (Section 46.1) and multiple linear regression 
(Chapter 42). It is particularly useful when you need to predict a set of response 
(dependent) variables from a large set of predictor (independent variables).

As in multiple linear regression, the goal of PLS regression is to construct a linear 
model

where Y is n cases by m variables response matrix, X is a n cases by p variables 
predictor matrix, B is a p by m regression coefficients matrix, and E is a noise term 
for the model which has the same dimensions as Y.

As in principal components regression, PLS regression produces factor scores as 
linear combinations of the original predictor variables, so that there is no 
correlation between the factor score variables used in the predictive regression 
model. For example, suppose that we have a matrix of response variables Y, and a 
large number of predictive variables X (in matrix form), some of which may be 
highly correlated. A regression using factor extraction for this data computes the 
score matrix T=XW for an appropriate matrix of weights W, and then considers the 
linear regression model Y=TQ+E, where Q is a matrix of regression coefficient, 
called loadings, for T, and E is an error term. Once the loadings Q are computed, 
the above regression model is equivalent to Y=XB+E, with B=WQ, which can be 
used as a predictive model.

PLS regression differs from principal components regression in the methods used 
for extracting factor scores. While principal components regression computes the 
weight matrix W reflecting the covariance structure between predictor variables, 
PLS regression produces the weight matrix W reflecting the covariance structure 
between the predictor and response variables.

For establishing the model with c factors, or components, PLS regression produces 
a p by c weight matrix W for X such that T=XW. These weights are computed so 
that each of them maximizes the covariance between responses and the 
corresponding factor scores. Ordinary least squares regression of Y on T are then 
performed to produce Q, the loadings for Y (or weights for Y) such that Y=TQ+E. 
Once Q is computed, we have Y=XB+E, where B=WQ.

Y XB E+=
   Chapter 48.   Partial Least Squares 205



48.1 Computing a PLS Regression

NMath Stats provides two classes for performing partial least squares (PLS) 
regression, PLS1 and PLS2:

 PLS1 is used when the responses, Y, in the model Y=XB+E consist of a 
single variable. In this case Y is a vector containing the n response values.

 PLS2 is used when the responses are multivariate. In this case Y is a matrix 
composed of n rows with each row containing the m response variable 
values.

Computing a PLS regression is accomplished by simply constructing a PLS1 or 
PLS2 instance. The basic parameters are:

 the matrix of predictor variables values

 the response variable values (a vector for PLS1 and a matrix for PLS2)

 an integer specifying the number of factors or components

For example:

Code Example – C# partial least squares (PLS)

DoubleMatrix A = ...
DoubleVector y = = ...
int numComponents = 3;

var pls = new PLS1( A, y, numComponents );

Code Example – VB partial least squares (PLS)

Dim A As DoubleMatrix = ...
Dim Y As DoubleVector = ...
Dim NumComponents As Integer = 3

Dim PLS As New PLS1(A, Y, NumComponents)

You can also invoke the Calculate() function on PLS1 or PLS2 to calculate a 
regression on an existing instance:

Code Example – C# partial least squares (PLS)

pls.Calculate( A, y, numComponents );

Code Example – VB partial least squares (PLS)

PLS.Calculate(A, Y, NumComponents)
206   NMath Stats User’s Guide



48.2 Error Checking

After computing a PLS regression, always check the IsGood property to ensure 
that there were no errors in performing the calculation. If IsGood returns the 
false, the Message property will contain a message indicating the nature of the 
error. For example, the following code checks that the calculation succeeded, and if 
not, prints out the error message and returns:

Code Example – C# partial least squares (PLS)

if (pls.IsGood) {
  Console.WriteLine("Success");
}
else {
  Console.WriteLine("PLS calculation failed: " + pls.Message);
  return;
}

Code Example – VB partial least squares (PLS)

If (PLS.IsGood) Then
  Console.WriteLine("Success")
Else
  Console.WriteLine("PLS calculation failed: " & PLS.Message)
  Return
End If

One common source of calculation failure occurs when the number of components 
specified for the calculation is greater than the rank of X, the matrix of predictor 
variables. If this occurs, try decreasing the number of components for the 
regression until the calculation succeeds. You can also use Cross Validation 
(Section 48.6) to determine the optimal number of components.

If the calculation fails due to the non-convergence of the Iterative Power Method 
for computing dominant eigenvectors, you may want to adjust the maximum 
number of iterations and/or the tolerance for this method (Section 48.5).

48.3 Predicted Values

Once you’ve performed a PLS regression (Section 48.1), you can calculate the 
predicted value of the response variable for a given value of the predictor variable.

Code Example – C# partial least squares (PLS)

double plsYhat = pls.Predict(x);
   Chapter 48.   Partial Least Squares 207



Code Example – VB partial least squares (PLS)

Dim PLSYHat As Double = PLS.Predict(X)

or for a set of predictor values:

Code Example – C# partial least squares (PLS)

DoubleVector plsYhatVec = pls.Predict(A);

Code Example – VB partial least squares (PLS)

Dim PLSTYHatVec As DoubleVector = PLS.Predict(A)

48.4 Analysis of Variance

NMath Stats provides the classes PLS1Anova and PLS2Anova for performing a 
classic analysis of variance (ANOVA) for PLS1 and PLS2 regression models. These 
classes calculate the sum of squares total, sum of squares residual, mean square 
error for prediction, and the coefficient of determination. For instance:

Code Example – C# partial least squares (PLS)

var plsAnova = new PLS2Anova(pls);
DoubleVector ssTotal = plsAnova.SumOfSquaresTotal;
DoubleVector ssResiduals = plsAnova.SumOfSquaresResiduals;
DoubleVector se = plsAnova.StandardError;
DoubleVector rms = plsAnova.RootMeanSqrErrorPrediction;
DoubleVector rSquared = plsAnova.CoefficientOfDetermination;

Code Example – VB partial least squares (PLS)

Dim PlsAnova As New PLS2Anova(PLS)
Dim SSTotal As DoubleVector = PlsAnova.SumOfSquaresTotal
Dim SSResiduals As DoubleVector = PlsAnova.SumOfSquaresResiduals
Dim SE As DoubleVector = PlsAnova.StandardError
Dim RMS As DoubleVector = PlsAnova.RootMeanSqrErrorPrediction
Dim RSquared As DoubleVector = PlsAnova.CoefficientOfDetermination

48.5 PLS Algorithms

NMath Stats provides classes PLS1NipalsAlgorithm and PLS2NipalsAlgorithm 
which implement the Nonlinear Iterative PArtial Least Squares (NIPALS) 
algorithm for PLS1 and PLS2 respectively, and class PLS2SimplsAlgorithm which 
implements the Straightforward IMplementation of PLS (SIMPLS) algorithm for 
PLS2.
208   NMath Stats User’s Guide



The algorithm to use may be specified in the constructor for a PLS1 or PLS2 object, 
or set through the Calculator property:

Code Example – C# partial least squares (PLS)

var calculator = new PLS2SimplsAlgorithm();
pls.Calculator = calculator;

Code Example – VB partial least squares (PLS)

Dim Calculator As New PLS2SimplsAlgorithm()
PLS.Calculator = Calculator

NOTE—Note that setting the calculator through the property forces a recalculation if 
data is present. 

The SIMPLS algorithm for PLS2 uses the Iterative Power Method for computing 
dominant eigenvectors. This algorithm produces a candidate eigenvector during 
each iteration which is normalized with respect to the l-infinity norm. When the 
two-norm of the difference between the current eigenvector, ei, and the eigenvector 
computed on the previous iteration, ei-1, is less than a specified tolerance, the 
algorithm stops. The maximum number of iteration to perform as well as the 
tolerance may be specified on the algorithm object.

If your PLS2 with SIMPLS calculation fails because the power method failed to 
converge, you may want to adjust these values.(If the calculation failure is due to 
non-convergence of the power method, this will be indicated in the Message 
property of the PLS2 object.

48.6 Cross Validation

Cross validation is a model evaluation method which measures how well a model 
makes predictions for data that it has not already sees (as with residuals). To 
accomplish this, some of the data is removed before the model is constructed. Once 
the model is constructed, the data that was removed can be used to test the 
performance of the model on the “new” data. The following methods are typically 
used:

 The Holdout Method

The simplest kind of cross validation is the holdout method. The data set is 
separated into two sets, called the training set and the testing set. The PLS 
regression is constructed using the training set, then the regression model is 
asked to make predictions for the responses for the predictor data in the 
training set. The errors it makes are accumulated to give the mean square 
error.
   Chapter 48.   Partial Least Squares 209



 K-fold Cross Validation

In k-fold cross validation, the data set is divided into k subsets, and the hold-
out method is repeated k times. Each time one of the k subsets is used as the 
test set and the other k-1 subsets are put together to form a training set. The 
average mean square error is then computed across all k trials.

 Leave-One-Out Cross Validation

Leave-one-out cross validation is the result of taking k-fold cross validation 
to its logical extreme, with k equal to n, the number of data points in the set. 
That means that n separate times, the PLS model is computed using all the 
data except for one point and a prediction is made for that point. As before 
the average mean square error is computed and used to evaluate the 
model.

NMath Stats provides two classes for doing k-fold cross validation on PLS models. 
PLS1CrossValidation is used when the response data is univariate, and 
PLS2CrossValidation is used when the response data is multivariate. To perform a 
cross validation calculation, you need to specify the data (Section 48.1), a PLS 
calculation algorithm (Section 48.5), and an algorithm for dividing the data into 
subsets.

To specify how subsets for k-fold cross validation are generated from the data, you 
must provide the cross validation class with an object implementing the 
ICrossValidationSubsets interface. NMath Stats provides classes 
LeaveOneOutSubsets, which implement the leave-one-out strategy, and 
KFoldSubsets, which implements k-fold with arbitrary k. 

The average mean square error for the cross validation calculation is available as a 
property on the cross validation object. Also available is an array of 
PLS1CrossValidationResult or PLS2CrossValidationResult objects. Each result 
object contains testing and training data that was used for each cross validation 
calculation and the associated mean square error.

Jackknifing of Regression Coefficients

NMath Stats also provides class PLS2CrossValidationWithJackknife for 
evaluation of multivariate PLS models with model coefficient variance estimates 
and confidence intervals.

The jackknife estimator of a parameter is found by systematically leaving out each 
observation from a dataset and calculating the estimate and then finding the 
average of these calculations. Given a sample of size N, the jackknife estimate is 
found by aggregating the estimates of each N-1 estimate in the sample.

The original Tukey jackknife variance estimator is defined as
210   NMath Stats User’s Guide



where g is the number of subsets used in cross validation,  is the estimated 
coefficients when subset i is left out (called the jackknife replicates), and  is the 
mean of the . 

However, Martens and Martens (2000) defined the estimator as

where  is the coefficient estimate using the entire data set—that is, they use the 
original fitted coefficients instead of the mean of the jackknife replicates. This is the 
default for class PLS2CrossValidationWithJackknife, but you can set UseMean to 
true for the original Tukey definition. For example:

Code Example – C# PLS cross-validation with jackknife

int numComponents = 2;

var cv = new PLS2CrossValidationWithJackknife
{
  Scale = false,
  UseMeans = true
};
cv.DoCrossValidation( X, Y, numComponents );
Console.WriteLine( cv.CoefficientVariance );

Code Example – VB PLS cross-validation with jackknife

Dim NumComponents As Integer = 2

Dim CV As New PLS2CrossValidationWithJackknife
CV.Scale = False
CV.UseMeans = True

CV.DoCrossValidation(X, Y, NumComponents)
Console.WriteLine(CV.CoefficientVariance)

48.7 Partial Least Squares Discriminant Analysis

Partial least squares Discriminant Analysis (PLS-DA) is a variant used when the 
response variable is categorical. Three classes are provided for performing PLS-
DA:

 SparsePlsDa performs Discriminant Analysis (DA) using a classical sparse 
PLS regression (sPLS), but where the response variable is categorical. The 
response vector Y is qualitative and is recoded as a dummy block matrix 

g 1– 
g

---------------- Bi B– 
Bi

B
Bi

g 1– 
g

---------------- Bi B̂– 
B̂

   Chapter 48.   Partial Least Squares 211



where each of the response categories are coded via an indicator variable. 
PLS-DA is then run as if Y was a continuous matrix. SparsePlsDa inherits 
from PLS2.

