CONTENTS

Part I - Introduction

Chapter 1. Overview ... 1

1.1 Product Components ... 1

1.2 Software Requirements .. 2

1.3 NMath Assemblies ... 2
Microsoft Solver Foundation 3

1.4 NMath License Key .. 3
Evaluation License 3
Product License 3

1.5 NMath Configuration .. 4
Logging 5
License Key 5
Native Location 6
MKL Threading Control 6
MKL Conditional Numerical Reproducibility (CNR) 6

1.6 Building and Deploying NMath Applications ... 7
License Key 7
C++ Runtime 8

1.7 Web Applications .. 8
Referencing NMath 8
Kernel Assemblies and Native DLLs 9
NMath Configuration 9

1.8 Very Large Objects ... 10
Very Large Objects with ASP.NET 11

1.9 Documentation .. 12
This Manual 12

1.10 Technical Support .. 13
Part II - NMath Core

Chapter 2. NMath Core

Chapter 3. Complex Number Types

3.1 Creating Complex Numbers

3.2 Value Operations on Complex Numbers

3.3 Logical Operations on Complex Numbers

3.4 Arithmetic Operations on Complex Numbers

3.5 Functions of Complex Numbers

Chapter 4. Viewing Data

4.1 DataBlock Classes

4.2 Slices and Ranges

Chapter 5. Vector Classes

5.1 Class Names

5.2 Creating Vectors

iv NMath User’s Guide
6.5 Arithmetic Operations on Matrices ..63

6.6 Vector Views ...65
 Row and Column Views 66
 Diagonal Views 66
 Arbitrary Slices 66

6.7 Functions of Matrices ..67
 Matrix Transposition 67
 Matrix Norms 67
 Matrix Products 68
 Matrix Inverse and Pseudoinverse 69
 Rounding Functions 70
 Sums and Differences 71
 Min/Max Functions 72
 Statistical Functions 72
 Trigonometric Functions 73
 Transcendental Functions 73
 Absolute Value and Square Root 74
 Sorting Functions 74
 Complex Matrix Functions 75

6.8 Generic Functions ..75
 Applying Elementwise Functions 76
 Applying Columnwise Functions 76

6.9 Matrix Enumeration ...77

Chapter 7. Solutions of Linear Systems ...79

7.1 Class Names ...79

7.2 Creating LU Factorizations ...80

7.3 Using LU Factorizations ...81
 Component Matrices 81
 Solving for Right-Hand Sides 81
 Computing Inverses, Determinants, and Condition Numbers 82

7.4 Static Methods ...84

Chapter 8. Least Squares ..87

8.1 Class Names ...87
8.2 Creating Least Squares Solutions .. 88
8.3 Using Least Squares Solutions .. 89
8.4 Nonnegative Least Squares Solutions ... 90

Chapter 9. Random Number Generators ... 91

9.1 Scalar Random Number Generators .. 91
 Underlying Uniform Generators 92
 Generating Random Numbers 93
 Random Seeds 95

9.2 Vectorized Random Number Generators 96
 Generating Random Numbers 98
 Successive Random Numbers 99
 Independent Streams 100
 Quasirandom Numbers 102

Chapter 10. Fourier Transforms, Convolution and Correlation 103

10.1 Fast Fourier Transforms .. 103
 FFT Classes 103
 Creating FFT Instances 104
 Scale Factors 104
 Computing FFTs 105
 Unpacking Real Results 106
 Inverting Real Results 107
 Strided Signals 108

10.2 Convolution and Correlation .. 110
 Convolution and Correlation Classes 110
 Creating Convolution and Correlation Instances 111
 Convolution and Correlation Properties 111
 Computing Convolutions and Correlations 112
 Windowing Options 112

Chapter 11. Discrete Wavelet Transforms ... 115

11.1 Creating Wavelets ... 115
Chapter 12. Histograms

12.1 Creating Histograms

12.2 Adding Data to Histograms

12.3 Value Operations of Histograms

12.4 Displaying Histograms

Chapter 13. Calculus

13.1 Encapsulating Functions

13.2 Numerical Integration

13.3 Differentiation

13.4 Polynomials

13.5 Function Interpolation

Linear Spline Interpolation
Cubic Spline Interpolation
Smooth Splines
Chapter 14. Signal Processing ... 145

14.1 Moving Window Filtering ... 145
 Creating Moving Window Filter Objects 145
 Moving Window Filter Properties 148
 Filtering Data 148

14.2 Savitzky-Golay Filtering ... 149
 Creating Savitzky-Golay Filter Objects 149
 Savitzky-Golay Filter Properties 150
 Filtering Data 150

14.3 Savitzky-Golay Peak Finding .. 151
 Creating Savitzky-Golay Peak Finders 151
 Savitzky-Golay Peak Finder Results 152
 Advanced Savitzky-Golay Peak Finder Properties 153

14.4 Rule-Based Peak Finding ... 153
 Creating Rule-Based Peak Finders 153
 Adding Rules 154
 Rule-Based Peak Finder Results 154

Chapter 15. Special Functions ... 157

15.1 Special Functions ... 157

Part III - Matrix Analysis

Chapter 16. Matrix Functions ... 163

Chapter 17. Structured Sparse Matrix Types .. 165

 17.1 Lower Triangular Matrices ... 165
 17.2 Upper Triangular Matrices ... 166
 17.3 Symmetric Matrices .. 167
17.4 Hermitian Matrices ... 168
17.5 Banded Matrices ... 168
17.6 Tridiagonal Matrices ... 170
17.7 Symmetric Banded Matrices ... 171
17.8 Hermitian Banded Matrices .. 172

Chapter 18. Using The Structured Sparse Matrix Classes ... 173

18.1 Creating Matrices ... 173
 Creating Default Matrices 173
 Creating Sparse Matrices from General Matrices 175
 Creating Sparse Matrices from Other Sparse Matrices 176
 Creating Sparse Matrices from a Data Vector 177
 Implicit Conversion 178
 Copying Matrices 178

18.2 Value Operations on Matrices ... 179
 Accessing and Modifying Matrix Values 180
 Resizing a Matrix 181

18.3 Logical Operations on Matrices ... 182

18.4 Arithmetic Operations on Matrices 182

18.5 Vector Views .. 183

18.6 Functions of Matrices ... 184
 Matrix Transposition 184
 Matrix Inner Products 184
 Matrix Norms 185
 Trigonometric and Transcendental Functions 187
 Absolute Value 187
 Complex Matrix Functions 188

18.7 Generic Functions ... 188

Chapter 19. General Sparse Vectors and Matrices 191

19.1 Sparse Vectors ... 191
Storage Format 191
Creating Sparse Vectors 192
Accessing and Modifying Sparse Vector Values 193
Operations on Sparse Vectors 193
Sparse Vector Functions 194
Creating Dense Vectors from Sparse Vectors 194

19.2 Sparse Matrices .. 195
Storage Format 195
Creating Sparse Matrices 196
Accessing and Modifying Sparse Matrix Values 198
Operations on Sparse Matrices 199
Sparse Matrix Functions 199
Creating Dense Matrices from Sparse Matrices 200

19.3 Sparse Matrix Factorizations ... 200
Factorization Classes 200
Creating Factorizations 201
Using Factorizations 202

Chapter 20. Structured Sparse Matrix Factorizations 203

20.1 Factorization Classes .. 203

20.2 Creating Factorizations ... 204

20.3 Using Factorizations .. 206
Solving for Right-Hand Sides 206
Computing Inverses, Determinants, and Condition Numbers 208

Chapter 21. Least Squares Solutions ... 211

21.1 Ordinary Least Squares Methods .. 211
Least Squares Using Cholesky Factorization 211
Least Squares Using QR Decomposition 212
Least Squares Using SVD 212

21.2 Creating Ordinary Least Squares Objects 212

21.3 Using Ordinary Least Squares Objects 214
Testing for Goodness 214
Solving Least Squares Problems 214
Retrieving Information About the Original Matrix 215
21.4 Weighted Least Squares ...215

21.5 Iteratively Reweighted Least Squares218
Convergence Functions 219
Weighting Functions 221

Chapter 22. Decompositions ..223

22.1 QR Decompositions ...223
Creating QR Decompositions 223
Using QR Decompositions 225
Reusing QR Decompositions 227

22.2 Singular Value Decompositions ...228
Creating Singular Value Decompositions 228
Using Singular Value Decompositions 229
Reusing Singular Value Decompositions 231

Chapter 23. EigenValue Problems ..233

23.1 Eigenvalue Classnames ..233

23.2 Using the Eigenvalue Classes ..234
Constructing Eigenvalue Objects 234
Testing for Goodness 235
Retrieving Eigenvalues and Eigenvectors 235
Retrieving Information About the Original Matrix 236
Reusing Eigenvalue Decompositions 236

23.3 Using the Eigenvalue Server Classes237
Constructing Eigenvalue Servers 237
Configuring Eigenvalue Servers 237
Creating Eigenvalue Objects from a Server 239
Part IV - Analysis

Chapter 24. The Analysis Namespace ... 243

Chapter 25. Encapsulating Multivariate Functions 245
 25.1 Creating Multivariate Functions ... 245
 25.2 Evaluating Multivariate Functions .. 246
 25.3 Algebraic Manipulation of Multivariate Functions 246

Chapter 26. Minimizing Univariate Functions 249
 26.1 Bracketing a Minimum ... 249
 26.2 Minimizing Functions Without Calculating the Derivative 250
 26.3 Minimizing Derivable Functions ... 252

Chapter 27. Minimizing Multivariate Functions 255
 27.1 Minimizing Functions Without Calculating the Derivative 255
 27.2 Minimizing Derivable Functions ... 257

Chapter 28. Simulated Annealing ... 261
 28.1 Temperature .. 261
 28.2 Annealing Schedules ... 261
 Linear Annealing Schedules 262
 Custom Annealing Schedules 263
 28.3 Minimizing Functions by Simulated Annealing 264
 28.4 Annealing History ... 265
Chapter 29. Linear Programming