 SparsePls performs a sparse PLS calculation with variable selection. The 
LASSO penalization is used on the pairs of loading vectors. SparsePls 
implements IPLS2Calc.

 SparsePLSDACrossValidation performs an evaluation of a PLS model. 
Evaluation consists of dividing the data into two subsets: a training subset 
and a testing subset. A PLS calculation is performed on the training subset 
and the resulting model is used to predict the values of the dependent 
variables in the testing set. The mean square error between the actual and 
predicted dependent values is then calculated. Usually, the data is divided 
up into several training and testing subsets and calculations are done on 
each of these. In this case the average mean square error over each PLS 
calculation is reported. (The individual mean square errors are available as 
well.)

The subsets to use in the cross validation are specified by providing an 
implementation of the ICrossValidationSubsets interface. Classes that 
implement this interface generate training and testing subsets from PLS 
data.

For example, if X is the predictor data and y the corresponding observed factor 
levels, this code calculates the sparse PLS-DA:

Code Example – C# Partial Least Squares Discriminant Analysis (PLS-DA)

int ncomp = 3;
int numXvarsToKeep = (int) Math.Round( X.Cols * 0.66 );
int[] keepX = Enumerable.Repeat( numXvarsToKeep, ncomp ).ToArray();
var splsda = new SparsePlsDa( X, y, ncomp, keepX );

Code Example – VB Partial Least Squares Discriminant Analysis (PLS-DA)

Dim NComp As Integer = 3
Dim NumXvarsToKeep As Integer = CType(Math.Round(X.Cols * 0.66), 
  Integer)
Dim KeepX As Integer() = Enumerable.Repeat(NumXvarsToKeep, 
  NComp).ToArray()
Dim SPLSDA As New SparsePlsDa(X, Y, NComp, KeepX)

The number of components to keep in the model is specified, as well as the 
number of predictor variables to keep for each of the components (about two 
thirds, in this case).

Because SparsePlsDa is a PLS2, you can use the PLS2Anova class to perform an 
ANOVA (Section 48.4).
212   NMath Stats User’s Guide



Code Example – C# Partial Least Squares Discriminant Analysis (PLS-DA)

var anova = new PLS2Anova( splsda );
Console.WriteLine( "Rsqr: " + anova.CoefficientOfDetermination );
Console.WriteLine( "MSE Prediction: " + 
  anova.RootMeanSqrErrorPrediction );

Code Example – VB Partial Least Squares Discriminant Analysis (PLS-DA)

Dim Anova As New PLS2Anova(SPLSDA)
Console.WriteLine("Rsqr: " & Anova.CoefficientOfDetermination)
Console.WriteLine("MSE Prediction: " & 
  Anova.RootMeanSqrErrorPrediction)

You can also do cross validation using class SparsePLSDACrossValidation.

Code Example – C# Partial Least Squares Discriminant Analysis (PLS-DA)

var subsetGenerator = new LeaveOneOutSubsets();
var crossValidation =
  new SparsePLSDACrossValidation( subsetGenerator );

crossValidation.DoCrossValidation( X, yFactor, ncomp, keepX );

Console.WriteLine( "Cross validation average MSE: " + 
  crossValidation.AverageMeanSqrError );

Code Example – VB Partial Least Squares Discriminant Analysis (PLS-DA)

Dim SubsetGenerator As New LeaveOneOutSubsets()
Dim CrossValidation As New 
  SparsePLSDACrossValidation(SubsetGenerator)

CrossValidation.DoCrossValidation(X, YFactor, NComp, KeepX)

Console.WriteLine("Cross validation average MSE: " &   
  CrossValidation.AverageMeanSqrError)
   Chapter 48.   Partial Least Squares 213



214   NMath Stats User’s Guide



CHAPTER 49.  
GOODNESS OF FIT

NMath Stats provides classes GoodnessOfFit and GoodnessOfFitParameter for 
testing the goodness of fit of least squares model-fitting classes, such as 
LinearRegression, PolynomialLeastSquares, and OneVariableFunctionFitter:

Available statistics include the residual standard error, the coefficient of 
determination (R2 and "adjusted" R2), the F-statistic for the overall model with its 
numerator and denominator degrees of freedom, and standard errors, t-statistics, 
and corresponding (two-sided) p-values for the model parameters.

This chapter describes how to use the goodness of fit classes.

NOTE—GoodnessOfFit and GoodnessOfFitParameter are a generalization of classes 
LinearRegressionAnova and LinearRegressionParameter (Chapter 42), respectively. As 
such, they duplicate the functionality of those classes for testing the goodness of fit of a 
LinearRegression, with the exception of the beta coefficients.

49.1 Significance of the Overall Model

Class GoodnessOfFit tests the overall model significance for least squares model-
fitting classes, such as LinearRegression, PolynomialLeastSquares, and 
OneVariableFunctionFitter. 

GoodnessOfFit instances can be constructed from:

 A LinearRegression object.

 A PolynomialLeastSquares object, plus the vectors of x and y data.

 A OneVariableFunctionFitter object, plus the vectors of x and y data and 
the solution found by the fitter.

For example:

Code Example – C# goodness of fit

var x = new DoubleVector(0.3330, 0.1670, 0.0833, 0.0416, 
  0.0208, 0.0104, 0.0052);
var y = new DoubleVector(3.636, 3.636, 3.236, 2.660, 
  2.114, 1.466, 0.866);

int degree = 2;
   Chapter 49.   Goodness of Fit 215



var pls = 
  new PolynomialLeastSquares(degree, x, y);

var gof = new GoodnessOfFit(pls, x, y);

Code Example – VB goodness of fit

Dim X As New DoubleVector(0.333, 0.167, 0.0833, 0.0416, 0.0208, 
  0.0104, 0.0052)
Dim Y As New DoubleVector(3.636, 3.636, 3.236, 2.66, 2.114, 1.466, 
  0.866)

Dim Degree As Integer = 2
Dim PLS As New PolynomialLeastSquares(Degree, X, Y)

Dim GoF As New GoodnessOfFit(PLS, X, Y)

A variety of properties are provided for assessing the significance of the overall 
model:

 RegressionSumOfSquares gets the regression sum of squares. This 
quantity indicates the amount of variability explained by the model. It is 
the sum of the squares of the difference between the values predicted by 
the model and the mean.

 ResidualSumOfSquares gets the residual sum of squares. This is the sum 
of the squares of the differences between the predicted and actual 
observations.

 ModelDegreesOfFreedom gets the number of degrees of freedom for the 
model, which is equal to the number of predictors in the model.

 ErrorDegreesOfFreedom gets the number of degress of freedom for the 
model error, which is equal to the number of observations minus the 
number of model paramters.

 RSquared gets the coefficient of determination.

 AdjustedRsquared gets the adjusted coefficient of determination.

 MeanSquaredResidual gets the mean squared residual. This quantity is the 
equal to ResidualSumOfSquares / ErrorDegreesOfFreedom (equals the 
number of observations minus the number of model parameters).

 MeanSquaredRegression gets the mean squared for the regression. This is 
equal to RegressionSumOfSquares / ModelDegreesOfFreedom (equals 
the number of predictors in the model).

 FStatistic gets the overall F statistic for the model. This is equal to the 
ratio of MeanSquaredRegression / MeanSquaredResidual. This is the 
statistic for the hypothesis test where the null hypothesis,  is that all the H0
216   NMath Stats User’s Guide



parameters are equal to 0 and the alternative hypothesis is that at least one 
paramter is nonzero.   

 FStatisticPValue gets the p-value for the F statistic.

For example, if lr is a LinearRegression object:

Code Example – C# goodness of fit

var gof = new GoodnessOfFit( lr );
double sse = gof.ResidualSumOfSquares;
double r2 = gof.RSquared;
double fstat = gof.FStatistic;
double fstatPval = gof.FStatisticPValue;

Code Example – VB goodness of fit

Dim GoF As New GoodnessOfFit(LR)
Dim SSE As Double = GoF.ResidualSumOfSquares
Dim R2 As Double = GoF.RSquared
Dim FStat As Double = GoF.FStatistic
Dim FStatPval As Double = GoF.FStatisticPValue

Lastly, the FStatisticCriticalValue() function computes the critical value for 
the F statistic at a given significance level:

Code Example – C# goodness of fit

double critVal = gof.FStatisticCriticalValue(.05);

Code Example – VB goodness of fit

Dim CritVal As Double = GoF.FStatisticCriticalValue(0.05)

49.2 Significance of Parameters

Instances of class GoodnessOfFitParameter test statistical hypothesis about 
individual parameters in a least squares model-fit.

Creating Goodness of Fit Parameter Objects

You can get an array of test objects for all parameters in a GoodnessOfFit using the 
Parameters property:

Code Example – C# goodness of fit

GoodnessOfFitParameter[] params = gof.Parameters;
   Chapter 49.   Goodness of Fit 217



Code Example – VB goodness of fit

Dim Params() As GoodnessOfFitParameter = gof.Parameters

Properties of Goodness of Fit Parameters 

Class GoodnessOfFitParameter provides the following properties:

 Index gets the index of the parameter in the overall model.

 Value gets the value of the parameter.

 StandardError gets the standard error of the parameter.

 DegreesOfFreedom gets the degrees of freedom of the parameter.

Hypothesis Tests

Class GoodnessOfFitParameter provides the following methods for testing 
statistical hypotheses regarding parameter values:

 TStatisticPValue() returns the p-value for a two-sided t test with the 
null hypothesis that the parameter is equal to a given test value, versus the 
alternative hypothesis that it is not.

 TStatistic() returns the value of the t statistic for the null hypothesis that 
the parameter value is equal to a given test value.

 TStatisticCriticalValue() gets the critical value for the t-statistic for a 
given alpha level.

 ConfidenceInterval() returns a  confidence interval for the 
parameter for a given alpha level.

For example, this code tests whether a parameter in a model is significantly 
different than zero:

Code Example – C# goodness of fit

double tstat = param.TStatistic( 0.0 );
double pValue = param.TStatisticPValue( 0.0 );
double criticalValue = param.TStatisticCriticalValue( 0.05 );
Interval confidenceInterval = param.ConfidenceInterval( 0.05 );

Code Example – VB goodness of fit

Dim TStat As Double = param.TStatistic(0.0)
Dim PValue As Double = param.TStatisticPValue(0.0)
Dim CriticalValue As Double = param.TStatisticCriticalValue(0.05)
Dim ConfidenceInterval As Interval = param.ConfidenceInterval(0.05)

1 –
218   NMath Stats User’s Guide



CHAPTER 50.  
PROCESS CONTROL

Statistical process control uses statistical measures to monitor and control a 
process. NMath provides classes for measuring process quality capability (Cp, 
Cpm, and Cpk), performance (Pp and Ppk), and Z bench.

50.1 Process Capability

Class ProcessCapability computes the process capability parameters Cp, Cpm, 
Cpk for normally distributed data. If the data are not normal, the BoxCox 
transform can be used.

Instance of ProcessCapability are constructed from a vector of input data 
measurements, a subgroup size (the data must laid out in continuous subgroups of 
equal size), lower and upper specification limits, and the control target process 
mean.

Code Example – C# process control

DoubleVector data = ...
int size = 5;
double LSL = 73.95;
double USL = 74.05;
double target = 74.0;
var pc = new ProcessCapability( data, size, LSL, USL, target );

Code Example – VB process control

Dim Data As DoubleVector = ...
Dim Size As Integer = 5
Dim LSL As Double = 73.95
Dim USL As Double = 74.05
Dim Target As Double = 74.0
Dim PC As New ProcessCapability(Data, Size, LSL, USL, Target)

If no target is given, the mean of the specification limits is used.

The standard deviation is computed using the mean of the ranges method, referred 
to as the UWAVE-R method in the R qcc package.

ProcessCapability provides the following properties:
   Chapter 50.   Process Control 219



 CI95 gets the 95% confidence interval. 95% of the time the process mean 
will reside within this interval. The estimate is based on the t-distribution 
(t-score) if there are 30 or fewer samples; otherwise, the normal distribution 
is used (z-score).

 Cp gets the process capability. 

 Cpk gets the process capability index. 

 Cpm gets the Taguchi capability index. 

 ProcessSigma gets the estimate of the process standard deviations used to 
compute Cp, Cpk, and Cpm. The standard deviation is estimated using the 
unweighted averages of the subgroup ranges.

 IQR gets the interquartile range using the Minitab interpolation method. 
This method uses interpolation to find the upper and lower quartiles before 
returning the IQR. Therefore, the IQR may be computed from points that 
do not exist in the data set.

50.2 Process Performance

Class ProcessPerformance computes the process performance indices Ppk and Pp 
for normally distributed data. If the data are not normal, the BoxCox transform can 
be used.

Instance of ProcessPerformance are constructed from a vector of input data 
measurements, and lower and upper specification limits.

ProcessPerformance provides the following properties:

 Ppk gets the process performance index.

 Pp gets the process performance.

For example:

Code Example – C# process control

DoubleVector data = ...
double LSL = 1.90;
double USL = 2.10;
var pp = new ProcessPerformance( data, LSL, USL );
Console.WriteLine( pp.Ppk );

Code Example – VB process control

DoubleVector Data = ...
Dim LSL As Double = 1.9
220   NMath Stats User’s Guide



Dim USL As Double = 2.1
Dim PP As New ProcessPerformance(Data, LSL, USL)
Console.WriteLine(PP.Ppk)

50.3 Z Bench

Class ZBench computes the Z bench (the Z value that corresponds to the total 
probability of a defect,) the percent defective, and the parts per million defective.

Instance of ZBench are constructed from a vector of input data measurements, and 
lower and upper specification limits. 

Code Example – C# process control

DoubleVector data = ...
double LSL = 1.90;
double USL = 2.10;
var zb = new ZBench( data, LSL, USL );

Code Example – VB process control

DoubleVector Data = ...
Dim LSL As Double = 1.9
Dim USL As Double = 2.1
Dim ZB As New ZBench(Data, LSL, USL)

Alternatively, a single-sided test can be performed using only a lower or upper 
specification limit. The test type is specified using a value from the ControlLimits 
enumeration: DoubleEnded, LowerOnly, or UpperOnly. For example:

Code Example – C# process control

DoubleVector data = ...
double USL = 2.10;
var zb = new ZBench( data, ControlLimits.UpperOnly, USL );

Code Example – VB process control

DoubleVector Data = ...
Dim USL As Double = 2.1
Dim ZB As New ZBench(Data, ControlLimits.UpperOnly, USL)

Class ZBench provides the following properties:

 ZBench gets the Z Bench.

 PercentDefective gets the percent defective.

 PPMDefective gets the parts per million defective.
   Chapter 50.   Process Control 221



222   NMath Stats User’s Guide



PART VI - MISCELLANEOUS TOPICS
      223



224   NMath User’s Guide



CHAPTER 51.  
SERIALIZATION

NMath data classes are fully persistable using standard .NET mechanisms. All 
classes implement the ISerializable interface to control their own serialization and 
deserialization. Common Language Runtime (CLR) serialization Formatter classes 
call the provided GetObjectData() methods at serialization time to populate 
SerializationInfo objects with all the data required to represent NMath objects. 

This chapter describes how to persist NMath objects in binary, SOAP, and XML 
formats.

51.1 Binary Serialization

The System.Runtime.Serialization.Formatters.Binary.BinaryFormatter class 
provides Serialize() and Deserialize() methods for persisting an object in 
binary format to a given stream. For example, this code serializes two 
FloatComplexMatrix objects to a file:

Code Example – C# binary serialization

using System.IO;
using System.Runtime.Serialization.Formatters.Binary;

var A =
   new FloatComplexMatrix( "2x2[ (5,9.8) (-6,.9) (7,-8) (8,8) ]" );
var B = new FloatComplexMatrix( 4, 4, .1F, .1F );

FileStream binStream = File.Create( "myData.dat" );
var binFormatter = new BinaryFormatter();

binFormatter.Serialize( binStream, A );
binFormatter.Serialize( binStream, B );

binStream.Close();

Code Example – VB binary serialization

Imports System.IO
Imports System.Runtime.Serialization.Formatters.Binary

Dim A As New FloatComplexMatrix(
  "2x2[ (5,9.8) (-6,.9) (7,-8) (8,8) ]")
Dim B As New FloatComplexMatrix(4, 4, 0.1F, 0.1F)
   Chapter 51.   Serialization 223



Dim BinStream As FileStream = File.Create("myData.dat")
Dim BinFormatter As New BinaryFormatter()

BinFormatter.Serialize(BinStream, A)
BinFormatter.Serialize(BinStream, B)

BinStream.Close()

This code restores the objects from the file:

Code Example – C# binary serialization

binStream = File.OpenRead( "myData.dat" );

FloatComplexMatrix A2 =
   (FloatComplexMatrix)binFormatter.Deserialize( binStream );
FloatComplexMatrix B2 = 
   (FloatComplexMatrix)binFormatter.Deserialize( binStream );

binStream.Close();
File.Delete( "myData.dat" );

Code Example – VB binary serialization

BinStream = File.OpenRead("myData.dat")

Dim A2 = CType(BinFormatter.Deserialize(BinStream), 
  FloatComplexMatrix)
Dim B2 = CType(BinFormatter.Deserialize(BinStream), 
  FloatComplexMatrix)

BinStream.Close()
File.Delete("myData.dat")

51.2 SOAP Serialization

The System.Runtime.Serialization.Formatters.Soap.SoapFormatter class 
provides Serialize() and Deserialize() methods for persisting an object in 
SOAP format to a given stream. For example, this code serializes a 
FloatComplexTriDiagFact object to a file:

Code Example – C# SOAP serialization

using System.IO;
using System.Runtime.Serialization.Formatters.Soap;

int rows = 8, cols = 8;
FloatComplexVector data =
224   NMath User’s Guide



  new FloatComplexVector( cols*3, new RandGenUniform(-1, 1) );
var A =
  new FloatComplexTriDiagMatrix( data, rows, cols );
var F = new FloatComplexTriDiagFact( A );

FileStream xmlStream = File.Create( "myData.xml" );
var xmlFormatter = new SoapFormatter();
xmlFormatter.Serialize( xmlStream, F );
xmlStream.Close();

Code Example – VB SOAP serialization

Imports System.IO
Imports System.Runtime.Serialization.Formatters.Soap

Dim Rows As Integer = 8
Dim Cols As Integer = 8

Dim Data As New FloatComplexVector(Cols * 3,
  New RandGenUniform(-1.0, 1.0))
Dim A As New FloatComplexTriDiagMatrix(Data, Rows, Cols)
Dim F As New FloatComplexTriDiagFact(A)

Dim XMLStream As FileStream = File.Create("myData.xml")
Dim XMLFormatter As New SoapFormatter()
XMLFormatter.Serialize(XMLStream, F)
XMLStream.Close()

This code restores the objects from the file:

Code Example – C# SOAP serialization

xmlStream = File.OpenRead( "myData.xml");
var F = 
  (FloatComplexTriDiagFact)xmlFormatter.Deserialize( xmlStream );

xmlStream.Close();
File.Delete( "myData.xml" );

Code Example – VB SOAP serialization

XMLStream = File.OpenRead("myData.xml")
Dim F = CType(XMLFormatter.Deserialize(XMLStream), 
  FloatComplexTriDiagMatrix)

XMLStream.Close()
File.Delete("myData.xml")
   Chapter 51.   Serialization 225



51.3 XML Serialization

XML serialization in .NET does not make use of CLR Formatter classes, as do 
binary serialization (Section 51.1) and SOAP serialization (Section 51.2). Instead, 
the framework provides the System.Xml.Serialization.XmlSerializer class for 
persisting to XML documents.

However, because NMath data classes implement the IEnumerable interface, 
XmlSerializer persists only the enumerated data. Thus, though a matrix or vector 
object can be serialized in XML, it cannot be restored.

If you want to serialize and deserialize NMath objects in XML format, you can 
easily overcome this limitation by writing a simple wrapper class that contains all 
the information necessary to restore the object, without implementing 
IEnumerable. For example, this code defines an MyNameSpace.MyWrapper class 
that wraps a DoubleMatrix:

Code Example – C# XML serialization

using CenterSpace.NMath.Core;

namespace MyNamespace
{
  public class MyWrapper
  {
    public int Rows;
    public int Columns;
    public StorageType Storage = StorageType.ColumnMajor;
    public double[] Data;

    public MyWrapper() {}

    public MyWrapper( DoubleMatrix A )
    {
      Rows = A.Rows;
      Columns = A.Cols;
      DoubleMatrix B = (DoubleMatrix)A.Clone();
      Data = B.DataBlock.Data;
    }

  }  // class

} // namespace

Code Example – XML binary serialization

Imports CenterSpace.NMath.Core

Namespace MyNamespace
226   NMath User’s Guide



Public Class MyWrapper

  Public Rows As Integer
  Public Columns As Integer
  Public Storage As StorageType = StorageType.ColumnMajor
  Public Data() As Double

  Public Sub New()
  End Sub

  Public Sub New(A As DoubleMatrix)
    Rows = A.Rows
    Columns = A.Cols
    Dim B As DoubleMatrix = CType(A.Clone(), DoubleMatrix)
    Data = B.DataBlock.Data
  End Sub

End Class

End Namespace

Note that the constructor uses the Clone() method to ensure that the data is not 
referenced by any other objects, and that it is in contiguous storage.

You could then use the wrapper class to serialize a matrix object, as shown below:

Code Example – C# XML serialization

using System.IO;
using System.Xml.Serialization;
using MyNamespace;

var A = new DoubleMatrix( "3x3[1 2 3 4 5 6 7 8 9]" );
var AWrap = new MyWrapper( A );

var x = new XmlSerializer( typeof( MyWrapper ) );
FileStream s = File.Create( "myData.xml" );
x.Serialize( s, A );
s.Close();

Code Example – VB XML serialization

Imports System.IO
Imports System.Xml.Serialization
Imports MyNamespace

Dim A As New DoubleMatrix("3x3[1 2 3 4 5 6 7 8 9]")
Dim AWrap As New MyWrapper(A)

Dim X As New XmlSerializer(GetType(MyWrapper))
Dim S As FileStream = File.Create("myData.xml")
   Chapter 51.   Serialization 227



X.Serialize(S, W)
X.Close()

To restore the object:

Code Example – C# XML serialization

s = File.OpenRead( "myData.xml" );
MyWrapper AWrap = (MyWrapper)x.Deserialize( s );
var A = new DoubleMatrix( AWrap.Rows, AWrap.Columns, 
  AWrap.Data, AWrap.Storage );

Code Example – VB XML serialization

S = File.OpenRead("myData.xml")
Dim AWrap As MyWrapper = CType(X.Deserialize(S), MyWrapper)
Dim A As New DoubleMatrix(AWrap.Rows, AWrap.Columns,
  AWrap.Data, AWrap.Storage)
228   NMath User’s Guide



CHAPTER 52.  
DATABASE INTEGRATION

The .NET platform defines a number of types in the System.Data namespace—
such as DataTable, DataRow, DataRowCollection, and DataView—that enable 
you to define and manipulate in-memory tables of data. NMath provides 
convenience methods for creating ADO.NET objects from vectors and general 
matrices, and for creating vectors and matrices from database objects.