29.1 Encapsulating LP Problems
- Adding Bounds and Constraints 270

29.2 Solving LP Problems

Chapter 30. Nonlinear and Quadratic Programming

30.1 Objective and Constraint Function Classes
- Objective Function Classes 273
- Constraint Function Classes 275

30.2 Nonlinear Programming
- Encapsulating the Problem 276
- Adding Bounds and Constraints 278
- Solving the Problem 280

30.3 Quadratic Programming
- Encapsulating the Problem 284
- Adding Bounds and Constraints 284
- Solving the Problem 285

30.4 Constrained Least Squares
- Encapsulating the Problem 288
- Adding Bounds and Constraints 288
- Solving the Problem 289

Chapter 31. Fitting Polynomials

31.1 Creating PolynomialLeastSquares

31.2 Properties of PolynomialLeastSquares

Chapter 32. Nonlinear Least Squares

32.1 Nonlinear Least Squares Interfaces
- Minimization 296
- Minimization Results 298
- Implementations 298

32.2 Trust-Region Minimization
35.3 Dormand–Prince Method .. 332
35.4 Stiff Equations ... 335

Part V - Statistics

Chapter 6. Statistics Introduction .. 1

36.1 Product Features .. 1
36.2 Namespaces .. 2

Chapter 37. Data Frames ... 3

37.1 Column Types ... 4
 Creating Columns 4
 Adding and Removing Data 6
 Accessing Column Data 7
 Column Properties 7
 Reordering Column Data 8
 Missing Values 8
 Transforming Column Data 10
 Exporting Column Data 12

37.2 Creating DataFrames ... 12
 Creating Empty DataFrames 12
 Creating DataFrames from Arrays of Columns 13
 Creating DataFrames from Matrices 14
 Creating DataFrames from ADO.NET Objects 14
 Creating DataFrames from Strings 15

37.3 Adding and Removing Columns ... 16

37.4 Adding and Removing Rows ... 18
 Modifying Row Keys 20

37.5 Properties of DataFrames ... 21

37.6 Accessing DataFrames ... 22
Accessing Elements 22
Accessing Columns 22
Accessing Rows 23

37.7 Subsets ..25
Creating Subsets 25
Properties of Subsets 26
Accessing Elements 26
Logical Operations on Subsets 27
Arithmetic Operations on Subsets 27
Manipulating Subsets 28
Groupings 30
Random Samples 30

37.8 Accessing Sub-Frames ...30

37.9 Reordering DataFrames ..32
Sorting Rows 32
Permuting Rows and Columns 33

37.10 Factors ..34
Creating Factors 34
Properties of Factors 36
Accessing Factors 36
Creating Groupings with Factors 36

37.11 Cross-Tabulation ...40
Column Delegates 40
Applying Column Delegates to Tabulated Data 41

37.12 Exporting Data from DataFrames ...44
Exporting to a Matrix 44
Exporting to a String 45
Exporting to an ADO.NET DataTable 46
Binary and SOAP Serialization 47

Chapter 38. Descriptive Statistics ..49

38.1 Column Types ...50
38.2 Missing Values ...51
38.3 Counts and Sums ..53
38.4 Min/Max Functions ...54
38.5 Ranks, Percentiles, Deciles, and Quartiles ...54
38.6 Central Tendency ...56
38.7 Spread ...58
38.8 Shape ..59
38.9 Covariance, Correlation, and Autocorrelation60
38.10 Sorting ...62
38.11 Logical Functions ..62

Chapter 39. Special Functions ..65
39.1 Combinatorial Functions ...65
39.2 Gamma Function ..65
39.3 Beta Function ...66

Chapter 40. Probability Distributions ..67
40.1 Distribution Classes ..67
 Beta Distribution 69
 Binomial Distribution 70
 Chi-Square Distribution 71
 Exponential Distribution 72
 F Distribution 73
 Gamma Distribution 73
 Geometric Distribution 75
 Johnson Distribution 75
 Logistic Distribution 77
 Log-Normal Distribution 78
 Negative Binomial Distribution 79
 Normal Distribution 80
 Poisson Distribution 80
 Student's t Distribution 81
 Triangular Distribution 82
 Uniform Distribution 83
 Weibull Distribution 84
40.2 Correlated Random Inputs ..85
40.3 Box-Cox Power Transformations

Chapter 41. Hypothesis Tests

41.1 Common Interface

- Static Properties
- Creating Hypothesis Test Objects
- Properties of Hypothesis Test Objects
- Modifying Hypothesis Test Objects
- Printing Results

41.2 One Sample Z-Test

41.3 One Sample T-Test

41.4 Two Sample Paired T-Test

41.5 Two Sample Unpaired T-Test

41.6 Two Sample F-Test

41.7 Pearson’s Chi-Square Test

41.8 Fisher’s Exact Test

Chapter 42. Linear Regression

42.1 Creating Linear Regressions

- Parameter Calculation by Least Squares Minimization
- Intercept Parameters

42.2 Regression Results

- Variance Inflation Factor

42.3 Predictions

42.4 Accessing and Modifying the Model

- Accessing and Modifying Predictors
- Accessing and Modifying Observations
Accessing and Modifying the Intercept Option 122
Updating the Entire Model 122

42.5 Significance of Parameters...123
Creating Linear Regression Parameter Objects 123
Properties Linear Regression Parameters 123
Hypothesis Tests 124
Updating Linear Regression Parameters 124

42.6 Significance of the Overall Model..125

Chapter 43. Logistic Regression..127
43.1 Regression Calculators ...127
43.2 Creating Logistic Regressions ...128
Design Variables 130
43.3 Checking for Convergence...131
43.4 Goodness of Fit...131
43.5 Parameter Estimates ...133
43.6 Predicted Probabilities ..134
43.7 Auxiliary Statistics ..135

Chapter 44. Analysis of Variance...137
44.1 One-Way ANOVA ..137
Creating One-Way ANOVA Objects 137
The One-Way ANOVA Table 139
Grand Mean, Group Means, and Group Sizes 140
Critical Value of the F Statistic 141
Updating One-Way ANOVA Objects 141

44.2 One-Way Repeated Measures ANOVA ..141
Creating One-Way RANOVA Objects 142
The One-Way RANOVA Table 143
Grand Mean, Subject Means, and Treatment Means 144
Critical Value of the F Statistic 144
Updating One-Way RANOVA Objects 145
44.3 Two-Way Balanced ANOVA .. 145
 Creating Two-Way ANOVA Objects 145
 The Two-Way ANOVA Table 146
 Cell Data 147
 Grand Mean, Cell Means, and Group Means 148
 ANOVA Regression Parameters 148

44.4 Two-Way Unbalanced ANOVA .. 154
 Creating Unbalanced Two-Way ANOVA Objects 154
 Unbalanced Two-Way ANOVA Tables and Regression Parameters 154

44.5 Two-Way Repeated Measures ANOVA .. 156
 Creating Two-Way RANOVA Objects 156
 Two-Way RANOVA Tables 157

Chapter 45. Non-Parametric Tests ... 159

45.1 One Sample Kolmogorov-Smirnov Test ... 159

45.2 Two Sample Kolmogorov-Smirnov Test .. 161

45.3 Shapiro-Wilk Test .. 161

45.4 One Sample Anderson-Darling Test ... 162

45.5 Kruskal-Wallis Test .. 163
 Creating Kruskal-Wallis Objects 163
 The Kruskal-Wallis Table 165
 Ranks, Grand Mean Ranks, Group Means Ranks, and Group Sizes 166
 Critical Value of the Test Statistic 167
 Updating Kruskal-Wallis Test Objects 168

45.6 Wilcoxon Signed-Rank Test ... 168
 Creating Wilcoxon Signed-Rank Objects 168

Chapter 46. Multivariate Techniques ... 171

46.1 Principal Component Analysis .. 171
 Creating Principal Component Analyses 171
 Principal Component Analysis Results 172

46.2 Factor Analysis .. 174
 Creating Factor Analyses 174
Chapter 47. Nonnegative Matrix Factorization ... 193

47.1 Nonnegative Matrix Factorization ... 193
 Update Algorithms 194

47.2 Data Clustering Using NMF .. 196
 Creating NMFClustering Instances 197
 Performing the Factorization 197
 Cluster Results 198
 Computing a Consensus Matrix 200

Chapter 48. Partial Least Squares .. 205

48.1 Computing a PLS Regression .. 206

48.2 Error Checking .. 207

48.3 Predicted Values .. 207

48.4 Analysis of Variance ... 208

48.5 PLS Algorithms ... 208

48.6 Cross Validation .. 209
 Jackknifing of Regression Coefficients 210

48.7 Partial Least Squares Discriminant Analysis .. 211
Chapter 49. Goodness of Fit .. 215

49.1 Significance of the Overall Model ... 215

49.2 Significance of Parameters .. 217
Creating Goodness of Fit Parameter Objects 217
Properties of Goodness of Fit Parameters 218
Hypothesis Tests 218

Chapter 50. Process Control .. 219

50.1 Process Capability .. 219

50.2 Process Performance .. 220

50.3 Z Bench ... 221

Part VI - Miscellaneous Topics

Chapter 51. Serialization ... 225

51.1 Binary Serialization .. 225

51.2 SOAP Serialization .. 226

51.3 XML Serialization ... 228

Chapter 52. Database Integration ... 231

52.1 Creating ADO.NET Objects from Vectors and Matrices231

52.2 Creating Vector and Matrices from ADO.NET Objects232

Chapter 53. Error Handling ... 235

53.1 Exception Types ... 235
PART I - INTRODUCTION
Welcome to the *NMath User’s Guide*.

CenterSpace Software’s *NMath™* numerical library provides object-oriented components for mathematical, engineering, scientific, and financial applications on the .NET platform. *NMath* provides a modern, easy to use, object-oriented interface, including a very rich set of matrix and vector manipulation semantics. Fully compliant with the Microsoft Common Language Specification (CLS), all *NMath* routines are callable from any .NET language, including C#, Visual Basic, and F#.

For most computations, *NMath* uses the Intel® Math Kernel Library (MKL), which contains highly-optimized, extensively-threaded versions of the C and FORTRAN public domain computing packages known as the BLAS (Basic Linear Algebra Subroutines) and LAPACK (Linear Algebra PACKage). This gives *NMath* classes performance levels comparable to C, and often results in performance an order of magnitude faster than non-platform-optimized implementations.

1.1 Product Components

All *NMath* types are organized into a single namespace for simplicity.