52.1 Creating ADO.NET Objects from Vectors 
and Matrices

Real-value NMath vector and matrix classes provide ToDataTable() methods for 
creating ADO.NET DataTable objects. Complex number vector and matrix classes 
provide paired methods ToRealDataTable() and ToImagDataTable() for 
creating DataTable objects containing the real and imaginary parts, respectively.

NOTE—Values are copied by all methods that create data tables. 

For example, this code creates a data table of one column containing the values in a 
vector:

Code Example – C#

using System.Data;

var v = new FloatVector( "45.4 -0.032 99 2.34" );
DataTable table = v.ToDataTable();

Code Example – VB

Imports System.Data

Dim V As New FloatVector("45.4 -0.032 99 2.34")
Dim Table As DataTable = V.ToDataTable()

By default, the table is named Table. You can also pass a non-default table name to 
the ToDataTable() method. Thus, this code creates a data table named 
MyMatrixTable containing the values in a DoubleMatrix:

Code Example – C#

using System.Data;
   Chapter 52.   Database Integration 229



var A = new DoubleMatrix( 8, 5, 3.1415 );
DataTable table = A.ToDataTable( “MyMatrixTable” );

Code Example – VB

Imports System.Data

Dim A As New DoubleMatrix(8, 5, 3.1415)
Dim Table As DataTable = A.ToDataTable("MyMatrixTable")

This code illustrates creating paired data tables containing the real and imaginary 
parts a FloatComplexMatrix:

Code Example – C#

using System.Data;

string s =
   "2 x 2 [ (4.54,9.78) (3.2,-4.78) (-4.32,2.23) (4.3234,-1.0) ]";
var A = new FloatComplexMatrix( s );
     
DataTable reals = A.ToRealDataTable( “RealParts” );
DataTable imags = A.ToImagDataTable( “ImaginaryParts” );

Code Example – VB

Imports System.Data

Dim S As String =
  "2 x 2 [ (4.54,9.78) (3.2,-4.78) (-4.32,2.23) (4.3234,-1.0) ]"
Dim A As New FloatComplexMatrix(S)

Dim Reals As DataTable = A.ToRealDataTable("RealParts")
Dim Images As DataTable = A.ToImagDataTable("ImaginaryParts")

By default, the columns in a data table created from a vector or matrix are named 
column1, column2, and so on. If you wish to specify non-default column names, 
call Columns() on the returned DataTable object to obtain a 
DataColumnCollection, then iterate over the collection and set the ColumnName 
property on each DataColumn object to the desired name. 

52.2 Creating Vector and Matrices from 
ADO.NET Objects

You can construct NMath vector and matrix classes from standard ADO.NET 
database objects. Real-value vector and matrix class constructors accept 
DataTable, DataRow, DataRowCollection, and DataView objects, typically 
230   NMath User’s Guide



obtained from a database query. Complex number vector and matrix class 
constructors accept paired database objects containing the real and imaginary 
parts, respectively.

For example, assuming table is a DataTable instance:

Code Example – C#

var A = new DoubleMatrix( table );

Code Example – VB

Dim A As New DoubleMatrix(Table)

The resulting matrix has the same number of rows and columns as the data table. 
Note that all values must be able to be converted to a double through a cast. If not, 
the constructor throws an InvalidCastException.

Similarly, assuming view1 and view2 are DataView objects, this code creates a 
FloatComplexVector instance whose real parts are derived from the first column 
of view1, and whose imaginary parts are derived from the first column of view2:

Code Example – C#

var v = new FloatComplexVector( view1, view2 );

Code Example – VB

Dim V As New FloatComplexVector(View1, View2)

In this case, all values must be able to be converted to a float through a cast.
   Chapter 52.   Database Integration 231



232   NMath User’s Guide



CHAPTER 53.  
ERROR HANDLING

All exceptions in NMath inherit from the NMathException class, enabling you to 
easily catch all NMath exceptions. This chapter lists the exception classes and the 
conditions under which they are thrown.

53.1 Exception Types

The following exception classes inherit from NMathException.

Table 28 – Exception classes

Exception Description

FFTKernelException Thrown when MKL returns an error condition 
when computing an FFT.

IndexOutOfRangeException Thrown when an out of range index is passed to 
an NMath function.

InvalidArgumentException Thrown when an invalid argument is passed to an 
NMath function.

InvalidBinBdryException Thrown when a histogram operation results in 
invalid bin boundaries.

KernelLoadException Thrown when NMath cannot load a kernel 
assembly.

MatrixNotSquareException Thrown when a matrix operation requiring a 
square matrix is presented with a non-square 
one.

MismatchedSizeException Exception thrown when an operation is per-
formed with operands whose sizes are 
incompatible with the operation; for example, if 
you try to add two vectors with different lengths, 
or take the inner product of matrices A and B 
when the number of columns of A is not equal to 
the number of rows of B.
   Chapter 53.   Error Handling 233



For example, this code attempts to multiply two matrices with different 
dimensions, and catches a MismatchedSizeException:

Code Example – C#

DoubleComplexMatrix A =
   new DoubleComplexMatrix( 3, 3, new DoubleComplex(1,0) );
DoubleComplexMatrix B =
   new DoubleComplexMatrix( 2, 2, new DoubleComplex(1,0) );

DoubleComplexMatrix C;
try
{
   C = A * B;
}
catch( MismatchedSizeException e )
{
   Console.WriteLine( "Oops - " + e.Message );
}

Code Example – VB

Dim A As New DoubleComplexMatrix(3, 3, New DoubleComplex(1, 0))
Dim B As New DoubleComplexMatrix(2, 2, New DoubleComplex(1, 0))

Dim C As DoubleComplexMatrix
Try
  C = A * B
Catch E As MismatchedSizeException
  Console.WriteLine("Oops - " & E.Message)
End Try

Matrices must have the same dimensions to be combined using the element-wise 
operators.

NMathFormatException Thrown when a method encounters a faulty text 
representation; for example, if you try to create 
a vector from a string that has an invalid format.

SingularMatrixException Thrown when a matrix operation requiring a 
non-singular matrix is presented with a singular 
one.

Table 28 – Exception classes

Exception Description
234   NMath User’s Guide



INDEX

Numerics
1-norm 185

A
absolute value 23, 49, 74, 187
abstract indexing 30
accessing underlying data 27, 28
ActiveSetLineSearchSQP 282
ActiveSetLineSearchSQP.Options 283
ActiveSetQPSolver 285
adjacency matrix 199
adjusted R2 293, 313, 215
ADO.NET 231
ADO.NET objects

converting to data frames 14
creating from data frames 46

alpha levels 91
ALS 194
Alternating Least Squares (ALS) 194
analysis of variance (ANOVA) 137
Anderson-Darling test 159
annealing 261
annealing history 265
annealing schedules 261

custom 263
linear 262

annealing temperature 261
AnnealingHistory 266
AnnealingHistory.Step 266
AnnealingMinimizer 261, 264, 265
AnnealingScheduleBase 262
ANOVA 137
ANOVA regression parameters 148
AnovaRegressionFactorParam 150
AnovaRegressionInteractionParam 150
AnovaRegressionParameter 150
   Index   237



Any CPU build configuration 7
appending to a vector 42
applying functions 50, 75, 188, 10
argument of a complex number 23
arithmetic mean 56
arithmetic operators 182, 193, 199
arrays, converting to 28
ASP.NET web applications 8
Assemblies 2
asymptotic function 309
autocorrelation 61

B
balancing 238
banded matrices 168
bandwidth 174, 179
Bessel functions 157
beta distribution 69
beta function 158, 66
BetaDistribution 67, 69
BiasType 58, 59, 60, 61
binary nonlinear programming 270, 279
binary serialization 47, 225
binomial coefficient 158, 65
binomial distribution 70
BinomialDistribution 67, 70
block-splitting 100
Boole’s rule 130
boolean columns 4
BoundedMultiVariableFunctionFitter 313
BoundedOneVariableFunctionFitter 305
Box-Cox power transformations 89
Bracket 250, 251, 253
bracketing minima 249
Brent's Method 250
BrentMinimizer 250
Bunch-Kaufman factorization 203

C
calculus 125
238   NMath User’s Guide



categorical vectors 34
CDF 68
cell data 146, 147
cell means 148
CenterSpace.NMath.Stats namespace 2
central moments 60
central tendency 56
centroid linkage 184
chi-square distribution 71
ChiSquareDistribution 67, 71
Cholesky

least squares 211
Cholesky factorization 203
choose function 65
city-block (Manhattan) distance 181
clamped cubic spline 142
clearing

matrices 62
vectors 41

cloning 38, 59, 178
CLRConfigFile 11
cluster analysis 180
ClusterAnalysis 180, 184, 202
clustering 196
ClusterSet 187, 191
coefficient of determination 293, 313, 215
column names 3, 4, 21
column sums 74
columns

accessing 7
adding data 6
creating 4
exporting to a string 12
exporting to a vector 12
exporting to an array 12
properties 7
removing data 6
reordering 8

combinatorial functions 65
Common Language Specification 1
complete linkage 183
   Index   239



complete orthogonal decomposition 114
complex argument 188
complex conjugate 188
complex numbers 19

absolute value function 23
accessing values 21
argument function 23
comparing 22, 43, 63
conjugate function 23
creating 19
creating from polar coordinates 20
creating from strings 20
modifying 21
norm function 23
trigonometric functions 24

component matrices 81
compressed row format 195
condition numbers 83, 208
confidence interval 220
conjugate gradient method 257
conjugate of a complex number 23
ConjugateGradientMinimizer 257
consensus matrix 200
constrained least squares 288
ConstraintType 270
contingency table 109
convergence check period 197
convolution 17, 103, 110
cophenetic distance 188
copying matrices 59, 178
copying vectors 38
CORegressionCalculation 114
correlated random inputs 85
correlation 61
counts 53
covariance 60
covariance matrix 61
Cox and Snell pseudo R-squared statistic 135
Cp 219, 220
Cpk 219, 220
Cpm 219, 220
240   NMath User’s Guide



creating matrices 173
critical values 141, 144, 167
Cronbach’s alpha 61
cross product 46
cross validation 210
cross-tabulation 40
cubic spline interpolation 142
cumulative distribution function 68
curve fitting 243, 295
CustomAnnealingSchedule 263

D
data block classes 27
data blocks 27

accessing 27, 28
properties 28

data frames
adding columns 16
adding rows 18
column properties 7
column types 4
creating 12
exporting to a matrix 44
exporting to a string 45
exporting to ADO.NET 46
permuting rows and columns 33
properties 21
removing columns 16
removing rows 18
sorting 32

database integration 231
DataFrame 3–??
DataTables 231
data-view pattern 27
datetime columns 4
DBrentMinimizer 252
deciles 54
decimal types 51
decomposition servers 223, 224
decompositions 223
deployment 12
descriptive statistics 49
   Index   241



design variables 130
determinants 82, 208
DFBoolColumn 4
DFColumn 4
DFDateTimeColumn 4
DFGenericColumn 4
DFIntColumn 4
DFNumericColumn 4
DFStringColumn 4
diagonally-scaled gradient descent 196
differential equations 329
differentiating polynomials 140
digamma function 158
DIgital Smoothing POlynomial 146
discrete wavelet transform 115
DISPO 146
Distance 180
distance functions 180
Distance.Function 180
distribution classes 67
Dormand-Prince method 332
dot product 46
DoubleBandFact 203
DoubleBandMatrix 169
DoubleBisquareWeightingFunction 221
DoubleCholeskyLeastSq 212
DoubleComplex 19
DoubleComplexBandFact 203
DoubleComplexBandMatrix 169
DoubleComplexCholeskyLeastSq 212
DoubleComplexDataBlock 27
DoubleComplexEigDecomp 234
DoubleComplexEigDecompServer 234
DoubleComplexLeastSquares 88
DoubleComplexLowerTriMatrix 166
DoubleComplexLUFact 79
DoubleComplexMatrix 53
DoubleComplexQRDecomp 223
DoubleComplexQRDecompServer 224
DoubleComplexQRLeastSq 213
242   NMath User’s Guide



DoubleComplexSVDecomp 228
DoubleComplexSVDecompServer 228
DoubleComplexSVDLeastSq 213
DoubleComplexTriDiagFact 203
DoubleComplexTriDiagMatrix 170
DoubleComplexUpperTriMatrix 167
DoubleComplexVector 33
DoubleCOWeightedLeastSq 215
DoubleDataBlock 27
DoubleDWT 117
DoubleEigDecomp 234
DoubleEigDecompServer 234
DoubleFairWeightingFunction 222
DoubleFunctional 273
DoubleFunctionalDelegate 273
DoubleHermitianBandMatrix 172
DoubleHermitianEigDecomp 234
DoubleHermitianEigDecompServer 234
DoubleHermitianFact 203
DoubleHermitianMatrix 168
DoubleHermitianPDBandFact 203
DoubleHermitianPDFact 203
DoubleHermPDTriDiagFact 203
DoubleIterativelyReweightedLeastSq 218
DoubleLeastSquares 87
DoubleLeastSqWeightingFunction 221
DoubleLowerTriMatrix 166
DoubleLUFact 79
DoubleMatrix 53
DoubleMultiVariableFunction 296
DoubleNonnegativeLeastSquares 88, 90
DoubleParameterizedDelegate 306
DoubleParameterizedFunction 306
DoubleParameterizedFunctional 314
DoubleQRDecomp 223
DoubleQRDecompServer 224
DoubleQRLeastSq 213
DoubleRandomBetaDistribution 96
DoubleRandomCauchyDistribution 96
DoubleRandomExponentialDistribution 97
   Index   243



DoubleRandomGammaDistribution 97
DoubleRandomGaussianDistribution 97
DoubleRandomGumbelDistribution 97
DoubleRandomLaplaceDistribution 97
DoubleRandomLogNormalDistribution 97
DoubleRandomRayleighDistribution 97
DoubleRandomUniformDistribution 97
DoubleRandomWeibullDistribution 97
DoubleSVDecomp 228
DoubleSVDecompServer 228
DoubleSVDLeastSq 213
DoubleSymBandMatrix 171
DoubleSymEigDecomp 234
DoubleSymEigDecompServer 234
DoubleSymFact 203
DoubleSymmetricMatrix 168
DoubleSymPDBandFact 203
DoubleSymPDFact 203
DoubleSymPDTriDiagFact 203
DoubleTriDiagFact 203
DoubleTriDiagMatrix 170
DoubleUpperTriMatrix 167
DoubleVector 33
DoubleVectorParameterizedDelegate 314
DoubleWavelet 115
downhill simplex method 255
DownhillSimplexMinimizer 255
DualSimplexSolver 269, 271
DualSimplexSolverParams 271
dummy variable regression parameters in ANOVA 150
dummy variables 130
Durbin-Watson statistic 61
DWT 115

E
effective rank 89
effects encoding 149
eigenvalue classes 233
eigenvalue servers 233, 237
eigenvalue tolerance 238
244   NMath User’s Guide



eigenvalues 233, 234
eigenvectors 233
elliptic functions 158
elliptic integrals 158
encapsulating functions 125
enumeration 51, 77
equality operators 182, 193, 199
error tolerance 249
Euclidean distance 181
Euler gamma 158
Euler-Macheroni constant 158
evaluating functions 126, 246
evaluating polynomials 138
exception classes 235
exponential distribution 72
exponential function 309
exponential integral 158
ExponentialDistribution 67, 72
exponentially weighted moving average (EWMA) 146, 147

F
F distribution 73
F test 106
Factor 30, 34, 138, 164
Factor analysis 174
factor extraction 174
factor rotation 174
factor score 205
factor score coefficients 179
factor scores 179
factorial 159, 65
factorization 191, 200, 203
factorization classes 200, 203
factorizations 191, 200, 203

creating 201, 204
using 202, 206

factors 34
accessing 36
creating 34
grouping by 36
properties 36
   Index   245



Fast Fourier Transforms 103
FDistribution 67, 73
FFT 17, 103
FFTKernelException 235
filtering 145, 149
finding roots 321
FirstOrderInitialValueProblem 329
Fisher transformation 61
Fisher's Exact Test 110
FloatBandFact 203
FloatBandMatrix 169
FloatCholeskyLeastSq 212
FloatComplex 19
FloatComplexBandFact 203
FloatComplexBandMatrix 169
FloatComplexCholeskyLeastSq 212
FloatComplexDataBlock 27
FloatComplexEigDecomp 234
FloatComplexEigDecompServer 234
FloatComplexLeastSquares 88
FloatComplexLowerTriMatrix 166
FloatComplexLUFact 79
FloatComplexMatrix 53, 110
FloatComplexQRDecomp 223
FloatComplexQRDecompServer 224
FloatComplexQRLeastSq 213
FloatComplexSVDecomp 228
FloatComplexSVDecompServer 228
FloatComplexSVDLeastSq 213
FloatComplexTriDiagFact 203
FloatComplexTriDiagMatrix 170
FloatComplexUpperTriMatrix 167
FloatComplexVector 33
FloatDataBlock 27
FloatDWT 117
FloatEigDecomp 234
FloatEigDecompServer 234
FloatHermitianBandMatrix 172
FloatHermitianEigDecomp 234
FloatHermitianEigDecompServer 234
246   NMath User’s Guide



FloatHermitianFact 203
FloatHermitianMatrix 168
FloatHermitianPDBandFact 203
FloatHermitianPDFact 203
FloatHermPDTriDiagFact 203
FloatLeastSquares 87
FloatLowerTriMatrix 166
FloatLUFact 79
FloatMatrix 53
FloatNonnegativeLeastSquares 88, 90
FloatQRDecomp 223
FloatQRDecompServer 224
FloatQRLeastSq 213
FloatRandomBetaDistribution 96
FloatRandomExponentialDistribution 97
FloatRandomGammaDistribution 97
FloatRandomGaussianDistribution 97
FloatRandomGumbelDistribution 97
FloatRandomLaplaceDistribution 97
FloatRandomLogNormalDistribution 97
FloatRandomRayleighDistribution 97
FloatRandomUniformDistribution 97
FloatRandomWeibullDistribution 97
FloatSVDecomp 228
FloatSVDecompServer 228
FloatSVDLeastSq 213
FloatSymBandMatrix 171
FloatSymEigDecomp 234
FloatSymEigDecompServer 234
FloatSymFact 203
FloatSymmetricMatrix 168
FloatSymPDBandFact 203
FloatSymPDFact 203
FloatSymPDTriDiagFact 203
FloatTriDiagFact 203
FloatTriDiagMatrix 170
FloatUpperTriMatrix 167
FloatVector 33
FloatWavelet 115
Frobenius matrix norm 193
   Index   247



Frobenius norm 68
function encapsulation 125
function evaluation 126, 246
function interpolation 141
functions of one variable 125
FZero 322
fzero 322

G
G statistic 132
GAC 3
gamma distribution 73
gamma function 159, 65
GammaDistribution 67, 73
gaussian distribution 80
Gauss-Kronrod integration 128, 132
GaussKronrodIntegrator 129, 133, 134, 325
gcAllowVeryLargeObjects 10
GDCLS 195
general sparse matrix 191, 195
general sparse matrix factorizations 200
generalized multivariable functions 313
generalized one variable functions 305
generating random numbers 93
generic columns 4
generic functions 50, 75, 188, 10
geometric distribution 75
geometric mean 57
GeometricDistribution 67, 75
global assembly cache 3
global minimum 261
golden section search 250
GoldenMinimizer 250
goodness of fit 293, 313, 131, 215
GoodnessOfFit 215
GoodnessOfFitParameter 215, 217
Gradient Descent - Constrained Least Squares (GDCLS) 195
grand mean 140, 144, 148
group means 140, 148
grouping by factors 30, 36
248   NMath User’s Guide



groupings 30, 36

H
half bandwidth 171, 172, 175, 179
harmonic mean 57
harmonic number 159
Hermitian banded matrices 172
Hermitian matrices 168
high-pass decimation filter 116
high-pass reconstruction filter 116
Histogram 121
histograms

adding data 122
creating 121
displaying 124
stem-leaf diagrams 124

hold out method 209
Hosmer Lemeshow statistic 132
hypergeometric functions 159
hypothesis tests 91

creating 92
properties 91, 93

HypothesisType 91

I
IBoundedNonlinearLeastSqMinimizer 295, 298, 299
IDFColumn 4
IDifferentiator 135
IDoubleLeastSqWeightingFunction 221
IIntegrator 129, 130, 325
ILogisticRegressionCalc 127
implicit conversion 178

matrices 59
vectors 38

IMultiVariableDMinimizer 255, 257
IMultiVariableMinimizer 255, 264
incomplete beta 66
incomplete beta function 159
incomplete gamma 65
incomplete gamma integral 159
independent streams 100
   Index   249



indexers 180, 193, 198
indexing objects 29
IndexOutOfRangeException 235
infinity-norm 67, 185
inner product 46
inner product of matrices 184
INonlinearLeastSqMinimizer 295, 299, 304
InputVariableCorrelator 85
integer columns 4
integer nonlinear programming 270, 279
integration 128
integration of polynomials 140
Intel Math Kernel Library 2, 3
intercept parameter 87, 88, 113
intercept parameters 115
InteriorPointQPSolver 285, 286
internally studentized residuals 116
interpolation 141
interquartile range 59, 220
IntRandomBernoulliDistribution 97
IntRandomBinomialDistribution 97
IntRandomGeometricDistribution 97
IntRandomHypergeometricDistribution 97
IntRandomNegativeBinomialDistribution 97
IntRandomPoissonDistribution 97
IntRandomPoissonVaryingMeanDistribution 98
IntRandomUniformBitsDistribution 98
IntRandomUniformDistribution 98
InvalidArgumentException 235
InvalidBinBdryException 235
inverse 69, 82, 208
inverse CDF 68
inverse cumulative distribution function 68
inverse Fisher transformation 61
IOneVariableDMinimizer 249, 252
IOneVariableDRootFinder 321, 323
IOneVariableMinimizer 249, 250
IOneVariableRootFinder 321
IRandomNumberDistribution 91
IRandomVariableMoments 68
250   NMath User’s Guide



IRegressionCalculation 114
ISerializable interface 47, 225
Iterative Power Method 207
iteratively reweighted least squares 218