- *CenterSpace.NMath.Core*

Prior to *NMath* 7.0 the library was organized in four namespaces: Core, Matrix, Analysis, and Stats. Although these namespaces can still be included for backward compatibility, they all now simply forward to the single *CenterSpace.NMath.Core* namespace.

To avoid using fully qualified names, preface your code with the namespace statement.

Code Example – C#

```csharp
using CenterSpace.NMath.Core;
```

Code Example – VB

```vb
Imports CenterSpace.NMath.Core
```

All *NMath* code shown in this manual assumes the presence of such namespace statements.
1.2 Software Requirements

NMath requires the following additional software to be installed on your system:

- To use the **NMath** library, you need the Microsoft .NET Framework installed on your system. The .NET Framework is available without cost from:

 https://dotnet.microsoft.com/

- Use of Microsoft Visual Studio .NET (or other .NET IDE) is strongly encouraged. However, the .NET Framework includes command line compilers for .NET languages, so an IDE is not strictly required.

- Viewing PDF documentation requires Adobe Acrobat Reader, available without cost from:

 http://www.adobe.com

The Intel® Math Kernel Library (MKL) and Microsoft Solver Foundation Standard Edition are included with **NMath**. You do not need to provide your own versions.

1.3 NMath Assemblies

The **NMath** installer places the following .NET assemblies in directory `<installdir>/Assemblies`:

- **NMath.dll**, the main **NMath** assembly

- **Microsoft.Solver.Foundation.dll**, the Standard Edition of the Microsoft Solver Foundation (see below)

- **System.Configuration.ConfigurationManager.dll** (>= 4.6.0)

Native assemblies are placed in architecture-specific subdirectories: `<installdir>/Assemblies/x86`

- **NMathKernelx86.dll**, the 32-bit kernel

- **nmath_native_x86.dll**, 32-bit native code, including the Intel® Math Kernel Library (MKL)

- **nmath_sf_x86.dll**, 32-bit native code for special functions

- **libiomp5md.dll**, dynamically-linked 32-bit Intel OMP threading library
The installer also places the .NET assemblies in your global assembly cache (GAC). (The 64-bit kernel is only put in the GAC if you have the 64-bit .NET framework installed.) The native DLLs are linked resources to the corresponding kernel assemblies.

Microsoft Solver Foundation

NMath linear programming, nonlinear programming, and quadratic programming classes are built on the Microsoft Solver Foundation (MSF). The Standard Edition of MSF is included with NMath (Microsoft.Solver.Foundation.dll), but is limited to 100,000 non-zero coefficients. Note that this is not a limit on the number of variables, but rather on the total number of all non-zero coefficients used to specify the constraints. Given \(n \) variables and \(m \) constraints, there are between 0 and \(m \times n \) non-zero coefficients.

1.4 NMath License Key

NMath license information is stored in a license key which must be found at runtime. The license key governs the properties of your NMath installation.

Evaluation License

If no license key is found, a default evaluation license key is used which provides a free 30-day evaluation period for NMath on the current machine.

Product License

When you purchase one or more developer seats of NMath, you will be issued a license key describing the terms of your license. To enter your license key:

1. Open CenterSpace Software | License NMath from your Start menu.
2. Enter your name, email, and license key, and click OK.
The license key will be written to the registry.

You can also specify your license key using various other mechanisms: by environment variable, by configuration app setting, and programmatically. These mechanisms may be preferable in group development environments, and at deployment. (See Section 1.5 for more information.)

1.5 NMath Configuration

NMath configuration settings govern the loading of the **NMath** license key, kernel assembly, and native library.

Property values can be set three ways:

1. by environment variable
2. by configuration setting
3. by programmatically setting properties on class **NMathConfiguration**

NOTE—Settings are applied in that order, and resetting a property takes precedent over any earlier values.

For example, here an environment variable is used:

```
NMATH_NATIVE_LOCATION="C:\temp"
```

This code uses an application configuration file:

```xml
<configuration>
  <appSettings>
    <add key="NMathNativeLocation" value="C:\temp" />
  </appSettings>
</configuration>
```

Configuration settings may also be placed in a DLL configuration file placed next to the main **NMath** assembly (**NMath.DLL.config**, for example). If a setting is specified in both a DLL and an application configuration file, the application configuration takes precedence.

This code accomplishes the same thing programmatically:

```
NMathConfiguration.NativeLocation = @"C:\temp";
```

The supported environment variables, configuration app setting keys, and property names are show in Table 1.
NOTE—Assembly loading and license checking is normally performed the first time you make an NMath call. If you wish to explicitly control when these operations occur—at application start-up, for example—use the static NMathConfiguration.Init() method.

Logging

To debug configuration issues, specify a log file location. For example, setting the property programmatically:

```csharp
NMathConfiguration.LogLocation = @"C:\temp";
```

NOTE—The specified location must exist.

Setting a log file location turns on logging at that location, using the currently defined log filename (NMathConfiguration.log, unless previously modified).

To turn off logging, set the log location to `null`.

For verbose logging, such as all native function calls, set NMathConfiguration.LogVerbose to `true`.

License Key

You can specify your NMath license key using the NMathConfiguration.LicenseKey property, or the equivalent environment variable or app config setting. If so, any keys in the registry are ignored.

<table>
<thead>
<tr>
<th>Environment Variable</th>
<th>Configuration Setting</th>
<th>Property or Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMATH_LOG_FILENAME</td>
<td>NMathLogFilename</td>
<td>LogFilename</td>
</tr>
<tr>
<td>NMATH_LOG_LOCATION</td>
<td>NMathLogLocation</td>
<td>LogLocation</td>
</tr>
<tr>
<td>NMATH_LICENSE_KEY</td>
<td>NMathLicenseKey</td>
<td>LicenseKey</td>
</tr>
<tr>
<td>NMATH_NATIVE_LOCATION</td>
<td>NMathNativeLocation</td>
<td>NativeLocation</td>
</tr>
<tr>
<td>NMATH_MKL_NUM_THREADS</td>
<td>NMathMKLNumThreads</td>
<td>SetMKLNumThreads()</td>
</tr>
<tr>
<td>NMATH_REPRODUCIBILITY</td>
<td>NMathReproducibility</td>
<td>Reproducibility</td>
</tr>
</tbody>
</table>
Native Location

The NMath native assemblies must be found at runtime (Section 1.3). Failure to locate these files is one of the most common configuration issues, especially in deployment. The search order is determined by your PATH. Some standard locations are automatically prepended to your (process-specific) PATH. You can also use the NMathConfiguration.NativeLocation property, or the equivalent environment variable or app config setting, to prepend another location. An architecture-specific /x86 and /x64 subdirectory is also prepended. The appropriate architecture-specific natives are loaded at runtime.

MKL Threading Control

MKL contains highly optimized, extensively threaded math routines. In rare cases, these can cause conflicts between the Intel OMP threading library (libiomp5md.dll) and the .NET threading model. If your .NET application is itself highly multi-threaded, you may wish to use MKL in single-threaded mode. Set the suggested number of threads to 1 using the SetMKLNumThreads() method, or use the equivalent environment variable or app config setting.

NOTE—MKL does not always have a choice on the number of threads for certain reasons, such as system resources. Although Intel MKL may actually use a different number of threads from the number suggested, this method enables you to instruct the library to try using the suggested number when the number used in the calling application is unavailable.

MKL Conditional Numerical Reproducibility (CNR)

For general single and double precision IEEE floating-point math, the order of computation matters. For example, in infinite precision arithmetic, the associative property holds, \((a+b)+c = a+(b+c)\), but on a computer using double precision floating-point numbers, rounding error is introduced, and the equality is not guaranteed. The order of floating-point operations within a single executable program is affected by code-path selection based on a variety of factors: run-time processor dispatching, data array alignment, variation in number of threads, threaded algorithms, and so forth.

If strict reproducibility is a requirement, set the Reproducibility property equal to true, or use the equivalent environment variable or app config setting. You must also set the suggested number of MKL threads to a constant value (see above).

For more information, see
NOTE—Using MKL Conditional Numerical Reproducibility can significantly degrade performance, and is only recommended for use during testing or debugging, such as comparison to previous ‘gold’ results.

1.6 Building and Deploying NMath Applications

To use NMath types in your application, add a reference to NMath.dll. It is not necessary to add references to the kernel assemblies—the appropriate kernel assembly for your platform is loaded at runtime, and the appropriate native DLL is linked to the kernel. The search order is the same as for the common language runtime: first the GAC is searched, then the directory containing the currently executing assembly, and so on. (See Section 1.5 for more information.)

We recommend that you build your application using the Any CPU build configuration, so you can deploy to either 32-bit or 64-bit environments. (If you are building for .NET 4.5 or higher, also ensure that the Prefer 32-bit flag is unchecked, under Build | Platform target in your project properties.)

To deploy your application, either

- Install the NMath .NET assemblies in the GAC (NMath.dll, and x86/NMathKernelx86.dll or x64/NMathKernelx64.dll, or both)—the appropriate native DLLs will also be placed in the GAC, since they are linked resources to the kernel assemblies; or

- Place the main .NET assembly (NMath.dll) in the same directory as your application. Use the NativeLocation property, or the equivalent environment variable or app config setting, to specify the location of the native assemblies (Section 1.5). The specified location should contain /x86 and /x64 subdirectories. The appropriate architecture-specific natives are loaded at runtime.

If your application fails to locate the kernel or native assemblies at runtime, enable configuration logging (Section 1.5), which will provide information on the search path.

License Key

A valid license key must accompany your deployed NMath code. The key can be specified using an environment variable, app config setting, or compiled in your code for greatest security. (See Section 1.5 for more information.)
C++ Runtime

NMath has a dependency on the Microsoft Visual C++ 2017 runtime. The **NMath** installer places the C++ runtime on your development machine, if necessary. However, when you deploy your application, you may need to add it to your installer.

There are two ways to do this:

- **Add the Microsoft Visual C++ 2017 merge module to your installer.** It can be found here:
 - x86: `C:\Program Files (x86)\Common Files\Merge Modules\Microsoft_VC120_CRT_x86.msm`
 - x64: `C:\Program Files (x86)\Common Files\Merge Modules\Microsoft_VC120_CRT_x64.msm`

 or on the web.