J
jackknife estimates 210
jackknifing 210
Johnson system of distributions 75
JohnsonDistribution 75

K
KernelLoadException 235
k-fold cross validation 210
KMeansClustering 189, 190
Kolmogorov-Smirnov test 159, 161
Kruskal-Wallis rank sum test 159, 163
KruskalWallisTest 159, 163
kurtosis 60, 68

L
large objects 10
leapfrog method 100
LeapfrogRandomStreams 100
least squares

Cholesky 211
QR decomposition 212
solving 214
SVD 212

least squares minimization 114
least squares solutions 87, 211
left singular vectors 228
Levenberg-Marquardt method 243, 295, 303
LevenbergMarquardtMinimizer 299, 303
libiomp.dll 6
license key 3
likelihood function 135
linear bound constraints 301
linear constraints 269, 270
linear interpolation 142
linear programming 269
   Index   251



linear regressions 113
creating 113
modifying 118
predictions 117, 134
results 115
significance of parameters 123
significance of the overall model 125

linear spline interpolation 142
LinearAnnealingSchedule 262
LinearConstraint 275
LinearContraint 270
LinearProgrammingProblem 269
LinearRegression 113
LinearRegressionAnova 125
LinearRegressionParameter 123, 124, 150
Linkage 182
linkage functions 182
linkage tree 186
Linkage.Function 182
loading matrix 172
local minima 261
log binomial 65
log factorial 65
log file 5
log gamma 65
logical functions 53, 62
logistic function 309
logistic regression 127
LogisticDistribution 67, 77, 78
LogisticRegression 127
LogisticRegressionFitAnalysis 131
log-normal distribution 78
LognormalDistribution 67, 78
lower bandwidth 168, 174, 179
lower triangular matrices 165
lower triangular matrix 79, 81
low-pass decimation filter 116
low-pass reconstruction filter 116
LP problems 269
LU factorization 79, 125, 145, 157, 203
252   NMath User’s Guide



M
manipulating functions 246
matrices

arithmetic operations 63, 182, 193, 199
clearing 62
converting to data frames 14
copying 59
creating from ADO.NET objects 58, 232
creating from data frames 44
creating from numeric values 54
creating from strings 56
equality testing 63, 182, 193, 199
functions 67, 184, 194, 199
implicit conversion 59
modifying values 61, 180, 193, 198
properties 60
resizing 62, 181

matrix
decompositions 223
factorization 191, 200, 203
functions 173
norms 185
properties 179
shape parameters 174
transposition 184, 194, 199
types 165

matrix classes 53
matrix indexers 53
matrix norm 67
matrix transposition 67
matrix views 60
MatrixFunctions 173
MatrixNotSquareException 235
maximum (Chebychev) distance 181
maximum iterations 249
mean 47, 72, 56, 68
mean deviation 59
mean of the ranges method 219
median 47, 72, 56
median deviation from mean 59
median linkage 184
Mersenne Twister algorithm 92
Microsoft Solver Foundation 3
   Index   253



min/max functions 54
vectors 47, 72

minimization 249, 255
MinimizerBase 249, 255
MismatchedSizeException 235
missing values 8, 51
MixedIntegerLinearProgrammingProblem 269, 270
MixedIntegerNonlinearProgrammingProblem 276
MKL 2, 3
mode 56
Modified Bessel functions 157
moving average 146
MovingWindowFilter 145
multiple linear regression 113
multiplicative update rule 195
MultiVariableFunction 245, 255, 257, 264
MultiVariableFunctionFitter 313
multivariate functions 245
multivariate techniques 171

N
Nagelkerke pseudo R-squared statistic 135
namespaces 2
NaN values 51
natural cubic spline 142
negative binomial distribution 79
NegativeBinomialDistribution 68, 79
Newton-Cotes formulas 130
NewtonRalphsonRootFinder 323
Newton-Raphson Method 323
NewtonRaphsonParameterCalc 127
NiederreiterQuasiRandomGenerator 102
NIPALS 208
NMath.dll 2
NMathConfiguration 4
NMathException 235
NMathFormatException 236
NMathKernelx64.dll 3
NMathKernelx86.dll 2
NMF 193
254   NMath User’s Guide



NMFClustering 196, 200, 201
Nonlinear Iterative PArtial Least Squares (NIPALS) 208
nonlinear least squares 295
Nonlinear Programming (NLP) 273, 276
NonlinearConstraint 275
NonlinearProgrammingProblem 276
nonnegative least squares 87, 88
nonnegative least squares solutions 90
nonnegative matrix factorization (NMF) 193, 196
Non-parametric tests 159
norm of a complex number 23
normal distribution 80
NormalDistribution 68, 80
norms 185
Not-A-Number values 51
numeric columns 4
numerical integration 128
numerical rank 215

O
objective function 269
odds ratio 135
OMP threading library 6
one-norm 67
OneSampleAndersonDarlingTest 159
OneSampleKSTest 159
OneSampleTTest 98
OneSampleZTest 96
OneVariableFunction 125, 245
OneVariableFunctionFitter 305
one-way ANOVA 137

accessing the ANOVA table 139, 166
one-way RANOVA 141

accessing the RANOVA table 143
OneWayAnova 137
OneWayAnovaTable 139, 165
OneWayRanova 141
OneWayRanovaTable 143
operators 182, 193, 199
optimization 249, 255
   Index   255



order 174, 179
ordinary differential equations 329
outer product 46

P
parabolic interpolation 250
Partial Least Squares 205
Partial least squares Discriminant Analysis 211
parts per million defective 221
PDF 68
peak finding 145, 151
PeakFinderRuleBased 145, 153
PeakFinderSavitzkyGolay 145, 151
Pearson chi-square statistic 132
Pearson correlation 61
Pearson's chi-square test 108
PearsonsChiSquareTest 108
percent defective 221
percentiles 54
permutation matrices 223, 225
permutation matrix 79, 81
permuting columns 8
permuting data frames 33
phase 188
pivot indices 81
pivoting 223, 224
PLS-DA 211
pointers to underlying data 27, 28
poisson distribution 80
PoissonDistribution 68, 80
polar coordinates 20, 35
polylogarithm 159
Polynomial 137, 245
PolynomialLeastSquares 293, 294
polynomials 137
Position enumeration 30
positive definite matrices 201, 204
Powell's Method 256
PowellMinimizer 256
power distance 181
256   NMath User’s Guide



Pp 219, 220
Ppk 219, 220
predicted values 89
predictions 117, 134
predictor matrix 118
PrimalSimplexSolver 269, 271
PrimalSimplexSolverParam 271
principal component analysis 171
probability density function 68
probability distributions 67
ProbabilityDistribution 68
process capability 219, 220
process capability index 220
process performance 220
ProcessCapability 219
ProcessPerformance 220
product

features 1
overview 1

product of matrices 68
pseudo R-squared 135
pseudoinverse 70

Q
QR decomposition 223, 114

classes 223
least squares 212
servers 224

QRRegressionCalculation 114
quadratic mean 58
Quadratic Programming (QP) 273, 283
QuadraticProgrammingProblem 284
quadrature 128
quartiles 54
quasi-Newton method 257
quasirandom numbers 102

R
R2 293, 313, 215
RandGenBeta 91
RandGenBinomial 91
   Index   257



RandGenExponential 91
RandGenGamma 91
RandGenGeometric 91
RandGenJohnson 92
RandGenLogNormal 92
RandGenMTwist 92
RandGenNormal 92
RandGenPareto 92
RandGenPoisson 92
RandGenUniform 91
RandGenWeibull 92
random number generators 91, 103, 115

scalar 91
vectorized 96

random samples 30
random seeds 95
RandomNumberGenerator 91, 94
RandomNumbers 99
RandomNumberStream 91, 98
Range 29
ranges 29, 39
rank 215
ranks 54
ReducedVarianceInputCorrelator 85
references 7
regression calculators 114
regression matrix 118
regularization 195
reordering columns 8
reordering data frames 33
replicating a matrix 56
RepMat() functions 56
residual standard error 293, 313, 215
residual sum of squares 89
residual vector 211
residuals 89, 295
resizing

matrices 62
vectors 41

resizing matrices 181
258   NMath User’s Guide



reversing a vector 50
Ridders' Method 322
RiddersDifferentiator 135
RiddersRootFinder 322
Riemann zeta function 159
right singular vectors 228
RMS 58
Romberg integration 128
RombergIntegrator 129, 130, 325
root mean square 58
RootFinderBase 321
root-finding 321
rounding functions 45, 70
row keys 3, 18, 21

modifying 20
Rule-based peak finding 153
Runge-Kutta method 329
RungeKutta45OdeSolver 332
RungeKutta5OdeSolver 332
RungeKuttaSolver 329, 330

S
sampling 30
Savitzky-Golay 146
SavitzkyGolayFilter 145, 149
secant method 321
SecantRootFinder 321
seeds for random number generators 95
SequentialQuadraticProgrammingSolver 282
serialization 47, 225
ShapiroWilkTest 159
signal processing 145
SIMPLS 208
Simpson’s rule 130
simulated annealing 261
sine function 309
single linkage 183
singular value decomposition 223, 228, 114

classes 228
servers 228
   Index   259



singular values 228
singular vectors 228
SingularMatrixException 236
skewness 59, 68
skip-ahead 100
SkipAheadRandomStreams 100
Slice 29
slices 29, 39
smooth splines 143
SmoothCubicSpline 143
SOAP serialization 47, 226
SobolQuasiRandomGenerator 102
solutions of linear systems 79, 125, 145, 157, 191, 200, 203
solver parameters 271
solving for right-hand sides 81, 206
sorting functions 49, 74
SortingType 32, 55, 62
sparse vector 191
SparseMatrixBuilder 197
sparsity 195
Spearman’s rank correlation coefficient 159
Spearman’s rho 61, 159
special functions 2, 3, 157, 65
spline interpolation 142
spread 58
square root 49, 74
squared Euclidean distance 181
SSE 58
standard deviation 58
standardized residuals 116
statistical functions 49

data types 49
missing values 51

statistical process control 219
StatsFunctions 49–??
StatsSettings 9
stiff differential equations 329
stiff equations 335
Stochastic Hill Climbing algorithm 280
StochasticHillClimbingSolver 280
260   NMath User’s Guide



stopping adjacency 197
Straightforward IMplementation of PLS (SIMPLS) 208
string columns 4
structured sparse matrices 165
Student’s t distribution 81
studentized residuals 116
subject means 144
Subset 25
subsets 25

accessing elements 26
arithmetic operations 27
creating 25
logical operations 27
properties 26

sum of squared errors 58
sum of squares 47, 72
sums 53
surface fitting 295, 313
SVD 228

convergence 214
least squares 212

SVDRegressionCalculation 114
symmetric banded matrices 171
symmetric matrices 167

T
t test 98, 100, 103
tabulated functions 141
TabulatedFunction 245
tabulation 40
Taguchi capability index 220
TDistribution 68, 81
tiling a matrix 56
time series 61
transcendental functions 48, 73, 187
transpose product 68, 185
transposing matrices 67, 184, 194, 199
trapezoidal rule 130
treatment means 144
triangular distribution 82
triangular matrices 165, 166
   Index   261



TriangularDistribution 68, 82
tridiagonal matrices 170
trigonometric functions 24, 48, 73, 187
trimmed mean 57
trimming data 57
Trust-Region method 243, 295, 298, 299
TrustRegionMinimizer 298, 299
TrustRegionParameterCalc 128
TwoSampleFTest 106
TwoSampleKSTest 159, 161
TwoSamplePairedTTest 100
TwoSampleUnpairedTTest 103
TwoSampleUnpairedUnequalTTest 103
TwoVariableIntegrator 325, 326
two-way ANOVA 145

accessing the ANOVA table 146
two-way RANOVA 156
TwoWayAnova 145
TwoWayAnovaTable 146
TwoWayAnovaTypeI 154
TwoWayAnovaTypeII 154
TwoWayAnovaTypeIII 154
TwoWayAnovaUnbalanced 154
TwoWayRanova 156
TwoWayRanovaTable 157
TwoWayRanovaTwo 156
TwoWayRanovaTwoTable 158
typographic conventions 13

U
Unbalanced two-way ANOVA 154
unbalanced two-way ANOVA 154
uniform distribution 83
UniformDistribution 68, 83
unweighted average linkage 183
upper bandwidth 168, 174, 179
upper triangular matrices 166
upper triangular matrix 79, 81
262   NMath User’s Guide



V
variable bounds 269
variable metric method 257
VariableMetricMinimizer 257
VariableOrderOdeSolver 329, 335
variance 47, 72, 59, 68
variance inflation factor 116
varimax rotation 174
vector classes 33
vector indexers 33
vector views 39, 65
vectors

arithmetic operations 43
clearing 41
copying 38
creating from ADO.NET objects 37, 232
creating from numeric values 34
creating from strings 35
equality testing 43
functions 45
implicit conversion 38
modifying values 41
properties 40
resizing 41

Von Neumann ratio 61

W
Ward’s linkage 184
wavelet 115
wavelet threshold calculation 119
wavelet thresholding 119
Wavelet.Wavelets 115
web applications 8
web projects 8
Weibull distribution 84
WeibullDistribution 68, 84
weighted average linkage 183
weighted least squares 215
weighted mean 57
weighting functions 217, 221
Wilcoxon signed-rank test 159, 168
WilcoxonSignedRankTest 159, 168
   Index   263



X
XML serialization 228

Z
Z Bench 221
Z bench 219, 221
z test 96
ZBench 221
264   NMath User’s Guide


	Contents
	Part I - Introduction
	Chapter 1. Overview
	1.1 Product Components
	1.2 Software Requirements
	1.3 NMath Assemblies
	Microsoft Solver Foundation
	Google OR Tools

	1.4 NMath License Key
	Evaluation License
	Product License

	1.5 NMath Configuration
	Logging
	License Key
	Native Location
	MKL Threading Control
	MKL Conditional Numerical Reproducibility (CNR)

	1.6 Building and Deploying NMath Applications
	License Key
	C++ Runtime

	1.7 Web Applications
	Referencing NMath
	Native DLLs
	NMath Configuration

	1.8 Very Large Objects
	Very Large Objects with ASP.NET

	1.9 Documentation
	This Manual

	1.10 Technical Support


	Part II - NMath Core
	Chapter 2. NMath Core
	Chapter 3. Complex Number Types
	3.1 Creating Complex Numbers
	Creating Complex Numbers from Numeric Values
	Creating Complex Numbers from Strings
	Implicit Conversion

	3.2 Value Operations on Complex Numbers
	3.3 Logical Operations on Complex Numbers
	3.4 Arithmetic Operations on Complex Numbers
	3.5 Functions of Complex Numbers
	Conjugate, Norm, and Argument
	Trigonometric Functions
	Transcendental Functions
	Absolute Value and Square Root


	Chapter 4. Viewing Data
	4.1 DataBlock Classes
	Class Names
	Data Block Properties
	Accessing the Underlying Data

	4.2 Slices and Ranges
	Creating Slices and Ranges
	Creating Abstract Subsets
	Modifying Ranges and Slices


	Chapter 5. Vector Classes
	5.1 Class Names
	5.2 Creating Vectors
	Creating Vectors from Numeric Values
	Creating Vectors from Strings
	Implicit Conversion
	Copying Vectors
	New Vector Views

	5.3 Value Operations on Vectors
	Accessing and Modifying Vector Values
	Clearing and Resizing a Vector
	Appending to a Vector

	5.4 Logical Operations on Vectors
	5.5 Arithmetic Operations on Vectors
	5.6 Functions of Vectors
	Rounding Functions
	Sums, Differences, and Products
	Min/Max Functions
	Statistical Functions
	Trigonometric Functions
	Transcendental Functions
	Absolute Value and Square Root
	Sorting Functions
	Complex Vector Functions

	5.7 Generic Functions
	5.8 Vector Enumeration

	Chapter 6. Matrix Classes
	6.1 Class Names
	6.2 Creating Matrices
	Creating Matrices from Numeric Values
	Creating Matrices from Strings
	Implicit Conversion
	Copying Matrices
	Matrix Views

	6.3 Value Operations on Matrices
	Accessing and Modifying Matrix Values
	Clearing and Resizing a Matrix

	6.4 Logical Operations on Matrices
	6.5 Arithmetic Operations on Matrices
	6.6 Vector Views
	Row and Column Views
	Diagonal Views
	Arbitrary Slices

	6.7 Functions of Matrices
	Matrix Transposition
	Matrix Norms
	Matrix Products
	Matrix Inverse and Pseudoinverse
	Rounding Functions
	Sums and Differences
	Min/Max Functions
	Statistical Functions
	Trigonometric Functions
	Transcendental Functions
	Absolute Value and Square Root
	Sorting Functions
	Complex Matrix Functions

	6.8 Generic Functions
	Applying Elementwise Functions
	Applying Columnwise Functions

	6.9 Matrix Enumeration

	Chapter 7. Solutions of Linear Systems
	7.1 Class Names
	7.2 Creating LU Factorizations
	7.3 Using LU Factorizations
	Component Matrices
	Solving for Right-Hand Sides
	Computing Inverses, Determinants, and Condition Numbers

	7.4 Static Methods

	Chapter 8. Least Squares
	8.1 Class Names
	8.2 Creating Least Squares Solutions
	8.3 Using Least Squares Solutions
	8.4 Nonnegative Least Squares Solutions

	Chapter 9. Random Number Generators
	9.1 Scalar Random Number Generators
	Underlying Uniform Generators
	Generating Random Numbers
	Random Seeds

	9.2 Vectorized Random Number Generators
	Generating Random Numbers
	Successive Random Numbers
	Independent Streams
	Quasirandom Numbers


	Chapter 10. Fourier Transforms, Convolution and Correlation
	10.1 Fast Fourier Transforms
	FFT Classes
	Creating FFT Instances
	Scale Factors
	Computing FFTs
	Unpacking Real Results
	Inverting Real Results
	Strided Signals

	10.2 Convolution and Correlation
	Convolution and Correlation Classes
	Creating Convolution and Correlation Instances
	Convolution and Correlation Properties
	Computing Convolutions and Correlations
	Windowing Options


	Chapter 11. Discrete Wavelet Transforms
	11.1 Creating Wavelets
	11.2 Computing Discrete Wavelet Transforms
	Single Step DWT
	Multilevel DWT
	Accessing the Coefficients
	Threshold Calculations
	Thresholding


	Chapter 12. Histograms
	12.1 Creating Histograms
	12.2 Adding Data to Histograms
	12.3 Value Operations of Histograms
	12.4 Displaying Histograms

	Chapter 13. Calculus
	13.1 Encapsulating Functions
	Creating a Function of One Variable
	Properties of Functions
	Evaluating Functions
	Algebraic Manipulation of Functions

	13.2 Numerical Integration
	Computing Integrals
	Romberg Integration
	Gauss-Kronrod Integration

	13.3 Differentiation
	13.4 Polynomials
	Creating Polynomials
	Properties of Polynomials
	Evaluating Polynomials
	Algebraic Manipulation of Polynomials
	Integration
	Differentiation

	13.5 Function Interpolation
	Linear Spline Interpolation
	Cubic Spline Interpolation
	Smooth Splines
	Creating Your Own Interpolation Classes


	Chapter 14. Signal Processing
	14.1 Moving Window Filtering
	Creating Moving Window Filter Objects
	Moving Window Filter Properties
	Filtering Data

	14.2 Savitzky-Golay Filtering
	Creating Savitzky-Golay Filter Objects
	Savitzky-Golay Filter Properties
	Filtering Data

	14.3 Savitzky-Golay Peak Finding
	Creating Savitzky-Golay Peak Finders
	Savitzky-Golay Peak Finder Results
	Advanced Savitzky-Golay Peak Finder Properties

	14.4 Rule-Based Peak Finding
	Creating Rule-Based Peak Finders
	Adding Rules
	Rule-Based Peak Finder Results


	Chapter 15. Special Functions
	15.1 Special Functions


	Part III - Matrix Analysis
	Chapter 16. Matrix Functions
	Chapter 17. Structured Sparse Matrix Types
	17.1 Lower Triangular Matrices
	17.2 Upper Triangular Matrices
	17.3 Symmetric Matrices
	17.4 Hermitian Matrices
	17.5 Banded Matrices
	17.6 Tridiagonal Matrices
	17.7 Symmetric Banded Matrices
	17.8 Hermitian Banded Matrices

	Chapter 18. Using The Structured Sparse Matrix Classes
	18.1 Creating Matrices
	Creating Default Matrices
	Creating Sparse Matrices from General Matrices
	Creating Sparse Matrices from Other Sparse Matrices
	Creating Sparse Matrices from a Data Vector
	Implicit Conversion
	Copying Matrices

	18.2 Value Operations on Matrices
	Accessing and Modifying Matrix Values
	Resizing a Matrix

	18.3 Logical Operations on Matrices
	18.4 Arithmetic Operations on Matrices
	18.5 Vector Views
	18.6 Functions of Matrices
	Matrix Transposition
	Matrix Inner Products
	Matrix Norms
	Trigonometric and Transcendental Functions
	Absolute Value
	Complex Matrix Functions

	18.7 Generic Functions

	Chapter 19. General Sparse Vectors and Matrices
	19.1 Sparse Vectors
	Storage Format
	Creating Sparse Vectors
	Accessing and Modifying Sparse Vector Values
	Operations on Sparse Vectors
	Sparse Vector Functions
	Creating Dense Vectors from Sparse Vectors

	19.2 Sparse Matrices
	Storage Format
	Creating Sparse Matrices
	Accessing and Modifying Sparse Matrix Values
	Operations on Sparse Matrices
	Sparse Matrix Functions
	Creating Dense Matrices from Sparse Matrices

	19.3 Sparse Matrix Factorizations
	Factorization Classes
	Creating Factorizations
	Using Factorizations


	Chapter 20. Structured Sparse Matrix Factorizations
	20.1 Factorization Classes
	20.2 Creating Factorizations
	20.3 Using Factorizations
	Solving for Right-Hand Sides
	Computing Inverses, Determinants, and Condition Numbers


	Chapter 21. Least Squares Solutions
	21.1 Ordinary Least Squares Methods
	Least Squares Using Cholesky Factorization
	Least Squares Using QR Decomposition
	Least Squares Using SVD

	21.2 Creating Ordinary Least Squares Objects
	21.3 Using Ordinary Least Squares Objects
	Testing for Goodness
	Solving Least Squares Problems
	Retrieving Information About the Original Matrix

	21.4 Weighted Least Squares
	21.5 Iteratively Reweighted Least Squares
	Convergence Functions
	Weighting Functions


	Chapter 22. Decompositions
	22.1 QR Decompositions
	Creating QR Decompositions
	Using QR Decompositions
	Reusing QR Decompositions

	22.2 Singular Value Decompositions
	Creating Singular Value Decompositions
	Using Singular Value Decompositions
	Reusing Singular Value Decompositions


	Chapter 23. EigenValue Problems
	23.1 Eigenvalue Classnames
	23.2 Using the Eigenvalue Classes
	Constructing Eigenvalue Objects
	Testing for Goodness
	Retrieving Eigenvalues and Eigenvectors
	Retrieving Information About the Original Matrix
	Reusing Eigenvalue Decompositions