- **Use the Microsoft Visual C++ 2017 redistributable:**

 Note: Visual C++ 2015, 2017 and 2019 all share the same redistributable files.

1.7 Web Applications

You can create ASP.NET web applications using **NMath**, just like any other .NET application. However, there are a few additional considerations for building and deploying ASP.NET applications.

Referencing NMath

To use **NMath** types in your web application, add a reference to **NMath.dll**, just as you would with other types of .NET applications. If you are using web projects in Visual Studio, you can simply right-click the **References** folder, and select the **Add Reference...** command. If you specify **Copy Local** equals **true** in the reference’s properties, then the assembly will be copied to the `/bin` directory of the web application, facilitating deployment to a web server.

If you are not using web projects in Visual Studio—if you are using the **Open Web Site** command in Visual Studio, for example, or are using other development tools—you can alternatively specify the reference in the `web.config` file:
<configuration>
 <system.web>
 <compilation>
 <assemblies>
 <add assembly="NMath, Version=<Version>, Culture=neutral,
 PublicKeyToken=<Token>"/>
 </assemblies>
 </compilation>
 </system.web>
</configuration>

We recommend that you do not add references to the kernel assemblies, as the appropriate kernel assembly for your platform is loaded at runtime and the appropriate native DLL is linked to the kernel.

Kernel Assemblies and Native DLLs

For ASP.NET applications, Microsoft recommends that the /bin directory contain only .NET assemblies, not native DLLs.

If the deployment web server may not have NMath installed directly, then we recommend that the native DLLs be placed in a folder within the web application root directory, such as /NativeBin. This folder should then be copied to the deployment web server along with the rest of your application.

NMath Configuration

NMath settings can be configured as described in Section 1.5. However, when deploying web applications, especially to a shared hosting environment, it’s quite common not to know the details of the physical structure of the file system, and to have restricted access to the system’s environment variables. The references to resources within web applications are typically relative to the root of the virtual directory for the website, regardless of where they might physically reside on disk.

For this reason, the ASP.NET ~ operator can be used to specify the location of the NMath native libraries and the log file, relative to the web application root. That is, these can be specified in the web.config file like so:

```xml
<add key="NMathNativeLocation" value="~/NativeBin" />
<add key="NMathLogLocation" value="~/Logs" />
```

It is not sufficient to use relative paths, such as bin/, since the executing assembly is usually the ASP.NET worker process. Depending on the web server configuration, the working directory is usually a subdirectory of the Windows system directory (such as c:\windows\system32).
NOTE—The ~ operator can only be used in ASP.NET applications; specifying this in a Windows application will cause the path to be resolved incorrectly.

1.8 Very Large Objects

By default, the .NET runtime limits the size of any one object to 2 GB. For example, a matrix is limited to a theoretical maximum of $402,653,184$ doubles or $805,306,368$ floats —such as a $20,066 \times 20,066$ square DoubleMatrix or a $28,377 \times 28,377$ square FloatMatrix. With the release of .NET 4.5, developers can now create objects that exceed this limit by enabling gcAllowVeryLargeObjects in the run-time schema (x64 only), which controls the behavior of the .NET garbage collection system.

```xml
<configuration>
  <runtime>
    <gcAllowVeryLargeObjects enabled="true" />
  </runtime>
</configuration>
```

Very large objects are subject to the following restrictions:

- The maximum number of elements in an array is `UInt32.MaxValue`.
- The maximum index in any single dimension is $2,147,483,591$ (0x7FFFFFC7) for byte arrays and arrays of single-byte structures, and $2,146,435,071$ (0x7FEFFFFF) for other types.
- The maximum size for strings and other non-array objects is unchanged.

For more information, see

Underlying all NMath vectors and matrices is a contiguous 1D array called a data block (Chapter 4). Thus, the number of elements for vectors or matrices must be less than $2,146,435,071$. Table 2 summarizes the maximum size of various NMath objects under .NET 4.5 on a x64 OS with gcAllowVeryLargeObjects enabled.
The complex versions of these classes have the same maximum number of elements but occupy twice the memory.

To use `gcAllowVeryLargeObjects`, you must target .NET 4.5 or later versions.

Very Large Objects with ASP.NET

The `gcAllowVeryLargeObjects` flag can only be set per-process, and only when the CLR is initializing. It cannot be set in the application-level `Web.config` file, because the CLR is already initialized by the time that file is read.

The workaround is to specify a `CLRConfigFile` in the `asnet.config` file in the .NET framework installation. This little-known file is used to specify startup flags for both ASP.NET and CLR for those settings that are needed very early in the worker process lifetime, when the configuration system is not yet present.

Using `CLRConfigFile` allows you to specify an intermediate configuration file that the CLR can use for initialization. Once the CLR is up, ASP.NET will read your `Web.config` and run your application as normal.

For more information, see

https://weblogs.asp.net/owscott/setting-an-aspnet-config-file-per-application-pool

<table>
<thead>
<tr>
<th>Class</th>
<th>Maximum size (elements)</th>
<th>Memory size (GBytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FloatVector</td>
<td>2,146,435,071</td>
<td>7.996</td>
</tr>
<tr>
<td>DoubleVector</td>
<td>2,146,435,071</td>
<td>15.992</td>
</tr>
<tr>
<td>FloatMatrix</td>
<td>2,146,435,071</td>
<td>7.996</td>
</tr>
<tr>
<td>DoubleMatrix</td>
<td>2,146,435,071</td>
<td>15.992</td>
</tr>
</tbody>
</table>
1.9 Documentation

NMath includes the following documentation:

- The *NMath User’s Guide* (this manual)

 This document contains an overview of the product, and instructions on how to use it. You are encouraged to read the entire *User’s Guide*. The *NMath User’s Guide* is installed in:

 \(\text{installdir}/\text{Docs}/\text{NMath/UsersGuide.pdf}\)

 An HTML version of the *NMath User’s Guide* may be viewed online using your browser at:

 \(\text{http://www.centerspace.net/doc/NMath/user/}\)

- The *NMath Reference*

 Complete API reference documentation may be viewed online using your browser at:

 \(\text{http://www.centerspace.net/doc/NMathSuite/ref/}\)

- A readme file

 This document describes the results of the installation process, how to build and run code examples, and lists any late-breaking product issues. The readme file is installed in:

 \(\text{installdir}/\text{readme.txt}\)

This Manual

This manual assumes that you are familiar with the basics of .NET programming and object-oriented technology.

Most code examples in this manual are shown in both C# and Visual Basic. All *NMath* routines are callable from any .NET language.
This manual uses the following typographic conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Purpose</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courier</td>
<td>Function names, code, directories, file names, examples, and operating system commands.</td>
<td>DoubleMatrix.Transform() the Assemblies directory</td>
</tr>
<tr>
<td>italic</td>
<td>Conventional uses, such as emphasis and new terms.</td>
<td>The data-view model distinguishes between data and different views of the data.</td>
</tr>
<tr>
<td>bold</td>
<td>Class names, product names, and commands from an interface.</td>
<td>FloatComplexVector NMath Click OK.</td>
</tr>
</tbody>
</table>

1.10 **Technical Support**

Technical support is available according to the terms of your CenterSpace License Agreement. You can also purchase extended support contracts through the CenterSpace website:

http://www.centerspace.net

To obtain technical support, contact CenterSpace by email at:

mailto:support@centerspace.net

You can save time if you isolate the problem to a small test case before contacting Technical Support.
PART II - NMath Core
The `CenterSpace.NMath.Core` namespace is the unique `NMath` namespace. It includes the following core functionality:

- Single- and double-precision complex number classes.
- Full-featured vector and matrix classes for four datatypes: single- and double-precision floating point numbers, and single- and double-precision complex numbers.
- Flexible indexing using slices and ranges.
- Overloaded arithmetic operators with their conventional meanings for those .NET languages that support them, and equivalent named methods (`Add()`, `Subtract()`, and so on) for those that do not.
- Extension of standard mathematical functions, such as `Cos()`, `Sqrt()`, and `Exp()`, to work with vectors, matrices, and complex number classes.
- LU factorization for a matrix, as well as functions for solving linear systems, computing determinants, inverses, and condition numbers.
- Least Squares solutions.
- Random number generation from various probability distributions.
- Fast Fourier Transforms (FFTs), and linear convolution and correlation.
- Discrete Wavelet Transforms (DWTs).
- Classes for encapsulating functions of one variable, with support for numerical integration (Romberg and Gauss-Kronrod methods), differentiation (Ridders’ method), and algebraic manipulation of functions.
- Polynomial encapsulation, interpolation, and exact differentiation and integration.
- Data filtering, including a moving average filter and a Savitzky-Golay smoothing filter.
- Special functions, such as factorial, binomial, the gamma function and related functions, Bessel functions, elliptic integrals, and many more.
To avoid using fully qualified names, preface your code with an appropriate namespace statement. For example:

Code Example – C#

```csharp
using CenterSpace.NMath.Core;
```

Code Example – VB

```vbnet
imports CenterSpace.NMath.Core
```
In NMath, the FloatComplex and DoubleComplex structures represent complex numbers, consisting of real and imaginary parts of single- and double-precision floating point numbers. NMath defines these types as structures, rather than classes, for greater efficiency. Remember that structures are value types in .NET, and are always passed by value.

These types support equality operations, conversion from float, double, or a string representation, and basic arithmetic operations. They also provide static member functions for returning the argument (or phase) of a complex number, the complex conjugate, the norm (or modulus), and for converting from polar coordinates.

Trigonometric functions for complex numbers, and transcendental functions such as exponents, logarithms, powers, and square roots, are available in the NMathFunctions class.

3.1 Creating Complex Numbers

This section describes how to construct instances of FloatComplex and DoubleComplex.

Creating Complex Numbers from Numeric Values

You can construct complex number objects from a pair of numeric values representing the real and imaginary parts. If only a single value is passed, it is assumed to be the real part, and the imaginary part is set to 0.0. For example:

Code Example – C# complex numbers

```csharp
var c = new FloatComplex(1.3, 4.5); // 1.3 + 4.5i
var c2 = new DoubleComplex(6.5);   // 6.5 + 0.0i
```

Code Example – VB complex numbers

```vbnet
Dim C As New FloatComplex(1.3, 4.5) ' 1.3 + 4.5i
Dim C2 As New DoubleComplex(6.5)    ' 6.5 + 0.0i
```
The static `FromPolar()` function constructs a complex number with a given magnitude and phase angle:

Code Example – C# complex numbers

```csharp
var c = DoubleComplex.FromPolar( 2 * Math.Sqrt(2), Math.PI / 4 );
// c = 2.0 + 2.0i
```

Code Example – VB complex numbers

```vbnet
Dim C As DoubleComplex =
' c = 2.0 + 2.0i
```

Creating Complex Numbers from Strings

You can also construct complex number types from a string representation of the form `(real,imag)`. The parentheses are optional, and whitespace is ignored. Again, if only one value is supplied, it is assumed to be the real part. For instance, these are valid strings:

- `4.2,-5.1`
- `(4.2,-5.1)`
- `4.2`

These are *not* valid strings:

- `4.2 - 5.1i`
- `4.2 - 5.1`

Thus:

Code Example – C# complex numbers

```csharp
string s = “(1.1, -3.23)”;
var c = new DoubleComplex( s );
```

Code Example – VB complex numbers

```vbnet
Dim S As String = "(1.1, -3.23)"
Dim C As New DoubleComplex(S)
```

The static `Parse()` method performs the same function:

Code Example – C# complex numbers

```csharp
string s = “(1.1, -3.23)”;
DoubleComplex c = DoubleComplex.Parse( s );
```

Code Example – VB complex numbers

```vbnet
Dim S As String = "(1.1, -3.23)"
Dim C As DoubleComplex = DoubleComplex.Parse(S)
```
NOTE—Note that you cannot use parentheses to represent negative numbers, as is done in some financial formats, when parsing complex number strings.

Conversely, the overridden `ToString()` member function returns a string representation of complex number:

Code Example – C# complex numbers

```csharp
var c = new FloatComplex( 7.61, -1.2 );
Console.WriteLine( c.ToString() );  // prints "(7.61,-1.2)"
```

Code Example – VB complex numbers

```vbnet
Dim C As New FloatComplex(7.61, -1.2)
Console.WriteLine(C.ToString())  ' prints "(7.61,-1.2)"
```

A variant of the `ToString()` method also accepts a standard .NET numeric format string. For example, the format string "E" indicates exponential (scientific) notion.

Implicit Conversion

The implicit conversion operators for the complex number classes are shown in Figure 1. An arrow indicates implicit promotion.

Figure 1 – Implicit conversion for complex numbers

```
float          double
       ↓           ↓
  FloatComplex  DoubleComplex
```

3.2 Value Operations on Complex Numbers

Both `FloatComplex` and `DoubleComplex` have public instance variables `Real` and `Imag` that you can use to access and modify the real and imaginary parts of a complex number. For instance:

Code Example – C# complex numbers

```csharp
var c1 = new DoubleComplex( 1.0 );
var c2 = new DoubleComplex( 2.13, 5.6 );
c1.Imag = c2.Imag;
c1.Real = -7.77;
```
3.3 Logical Operations on Complex Numbers

Operator `==` tests for equality of two complex numbers, and returns `true` if `left.Real==right.Real` and `left.Imag==right.Imag`; otherwise, `false`. Following the convention of the .NET Framework, if both objects are `null`, they test equal. Operator `!=` returns the logical negation of `==`.

The `Equals()` member function also tests for equality. `NaNEquals()` ignores values that are Not-a-Number (NaN).

NOTE—NMath provides no comparison operators for `FloatComplex` and `DoubleComplex` because there is no standard ordering for complex numbers.

3.4 Arithmetic Operations on Complex Numbers

NMath provides overloaded arithmetic operators for complex numbers with their conventional meanings for those .NET languages that support them, and equivalent named methods for those that do not. Table 4 lists the equivalent
operators and methods.

Table 4 – Arithmetic operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Equivalent Named Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Add()</td>
</tr>
<tr>
<td>-</td>
<td>Subtract()</td>
</tr>
<tr>
<td>*</td>
<td>Multiply()</td>
</tr>
<tr>
<td>/</td>
<td>Divide()</td>
</tr>
<tr>
<td>Unary -</td>
<td>Negate()</td>
</tr>
</tbody>
</table>

All binary operators and equivalent named methods work either with two complex numbers, or with a complex number and a real value. For example, this C# code uses the overloaded operators:

Code Example – C# complex numbers

```csharp
var c1 = new DoubleComplex(3.2, 1.0);
var c2 = new DoubleComplex(-11.002, -6.57);
DoubleComplex c3 = c1 * c2;
c3 = (c1 / 3.5) - c2;
```

This Visual Basic code uses the equivalent named methods:

Code Example – VB complex numbers

```vbnet
Dim C1 As New DoubleComplex(3.2, 1.0)
Dim C2 As New DoubleComplex(-11.002, -6.57)
Dim C3 = DoubleComplex.Multiply(C1, C2)
c3 = (c1 / 3.5) - c2;
```

3.5 Functions of Complex Numbers

NMath provides a variety of functions that take complex numbers as arguments.

Conjugate, Norm, and Argument

NMath provides static functions on **FloatComplex** and **DoubleComplex** for common complex number functions:
The static `Conj()` function returns the conjugate of a complex number. The conjugate of a complex number $a + bi$ is defined as $a - bi$.

The static `Norm()` method returns the norm (or modulus) of a complex number, defined as the square root of the sum of the squares of the real and imaginary parts.

The static `Arg()` method returns the argument of a complex number, defined as the directed phase angle in polar coordinates.

For instance:

Code Example – C# complex numbers

```csharp
var c = new FloatComplex(-8.2, 3.4);
FloatComplex conj = FloatComplex.Conj(c);
float norm = FloatComplex.Norm(c);
float arg = FloatComplex.Arg(c);
```

Code Example – VB complex numbers

```vbnet
Dim C As New FloatComplex(-8.2, 3.4)
Dim Conj = FloatComplex.Conj(C)
Dim Norm = FloatComplex.Norm(C)
Dim Arg = FloatComplex.Arg(C)
```

Trigonometric Functions

NMath extends standard trigonometric functions `Sin()`, `Cos()`, `Sinh()`, `Cosh()`, `Tan()`, and `Tanh()` to take complex number arguments. Class **NMathFunctions** provides these functions as static methods; all take a single complex number as an argument and return a complex number as a result:

Code Example – C# complex numbers

```csharp
var c = new DoubleComplex(1.0, -3.9);
DoubleComplex sin = NMathFunctions.Sin(c);
DoubleComplex cos = NMathFunctions.Cos(c);
```

Code Example – VB complex numbers

```vbnet
Dim C As New DoubleComplex(1.0, -3.9)
Dim Sin = NMathFunctions.Sin(C)
Dim Cos = NMathFunctions.Cos(C)
```
Transcendental Functions

NMath extends standard transcendental functions `Exp()` and `Log()` to take complex arguments. Class *NMathFunctions* provides these functions as static methods. For example:

Code Example – C# complex numbers

```csharp
var c = new FloatComplex( -8.11, 3.04 );
FloatComplex exp = NMathFunctions.Exp( c );
FloatComplex log = NMathFunctions.Log( c );
```

Code Example – VB complex numbers

```vbnet
Dim C As New FloatComplex(-8.11, 3.04)
Dim Exp = NMathFunctions.Exp(C)
Dim Log = NMathFunctions.Log(C)
```

Class *NMathFunctions* also provides several static overloads of the exponential function `Pow()`. Versions exist to:

- raise a complex number to an integer exponent
- raise a complex number to a real exponent
- raise a complex number to a complex exponent
- raise a real value to a complex exponent

All return a complex number. For instance:

Code Example – C# complex numbers

```csharp
var c1 = new DoubleComplex( 12.932, -4.0 );
DoubleComplex c2 = NMathFunctions.Pow( c1, 3 );
DoubleComplex c3 = NMathFunctions.Pow( c1, 1.12 );
DoubleComplex c4 = NMathFunctions.Pow( c1, c3 );
DoubleComplex c5 = NMathFunctions.Pow( 5.2, c1 );
```

Code Example – VB complex numbers

```vbnet
Dim C1 As New DoubleComplex(12.932, -4.0)
Dim C2 = NMathFunctions.Pow(C1, 3)
Dim C3 = NMathFunctions.Pow(C1, 1.12)
Dim C4 = NMathFunctions.Pow(C1, C3)
Dim C5 = NMathFunctions.Pow(5.2, C1)
```

Absolute Value and Square Root

The static `Abs()` function on class *NMathFunctions* returns the absolute value of a complex number, which is simply equal to the norm:
Code Example – C# complex numbers

```csharp
var c = new DoubleComplex(7.99, 0.3);
double abs = NMathFunctions.Abs(c);
```

Code Example – VB complex numbers

```vbnet
Dim C As New DoubleComplex(7.99, 0.3)
Dim Abs = NMathFunctions.Abs(C)
```

NMath also extends the standard `Sqrt()` function to take a complex argument, again as a static method on class **NMathFunctions**. For example:

Code Example – C# complex numbers

```csharp
var c = new FloatComplex(-8.11, 3.04);
FloatComplex sqrt = NMathFunctions.Sqrt(c);
```

Code Example – VB complex numbers

```vbnet
Dim C As New FloatComplex(-8.11, 3.04)
Dim Sqrt = NMathFunctions.Sqrt(C)
```
NMath employs the *data-view* design pattern by distinguishing between data, and the different ways mathematical objects such as vectors and matrices view the data. For example, a contiguous array of numbers in memory might be viewed by one object as the elements of a vector, while another object might view the same data as the elements of a matrix, laid out row by row. At any given point in time, many different objects might share a given block of data. The data-view pattern has definite advantages for both storage efficiency and performance.

Combined with slicing, the data-view pattern also offers a very rich set of matrix and vector manipulation semantics.

4.1 DataBlock Classes

This section describes the data block classes that underlie the NMath matrix and vector types.

NOTE—You will rarely need to deal directly with data block objects.