	23.3 Using the Eigenvalue Server Classes
	Constructing Eigenvalue Servers
	Configuring Eigenvalue Servers
	Creating Eigenvalue Objects from a Server



	Part IV - Analysis
	Chapter 24. The Analysis Namespace
	Chapter 25. Encapsulating Multivariate Functions
	25.1 Creating Multivariate Functions
	25.2 Evaluating Multivariate Functions
	25.3 Algebraic Manipulation of Multivariate Functions

	Chapter 26. Minimizing Univariate Functions
	26.1 Bracketing a Minimum
	26.2 Minimizing Functions Without Calculating the Derivative
	26.3 Minimizing Derivable Functions

	Chapter 27. Minimizing Multivariate Functions
	27.1 Minimizing Functions Without Calculating the Derivative
	27.2 Minimizing Derivable Functions

	Chapter 28. Simulated Annealing
	28.1 Temperature
	28.2 Annealing Schedules
	Linear Annealing Schedules
	Custom Annealing Schedules

	28.3 Minimizing Functions by Simulated Annealing
	28.4 Annealing History

	Chapter 29. Linear Programming
	29.1 Encapsulating LP Problems
	Adding Bounds and Constraints

	29.2 Solving LP Problems

	Chapter 30. Nonlinear and Quadratic Programming
	30.1 Objective and Constraint Function Classes
	Objective Function Classes
	Constraint Function Classes

	30.2 Nonlinear Programming
	Encapsulating the Problem
	Adding Bounds and Constraints
	Solving the Problem
	Stochastic Hill Climbing
	Sequential Quadratic Programming (SQP)


	30.3 Quadratic Programming
	Encapsulating the Problem
	Adding Bounds and Constraints
	Solving the Problem
	Active Set
	Interior Point


	30.4 Constrained Least Squares
	Encapsulating the Problem
	Adding Bounds and Constraints
	Solving the Problem


	Chapter 31. Fitting Polynomials
	31.1 Creating PolynomialLeastSquares
	31.2 Properties of PolynomialLeastSquares

	Chapter 32. Nonlinear Least Squares
	32.1 Nonlinear Least Squares Interfaces
	Minimization
	Minimization Results
	Implementations

	32.2 Trust-Region Minimization
	Constructing a TrustRegionMinimizer
	Minimization
	Linear Bound Constraints
	Minimization Results

	32.3 Levenberg-Marquardt Minimization
	Constructing a LevenbergMarquardtMinimizer
	Minimization
	Minimization Results

	32.4 Nonlinear Least Squares Curve Fitting
	Generalized One Variable Functions
	Encapsulating One Variable Functions
	Predefined Functions
	Constructing a OneVariableFunctionFitter
	Fitting Data
	Fit Results

	32.5 Nonlinear Least Squares Surface Fitting
	Generalized Multivariable Functions
	Encapsulating Generalized Multivariable Functions
	Constructing a MultiVariableFunctionFitter
	Fitting Data
	Fit Results


	Chapter 33. Finding Roots of Univariate Functions
	33.1 Finding Function Roots Without Calculating the Derivative
	33.2 Finding Function Roots of Derivable Functions

	Chapter 34. Integrating Multivariable Functions
	34.1 Creating TwoVariableIntegrators
	34.2 Integrating Functions of Two Variables

	Chapter 35. Differential Equations
	35.1 Encapsulating Differential Equations
	35.2 Solving Differential Equations
	Constructing RungeKuttaSolver Instances
	Solving First Order Initial Value Problems

	35.3 Dormand–Prince Method
	35.4 Stiff Equations


	Part V - Statistics
	Chapter 36. Statistics Introduction
	36.1 Product Features
	36.2 Namespaces

	Chapter 37. Data Frames
	37.1 Column Types
	Creating Columns
	Adding and Removing Data
	Accessing Column Data
	Column Properties
	Reordering Column Data
	Missing Values
	Transforming Column Data
	Exporting Column Data

	37.2 Creating DataFrames
	Creating Empty DataFrames
	Creating DataFrames from Arrays of Columns
	Creating DataFrames from Matrices
	Creating DataFrames from ADO.NET Objects
	Creating DataFrames from Strings

	37.3 Adding and Removing Columns
	37.4 Adding and Removing Rows
	Modifying Row Keys

	37.5 Properties of DataFrames
	37.6 Accessing DataFrames
	Accessing Elements
	Accessing Columns
	Accessing Rows

	37.7 Subsets
	Creating Subsets
	Properties of Subsets
	Accessing Elements
	Logical Operations on Subsets
	Arithmetic Operations on Subsets
	Manipulating Subsets
	Groupings
	Random Samples

	37.8 Accessing Sub-Frames
	37.9 Reordering DataFrames
	Sorting Rows
	Permuting Rows and Columns

	37.10 Factors
	Creating Factors
	Properties of Factors
	Accessing Factors
	Creating Groupings with Factors

	37.11 Cross-Tabulation
	Column Delegates
	Applying Column Delegates to Tabulated Data

	37.12 Exporting Data from DataFrames
	Exporting to a Matrix
	Exporting to a String
	Exporting to an ADO.NET DataTable
	Binary and SOAP Serialization


	Chapter 38. Descriptive Statistics
	38.1 Column Types
	38.2 Missing Values
	38.3 Counts and Sums
	38.4 Min/Max Functions
	38.5 Ranks, Percentiles, Deciles, and Quartiles
	38.6 Central Tendency
	38.7 Spread
	38.8 Shape
	38.9 Covariance, Correlation, and Autocorrelation
	38.10 Sorting
	38.11 Logical Functions

	Chapter 39. Special Functions
	39.1 Combinatorial Functions
	39.2 Gamma Function
	39.3 Beta Function

	Chapter 40. Probability Distributions
	40.1 Distribution Classes
	Beta Distribution
	Binomial Distribution
	Chi-Square Distribution
	Exponential Distribution
	F Distribution
	Gamma Distribution
	Geometric Distribution
	Johnson Distribution
	Logistic Distribution
	Log-Normal Distribution
	Negative Binomial Distribution
	Normal Distribution
	Poisson Distribution
	Student’s t Distribution
	Triangular Distribution
	Uniform Distribution
	Weibull Distribution

	40.2 Correlated Random Inputs
	Constructing Correlator Instances
	Correlating Random Inputs
	Correlator Properties
	Convenience Method

	40.3 Box-Cox Power Transformations

	Chapter 41. Hypothesis Tests
	41.1 Common Interface
	Static Properties
	Creating Hypothesis Test Objects
	Properties of Hypothesis Test Objects
	Modifying Hypothesis Test Objects
	Printing Results

	41.2 One Sample Z-Test
	41.3 One Sample T-Test
	41.4 Two Sample Paired T-Test
	41.5 Two Sample Unpaired T-Test
	41.6 Two Sample F-Test
	41.7 Pearson’s Chi-Square Test
	41.8 Fisher’s Exact Test

	Chapter 42. Linear Regression
	42.1 Creating Linear Regressions
	Parameter Calculation by Least Squares Minimization
	Intercept Parameters

	42.2 Regression Results
	Variance Inflation Factor

	42.3 Predictions
	42.4 Accessing and Modifying the Model
	Accessing and Modifying Predictors
	Accessing and Modifying Observations
	Accessing and Modifying the Intercept Option
	Updating the Entire Model

	42.5 Significance of Parameters
	Creating Linear Regression Parameter Objects
	Properties Linear Regression Parameters
	Hypothesis Tests
	Updating Linear Regression Parameters

	42.6 Significance of the Overall Model

	Chapter 43. Logistic Regression
	43.1 Regression Calculators
	43.2 Creating Logistic Regressions
	Design Variables

	43.3 Checking for Convergence
	43.4 Goodness of Fit
	43.5 Parameter Estimates
	43.6 Predicted Probabilities
	43.7 Auxiliary Statistics

	Chapter 44. Analysis of Variance
	44.1 One-Way ANOVA
	Creating One-Way ANOVA Objects
	The One-Way ANOVA Table
	Grand Mean, Group Means, and Group Sizes
	Critical Value of the F Statistic
	Updating One-Way ANOVA Objects

	44.2 One-Way Repeated Measures ANOVA
	Creating One-Way RANOVA Objects
	The One-Way RANOVA Table
	Grand Mean, Subject Means, and Treatment Means
	Critical Value of the F Statistic
	Updating One-Way RANOVA Objects

	44.3 Two-Way Balanced ANOVA
	Creating Two-Way ANOVA Objects
	The Two-Way ANOVA Table
	Cell Data
	Grand Mean, Cell Means, and Group Means
	ANOVA Regression Parameters

	44.4 Two-Way Unbalanced ANOVA
	Creating UnbalancedTwo-Way ANOVA Objects
	Unbalanced Two-Way ANOVA Tables and Regression Parameters

	44.5 Two-Way Repeated Measures ANOVA
	Creating Two-Way RANOVA Objects
	Two-Way RANOVA Tables


	Chapter 45. Non-Parametric Tests
	45.1 One Sample Kolmogorov-Smirnov Test
	45.2 Two Sample Kolmogorov-Smirnov Test
	45.3 Shapiro-Wilk Test
	45.4 One Sample Anderson-Darling Test
	45.5 Kruskal-Wallis Test
	Creating Kruskal-Wallis Objects
	The Kruskal-Wallis Table
	Ranks, Grand Mean Ranks, Group Means Ranks, and Group Sizes
	Critical Value of the Test Statistic
	Updating Kruskal-Wallis Test Objects

	45.6 Wilcoxon Signed-Rank Test
	Creating Wilcoxon Signed-Rank Objects


	Chapter 46. Multivariate Techniques
	46.1 Principal Component Analysis
	Creating Principal Component Analyses
	Principal Component Analysis Results

	46.2 Factor Analysis
	Creating Factor Analyses
	Factor Analysis Results
	Factor Scores

	46.3 Hierarchical Cluster Analysis
	Distance Functions
	Linkage Functions
	Creating Cluster Analyses
	Cluster Analysis Results
	Reusing Cluster Analysis Objects

	46.4 K-Means Clustering
	Creating KMeansClustering Objects
	Stopping Criteria
	Clustering
	Cluster Analysis Results


	Chapter 47. Nonnegative Matrix Factorization
	47.1 Nonnegative Matrix Factorization
	Update Algorithms

	47.2 Data Clustering Using NMF
	Creating NMFClustering Instances
	Performing the Factorization
	Cluster Results
	Computing a Consensus Matrix


	Chapter 48. Partial Least Squares
	48.1 Computing a PLS Regression
	48.2 Error Checking
	48.3 Predicted Values
	48.4 Analysis of Variance
	48.5 PLS Algorithms
	48.6 Cross Validation
	Jackknifing of Regression Coefficients

	48.7 Partial Least Squares Discriminant Analysis

	Chapter 49. Goodness of Fit
	49.1 Significance of the Overall Model
	49.2 Significance of Parameters
	Creating Goodness of Fit Parameter Objects
	Properties of Goodness of Fit Parameters
	Hypothesis Tests


	Chapter 50. Process Control
	50.1 Process Capability
	50.2 Process Performance
	50.3 Z Bench


	Part VI - Miscellaneous Topics
	Chapter 51. Serialization
	51.1 Binary Serialization
	51.2 SOAP Serialization
	51.3 XML Serialization

	Chapter 52. Database Integration
	52.1 Creating ADO.NET Objects from Vectors and Matrices
	52.2 Creating Vector and Matrices from ADO.NET Objects

	Chapter 53. Error Handling
	53.1 Exception Types


	Index