Class Names

The classes that encapsulate blocks of data in NMath are named `<Type>DataBlock`, where `<Type>` is `Float`, `Double`, `FloatComplex`, or `DoubleComplex`. (See Chapter 3 for a description of the complex number structures.) Thus:

- The `FloatDataBlock` class represents an array of single-precision floating point numbers.
- The `DoubleDataBlock` class represents an array of double-precision floating point numbers.
- The `FloatComplexDataBlock` class represents an array of single-precision complex numbers.
- The `DoubleComplexDataBlock` class represents an array of double-precision complex numbers.
The data referenced by the **NMath** vector and matrix classes is in the form of an instance of one of the data block classes.

Data Block Properties

Each data block object contains a reference to an array of the appropriate datatype, and an offset into the array. For instance, a **FloatComplexDataBlock** object contains a reference to an array of **FloatComplex** instances.

Think of a data block as encapsulating the concept of a pointer without using unsafe code. The value of an equivalent pointer is the address of the first element of the array, plus the offset.

Data block classes have the following public, *read-only* properties:

- The **Data** property returns the array referenced by the data block.
- The **Offset** property returns the current offset into the array.
- The **Length** property returns the number of elements currently referenced by the data block.

Accessing the Underlying Data

You rarely need to deal directly with data block objects. However, for applications that need to interface with native or legacy code, the **NMath** vector and matrix classes can be used to obtain a pointer to the underlying data. Each of these classes has a property called **DataBlock** that returns the data block object being viewed. As mentioned above, each data block class contains an array and an offset that allows you to extract a pointer to the beginning of the data. For example:

Code Example – C# data block

```csharp
var v = new DoubleVector( 12, 0, 1 );

DoubleDataBlock dataBlock = v.DataBlock;
unsafe {
    double *ptr = &v.DataBlock.Data[dataBlock.Offset]);

    // Do something with *ptr here
}
```

NOTE—Exercise caution when using raw data pointers.

Vector and matrix classes also provide **ToArray()** methods that return data copied into an array. Thus:
4.2 Slices and Ranges

The most common means of obtaining a different view of a specific block of data in *NMath* is by using *Slice* and *Range* indexing objects. These classes simply provide a way to specify a subset on non-negative integers with constant spacing, which you can then use as an indexing object into matrices and vectors. (See Chapter 5 and Chapter 6 for more information.)

Creating Slices and Ranges

The difference between a *Slice* and a *Range* is only in how you specify the integer subset. You construct a *Slice* object by specifying:

- a beginning index
- the total number of indices
- a step increment, or *stride*

For example, to create a slice for the indices \{ 2, 4, 6, 8, 10 \}, specify a start of 2, 5 total elements, and a stride of 2, like so:

Code Example – C# slice

```csharp
var s = new Slice(2, 5, 2);
```

Code Example – VB slice

```vbnet
Dim S As New Slice(2, 5, 2)
```

You construct a *Range* object by specifying:

- a beginning index
• an ending index
• a stride

Thus, to create a range for the indices \{ 2, 4, 6, 8, 10 \}, specify a starting point of 2, a stopping point of 10, and a stride of 2:

Code Example – C# range

```csharp
var r = new Range( 2, 10, 2 );
```

Code Example – VB range

```vbnet
Dim R As New Range(2, 10, 2)
```

Creating Abstract Subsets

Suppose you want to address the elements in a vector \(v \) from the third element to the last. You *could* do this by creating a **Range** like so:

Code Example – C# range

```csharp
var r = new Range( 2, v.Length - 1, 1 );
```

Code Example – VB range

```vbnet
Dim R As New Range(2, v.Length - 1, 1)
```

but this is rather cumbersome. As a convenience, therefore, **NMath** provides the **Position** enumeration which lists different view positions of underlying data. You can use values in the **Position** enumeration in conjunction with ranges and slices to create abstract subsets. The precise meaning of an abstract subset is only determined when an indexing object is applied to a particular matrix or vector. The enumerated values are:

• **Start** indicates the starting position.

• **MidPoint** indicates the midpoint position, rounded down for data structures with an even number of elements.

• **End** indicates the ending position.

For instance, this code creates two ranges that could be used to specify the odd and even elements of a vector:

Code Example – C# range

```csharp
var evenElements = new Range( Position.Start, Position.End, 2 );
var oddElements = new Range( 1, Position.End, 2 );
```

Code Example – VB range

```vbnet
Dim EvenElements As New Range(Position.Start, Position.End, 2)
```
Dim OddElements As New Range(1, Position.End, 2)

The static All property on Slice and Range returns a new object indexing all elements:

Code Example – C# slice

Slice allElements = Slice.All;

Code Example – VB range

Dim AllElements As Slice = Slice.All

Modifying Ranges and Slices

You can modify an existing Slice or Range object using the Set() member function. For example:

Code Example – C# range

var r = new Range(Position.Start, Position.End, 2);
r.Set(Position.Start, Position.MidPoint, 1);

Code Example – VB range

Dim R As New Range(Position.Start, Position.End, 2)
R.Set(Position.Start, Position.MidPoint, 1)
The **NMath** vector classes represent mathematical vectors of a particular datatype. Each class contains a reference to the data block they are viewing (see Chapter 4), along with the parameter values necessary to define their view:

- the number of elements
- a step increment, or *stride*, between elements of the data block

This is generally transparent to you. **NMath** provides indexers to perform the necessary indirection. For example, $v[i]$ always returns the ith element of vector v’s view of the data.

NOTE—Indexing starts at 0.

5.1 Class Names

The classes that encapsulate vectors in **NMath** are named `<Type>Vector`, where `<Type>` is `Float`, `Double`, `FloatComplex`, or `DoubleComplex`. (See Chapter 3 for a description of the complex number classes.) Thus:

- The **FloatVector** class represents a vector of single-precision floating point numbers.
- The **DoubleVector** class represents a vector of double-precision floating point numbers.
- The **FloatComplexVector** class represents a vector of single-precision complex numbers.
- The **DoubleComplexVector** class represents a vector of double-precision complex numbers.

5.2 Creating Vectors

This section describes how to create instances of the vector classes.
Creating Vectors from Numeric Values

You can construct vector objects from numeric values in a variety of ways. All such constructors create a new view of a new data block.

A single passed, non-negative integer creates a vector of that length, with all values initialized to zero. For instance, this creates a vector of floating point values with 10 elements:

Code Example – C# vector

```csharp
var v = new FloatVector(10);
```

Code Example – VB vector

```vbnet
Dim V As New FloatVector(10)
```

Another constructor enables you to set the initial value of all elements in the vector:

Code Example – C# vector

```csharp
var v = new DoubleVector(10, 2.0);
// v[i]==2 for all i

var u =
    new FloatComplexVector(10, new FloatComplex(1.0, -2.0));
// u[j] == 1 - 2i for all j
```

Code Example – VB vector

```vbnet
Dim V As New DoubleVector(10, 2.0)
' V(i)=2 for all i

Dim U As New FloatComplexVector(10, New FloatComplex(1.0, -2.0))
' U(j) = 1 - 2i for all j
```

Similarly, the vector classes provide a constructor that lets you set the length, the value of the first element, and an amount to increment each successive element in the vector. The ith element of the vector thus has the value $\text{initialValue} + i \times \text{increment}$. For example, this creates the vector $[1, 3, 5, 7, 9]$:

Code Example – C# vector

```csharp
var v = new FloatVector(5, 1, 2);
```

Code Example – VB vector

```vbnet
Dim V As New FloatVector(5, 1, 2)
```

You can also create a vector from an array of values:
Code Example – C# vector

double[] dblArray = {1.12, -2.0, 3.88, 1.2, 15.345};
var v = new DoubleVector(dblArray);

Code Example – VB vector

Dim DblArray() As Double = {1.12, -2.0, 3.88, 1.2, 15.345}
Dim V As New DoubleVector(DblArray)

Or a comma-delimited list:

Code Example – C# vector

var v = new FloatVector(3.5, -6.7, 0.0, 3.11, 8.90, 5.0);

Code Example – VB vector

Dim V As New FloatVector(3.5, -6.7, 0.0, 3.11, 8.9, 5.0)

Complex vector types can also be created from polar coordinates:

Code Example – C# complex vector from polar coordinates

var magnitudes = new FloatVector(1, 2, 3, 6);
var angles = new FloatVector(1, 2, 3, -3);
var v = FloatComplexVector.FromPolar(magnitudes, angles);

Code Example – VB complex vector from polar coordinates

Dim Magnitudes As New FloatVector(1, 2, 3, 6)
Dim Angles as New FloatVector(1, 2, 3, -3)
Dim V = FloatComplexVector.FromPolar(magnitudes, angles)

Lastly, you can use a random number generator to fill a vector with random values. See Chapter 9 for more information.

Creating Vectors from Strings

You can also construct vectors from a string representation of the form [v1 v2 v3 ...]. The brackets are optional, and extra whitespace is ignored. Again, these constructors create a new view of a new data block.

For instance:

Code Example – C# vector

string s = "4.3 -232 5.344 23.4 -32.43 ";
var v = new DoubleVector(s);

s = "[(4.3,3.5) (23.4,-234.3) (-21.2,0)]";
var u = new DoubleComplexVector(s);
Code Example – VB vector

Dim S As String = "4.3 -232 5.344 23.4 -32.43"
Dim V As New DoubleVector(S)

S = "[(4.3,3.5) (23.4,-234.3) (-21.2,0)]"
Dim U As New DoubleComplexVector(S)

An optional second parameter to the constructor accepts values from the System.Globalization.NumberStyles enumeration. These styles are used by the Parse() methods of the numeric base types. For example:

Code Example – C# vector

using System.Globalization;

string s = "$4.52 $4.32 $4.56 $9.94 ($0.04) ($5.00)"
var v = new FloatVector(s,
 NumberStyles.AllowCurrencySymbol |
 NumberStyles.AllowDecimalPoint |
 NumberStyles.AllowParentheses);

Code Example – VB vector

Imports System.Globalization

Dim S As String = "$4.52 $4.32 $4.56 $9.94 ($0.04) ($5.00)"
Dim V As New FloatVector(s,
 NumberStyles.AllowCurrencySymbol Or
 NumberStyles.AllowDecimalPoint Or
 NumberStyles.AllowParentheses)

NOTE—Whitespace, even if set as a group separator, is interpreted as a data separator. Also note that currency representation is based on locale information in System.Globalization.CultureInfo, unless you override that information.

Finally, you can construct a vector from a given text reader. Just position the text reader at the start of a valid text representation of a vector. In this case, the brackets are required, since the text reader reads the stream until a closing bracket is encountered. For instance:

Code Example – C# vector

var reader = new StreamReader("data.txt");
// ... read until start of vector
var v = new DoubleVector(reader);

Code Example – VB vector

Dim Reader As New StreamReader("data.txt")
' ... read until start of vector
Dim V As New DoubleVector(Reader)
Again, an optional second parameter accept values from the System.Globalization.NumberStyles enumeration.

Instead of using a constructor, you can also create a vector from a string representation using the static Parse() method. The vector classes provide overloads of the Parse() method that accept a string, a string plus number styles, a text reader, and a text reader plus number styles.

Thus:

Code Example – C# vector

```csharp
string s = "$4.52 $4.32 $4.56 $9.94 ($0.04) ($5.00)";
FloatVector v = FloatVector.Parse(s,
    NumberStyles.AllowCurrencySymbol |
    NumberStyles.AllowDecimalPoint |
    NumberStyles.AllowParentheses );
```

Code Example – VB vector

```vb
Dim S As String = "$4.52 $4.32 $4.56 $9.94 ($0.04) ($5.00)"
Dim V As FloatVector = FloatVector.Parse(s,
    NumberStyles.AllowCurrencySymbol Or
    NumberStyles.AllowDecimalPoint Or
    NumberStyles.AllowParentheses)
```

Conversely, the overridden ToString() member function returns a string representation of a vector of the form \[v_1 \ v_2 \ v_3 \ \ldots \]. A variant of the ToString() method also accepts a standard .NET numeric format string. For example, the format string “C” indicates currency notion:

Code Example – C# vector

```csharp
var v = new DoubleVector( "[ 1.12 8.95 3.95 4.60 ]" );
Console.WriteLine( v.ToString( "C" ) );
```

Code Example – VB vector

```vb
Dim V As New DoubleVector("[ 1.12 8.95 3.95 4.60 ]")
Console.WriteLine(V.ToString("C"))
```

The Write() member function writes a text representation of a vector to a given text writer. Again, a numeric format string is an optional second parameter.

Creating Vectors from ADO.NET Objects

You can create a vector object from an ADO.NET object such as a DataTable, an array of DataRow objects, a DataView, or a DataView. See Chapter 52 for more information.
Implicit Conversion

The implicit conversion operators for the vector classes are shown in Figure 2. An arrow indicates implicit promotion.

Figure 2 – Implicit conversion for vectors

![Diagram showing implicit conversion between matrix classes]

Copying Vectors

The vector classes provide three copy methods:

- **Clone()** returns a deep copy of a vector. Data is copied, so each vector references different data.
- **ShallowCopy()** returns a shallow copy of a vector. Data is not copied. Both vectors reference the same data.
- **DeepenThisCopy()** copies the data viewed by a vector to new data block. This guarantees that there is only one reference to the underlying data, and that this data is in contiguous storage.

For example:

Code Example – C# vector

```csharp
var v = new DoubleVector( "[1 2 3 4 5]" );
DoubleVector u = v.ShallowCopy();

u[0] = 0;   // v[0] == u[0]
u.DeepenThisCopy();
```

Code Example – VB vector

```vbnet
Dim V As New DoubleVector("[1 2 3 4 5]")
Dim U As DoubleVector = V.ShallowCopy()

U(0) = 0   ' V(0) = U(0)
U.DeepenThisCopy()
U(1) = 0   ' V(1) <> U(1)
```
New Vector Views

A common method of creating vectors in NMath is to create a new vector view of data already referenced by another object. This is achieved using Slice and Range objects, as described in Section 4.2. Here’s an example using a Slice object to create a new view of a vector’s data:

Code Example – C# vector

```csharp
var v = new DoubleVector(10, 1, 1);
// v = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]

var first3Elements = new Slice(0, 3);
DoubleVector u = v[first3Elements];
```

Code Example – VB vector

```vbnet
Dim V As New DoubleVector(10, 1, 1)
' v = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]

Dim First3Elements As New Slice(0, 3)
Dim U As DoubleVector = v(First3Elements)
```

Notice that the vector indexer is overloaded to accept indexing objects, and return a new view of the indexed data.

Vector u behaves exactly like a vector constructed with 3 elements whose values are 1, 2, 3. That is:

Code Example – C# vector

```csharp
u[0] == 1; // true
u[1] == 2; // true
u[2] == 3; // true
u[3]; //Index out of bounds exception!
```

Code Example – VB vector

```vbnet
U(0) = 1 ' true
U(1) = 2 ' true
U(2) = 3 ' true
U(3) 'Index out of bounds exception!
```

The difference between u and a newly constructed vector becomes clear when a value in u is changed. This changes the corresponding value in v, since they both reference the same data.

Code Example – C# vector

```csharp
u[2] = 99;
v[2] == 99; // true!
```
5.3 Value Operations on Vectors

The vector classes have the following read-only properties:

- **Length** gets the number of data elements in a vector.
- **Stride** gets the step between successive elements in the data block that a vector is viewing.
- **DataBlock** gets a reference to the data block that a vector is viewing.

For instance, if \(v \) is a **DoubleComplexVector** instance:

Code Example – C# vector

```csharp
int length = v.Length;
int stride = v.Stride;
DoubleComplexDataBlock block = v.DataBlock;
```

Code Example – VB vector

```vbnet
Dim Length As Integer = V.Length
Dim Stride As Integer = V.Stride
Dim Block As DoubleComplexDataBlock = V.DataBlock
```

NOTE—As described in Section 4.1, use caution when accessing a data block referenced by a vector. Other objects may be viewing the same data.
Accessing and Modifying Vector Values

The vector classes provide standard indexing operators for getting and setting element values. Thus, \(v[i] \) always returns the \(i \)th element of vector \(v \)'s view of the data.

NOTE—Indexing starts at 0.

You can also use the \(\text{Set()} \) member function to set the data elements of a vector to a specified value.

For example, this code changes the contents of \(v \) to alternate values of 0 and 1:

Code Example – C# vector

```csharp
var v = new FloatVector(10, 0, 1);
var evenElements = new Range(0, Position.End, 2);
var oddElements = new Range(1, Position.End, 2);

v.Set(evenElements, 0);
v.Set(oddElements, 1);
```

Code Example – VB vector

```vbnet
Dim V As New FloatVector(10, 0, 1)
Dim EvenElements As New Range(0, Position.End, 2)
Dim OddElements As New Range(1, Position.End, 2)

V.Set(EvenElements, 0)
V.Set(OddElements, 1)
```

NOTE—Any method that returns a vector view of the data referenced by a vector can be used to modify the values of the original vector, since the returned vector and the original vector share the data.

Clearing and Resizing a Vector

The vector classes provide two methods for changing the length of a vector after it has been created:

- \(\text{Clear()} \) resets the value of all data elements to zero.
- \(\text{Resize()} \) changes the size of a vector to the specified length, adding zeros or truncating as necessary.
- \(\text{ResizeAndClear()} \) performs the same function as \(\text{Resize()} \), but also resets the value of all remaining data elements to zero.
Appending to a Vector

You can add new elements to the end of a vector using the Append() methods. Thus, this code adds a single element to the end of a vector:

Code Example – C# vector

```csharp
var v = new FloatVector( 10, 0, 0.5F );
float x = 5.5F;
v.Append( x );
```

Code Example – VB vector

```vbnet
Dim V As New FloatVector(10, 0, 0.5F)
Dim X As Single = 5.5F
V.Append(X)
```

This code appends another vector to the end of a vector:

Code Example – C# vector

```csharp
var v = new DoubleVector( 10, 0, 1 );
var w = new DoubleVector( 5, 11, 1 );
v.Append( w );
```

Code Example – VB vector

```vbnet
Dim V As New DoubleVector(10, 0, 1)
Dim W As New DoubleVector(5, 11, 1)
V.Append(W)
```

Note that a new vector is allocated by the Append() methods, and data is copied.
5.4 Logical Operations on Vectors

Operator == tests for equality of two vectors, and returns true if both vectors have the same dimensions and all values are equal; otherwise, false. Following the convention of the .NET Framework, if both objects are null, they test equal. The comparison of the values for DoubleVector and DoubleComplexVector is done using operator == for doubles; comparison of the values for FloatVector and FloatComplexVector is done using operator == for floats. Therefore, the values of the vectors must be exactly equal for this method to return true. Operator != returns the logical negation of ==.

The Equals() member function also tests for equality. NaNEquals() ignores values that are Not-a-Number (NaN).

5.5 Arithmetic Operations on Vectors

NMath provides overloaded arithmetic operators for vectors with their conventional meanings for those .NET languages that support them, and equivalent named methods for those that do not. Table 5 lists the equivalent operators and methods.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Equivalent Named Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Add()</td>
</tr>
<tr>
<td>-</td>
<td>Subtract()</td>
</tr>
<tr>
<td>*</td>
<td>Multiply()</td>
</tr>
<tr>
<td>/</td>
<td>Divide()</td>
</tr>
<tr>
<td>Unary -</td>
<td>Negate()</td>
</tr>
<tr>
<td>++</td>
<td>Increment()</td>
</tr>
<tr>
<td>--</td>
<td>Decrement()</td>
</tr>
</tbody>
</table>

Unary negation, increment, and decrement operators are applied to every element in a vector. The Negate() method returns a new vector object; Increment() and Decrement() do not.

All binary operators and equivalent named methods work either with two vectors, or with a vector and a scalar.
NOTE—Vectors must have the same length to be combined using the element-wise operators. Otherwise, a `MismatchedSizeException` is thrown. (See Chapter 53.)

For example, this C# code uses the overloaded operators:

Code Example – C# vector

```csharp
var v = new FloatVector(5,0,1); // [0,1,2,3,4]
var u = new FloatVector(5,1,1); // [1,2,3,4,5]
float scalar = 2;

FloatVector w = v + scalar*u;
```

This Visual Basic code uses the equivalent named methods:

Code Example – VB vector

```vbnet
Dim V As New FloatVector(5, 0, 1)
Dim U As New FloatVector(5, 1, 1)
Dim Scalar As Single = 2

Dim W As FloatVector = FloatVector.Add(V, 
    FloatVector.Multiply(Scalar, U))
```

NMath also provides overloads of the arithmetic named methods that accept three vector arguments. The third vector holds the result of applying the appropriate operation to the first two vectors. Because no new memory is allocated, efficiency is increased. This is especially useful for repeated operations, such as within loops. For instance, this code adds two vectors and stores the result in a third:

Code Example – C# vector

```csharp
var v = new DoubleVector( "[ 0 1 2 3 4 ]" );
var u = new DoubleVector( 5, 1 );
var w = new DoubleVector( u.Length );

DoubleVector.Add( v, u, w );
DoubleVector.Add( v, u++, w );
DoubleVector.Add( v, v, w );
// Still only three vectors allocated
```

Code Example – VB vector

```vbnet
Dim V As New DoubleVector("[ 0 1 2 3 4 ]")
Dim U As New DoubleVector(5, 1)
Dim W As New DoubleVector(U.Length)

DoubleVector.Add(V, U, W)
DoubleVector.Add(V, U.Increment(), W)
DoubleVector.Add(V, V, W)
' Still only three vectors allocated
```
If the three vectors are not all of the same length, a `MismatchedSizeException` is thrown.

Note that the third vector argument can also be the same as one of the first two arguments, in which case it is overwritten with the result:

Code Example – C# vector

```csharp
DoubleVector.Subtract(u, v, v);
```

Code Example – VB vector

```vb
DoubleVector.Subtract(U, V, V)
```

5.6 Functions of Vectors

NMath provides a variety of functions that take vectors as arguments.

Rounding Functions

Class **NMathFunctions** provides static methods for rounding a vector’s elements:

- **Round()** rounds each element of a given vector to the specified number of decimal places.

- **Ceil()** applies the ceiling rounding function to each element of a given vector.

- **Floor()** applies the floor rounding function to each element of a given vector.

For instance, this code converts a vector of dollar amounts to Euros, then rounds to two decimal places:

Code Example – C# vector

```csharp
var v = new DoubleVector( "$4.30 $0.08 ($5.87)",
    NumberStyles.Number | NumberStyles.AllowCurrencySymbol |
    NumberStyles.AllowParentheses );
v = v * 0.9289;  // exchange rate
v = NMathFunctions.Round( v, 2 );
```

Code Example – VB vector

```vb
Dim V As New DoubleVector("$4.30 $0.08 ($5.87)",
    NumberStyles.Number Or NumberStyles.AllowCurrencySymbol Or
    NumberStyles.AllowParentheses)
V = V * 0.9289  ' exchange rate
V = NMathFunctions.Round(V, 2)
```
Sums, Differences, and Products

Class **NMathFunctions** provides static methods to calculate sums, differences, and products of vector elements:

- **Sum()** returns the sum of the elements in a given vector.
- **AbsSum()** returns the sum of the absolute value of the elements in a given vector. (For complex vectors, this function calculates the sum of the L1 norms of the vector's elements.)
- **CumulativeSum()** returns a vector containing the cumulative sum of the elements in a given vector, such that \(u[i] = v[0] + v[1] + \ldots + v[i] \).
- **NaNSum()** returns the sum of the elements in a given vector, ignoring values that are Not-a-Number (NaN). NaN functions are available for real-value vectors only, not complex number vectors.
- **Delta()** returns a vector containing the differences between successive elements in a given vector, such that:

 \[
 u[0] = v[0] \\
 u[i] = v[i] - v[i-1]
 \]
- **Product()** returns the product of the elements in a given vector.
- **CumulativeProduct()** returns a vector containing the cumulative product of the elements in a given vector.
- **Dot()** returns the vector dot, or inner, product \(d \) of two vectors, \(v \) and \(w \), where

 \[
 d = v[0]*w[0] + v[1]*w[1] + \ldots
 \]
- **OuterProduct()** creates a matrix containing the outer product of two vectors.
- **Cross()** computes the cross product of two vectors. The vectors must have at least length three, and elements beyond three are ignored for purposes of computing the cross product.

For example:

Code Example – C# vector

```csharp
var v = new FloatVector( "[1 2 3 4 5 6]" );
var u = new FloatVector( v.Length, 1, 1 );

float dp = NMathFunctions.Dot( v, u );
```
Code Example – VB vector

Dim V As New FloatVector("[1 2 3 4 5 6]")
Dim U As New FloatVector(V.Length, 1, 1)

Dim DP As Single = NMathFunctions.Dot(V, U)

Min/Max Functions

Class **NMathFunctions** provides static min/max finding methods that return the integer index of the element that meets the appropriate criterion:

- **MaxIndex()** returns the index of the element with the greatest value.
- **MinIndex()** returns the index of the element with the smallest value.
- **MaxAbsIndex()** returns the index of the element with the greatest absolute value.
- **MinAbsIndex()** returns the index of the element with the smallest absolute value.

Min/max value methods **MaxValue(), MinValue(), MaxAbsValue(),** and **MinAbsValue()** return the value of the element that meets the appropriate criterion. The returned type depends on the type of the vector. For instance, the **MaxValue()** method that accepts a **DoubleVector** returns a **double**.

NaNMax(), NaNMin(), NaNMaxIndex(), and **NaNMinIndex()** ignore values that are Not-a-Number (NaN). NaN functions are available for real-value vectors only, not complex number vectors.

Statistical Functions

The static **Mean()** method on **NMathFunctions** returns the mean of a given vector’s elements. **Median()** returns the median. If the length of the vector is even, the middle two elements are averaged. **Median()** is available for real-value vectors only, not complex number vectors, because there is no standard ordering for complex numbers.

Variance() returns the biased variance of the elements. For instance:

Code Example – C# vector

```csharp
var v = new DoubleVector( "[1 2 3 4 5 6]" );
double mean = NMathFunctions.Mean( v );
double variance = NMathFunctions.Variance( v );
```
Code Example – VB vector

Dim V As New DoubleVector("[1 2 3 4 5 6]")
Dim Mean As Double = NMathFunctions.Mean(V)
Dim Variance As Double = NMathFunctions.Variance(V)

SumOfSquares() returns the sum of the squared deviations from the mean of the elements of a given vector.

NaNMean(), NanMedian(), NaNVariance(), and NanSumOfSquares() ignore values that are Not-A-Number (NaN). NaNCount() returns the number of NaN values in a vector. NaN functions are available for real-value vectors only, not complex vectors.

Trigonometric Functions

NMath extends standard trigonometric functions Acos(), Asin(), Atan(), Cos(), Cosh(), Sin(), Sinh(), Tan(), and Tanh() to take vector arguments. Class NMathFunctions provides these functions as static methods. For example, this code construct a vector whose contents are the cosines of another vector:

Code Example – C# vector

```csharp
var v = new FloatVector(10, 0, 2);
FloatVector cosv = NMathFunctions.Cos(v);
```

Code Example – VB vector

```vb
Dim V As New FloatVector(10, 0, 2)
Dim Cosv As FloatVector = NMathFunctions.Cos(V)
```

The static Atan2() method takes two vectors and applies the two-argument arc tangent function to successive pairs of elements.

Transcendental Functions

NMath extends standard transcendental functions Exp() and Log(), Log10() to take vector arguments. Class NMathFunctions provides these functions as static methods; each takes a single vector as an argument and return a vector as a result. For instance, this code creates a vector whose elements are the log of another vector’s elements:

Code Example – C# vector

```csharp
var v = new DoubleVector(10, 0, 5);
DoubleVector log = NMathFunctions.Log(v);
```
Code Example – VB vector

Dim V As New DoubleVector(10, 0, 5)
Dim Log As DoubleVector = NMathFunctions.Log(V)

Class NMathFunctions also provides the exponential function Pow() to raise each element of a vector to a real exponent:

Code Example – C# vector

var v = new DoubleVector(100, 0, 1);
FloatVector vCubed = NMathFunctions.Pow(v, 3);

Code Example – VB vector

Dim V As New DoubleVector(100, 0, 1)
Dim VCubed As FloatVector = NMathFunctions.Pow(V, 3)

Absolute Value and Square Root

The static Abs() function on class NMathFunctions applies the absolute value function to each element of a given vector:

Code Example – C# vector

var v = new DoubleVector (10, 0, -1);
DoubleVector abs = NMathFunctions.Abs(v);

Code Example – VB vector

Dim V As New DoubleVector(10, 0, -1)
Dim ABS As DoubleVector = NMathFunctions.Abs(V)

NMath also extends the standard Sqrt() function to take a vector argument. Thus, this code creates a vector whose elements are the square root of another vector’s elements:

Code Example – C# vector

var v = new DoubleVector(10, 0, 5);
DoubleVector sqrt = NMathFunctions.Sqrt(v);

Code Example – VB vector

Dim V As New DoubleVector(10, 0, 5)
Dim SQRT As DoubleVector = NMathFunctions.Sqrt(V)

Sorting Functions

The static Sort() method on class NMathFunctions sorts the elements of a given vector in ascending order using the quicksort algorithm and returns a new vector containing the result:
Code Example – C# vector

double[] dblArray = { 1.12, -2.0, 3.88, 1.2, 15.345 };
var v = new DoubleVector(dblArray);

v = NMathFunctions.Sort(v);

Code Example – VB vector

Dim DblArray() As Double = {1.12, -2.0, 3.88, 1.2, 15.345}
Dim V As New DoubleVector(DblArray)

V = NMathFunctions.Sort(V)

NOTE—This method is only available for FloatVector and DoubleVector, since there is no standard ordering for complex numbers.

Any NaN values in the vector are placed at the end of the ordered vector. To order the elements in descending order, Reverse() the returned vector:

Code Example – C# vector

v = NMathFunctions.Sort(v).Reverse();

Code Example – VB vector

V = NMathFunctions.Sort(V).Reverse()

Complex Vector Functions

Static methods Real() and Imag() on class NMathFunctions return the real and imaginary part of a vector’s elements. If the elements of the given vector are real, Real() simply returns the given vector and Imag() returns a vector of the same length containing all zeros.

Static methods Arg() and Conj() on class NMathFunctions return the arguments (or phases) and complex conjugates of a vector’s elements. If the elements of the given vector are real, both methods simply return the given vector.

5.7 Generic Functions

NMath provides convenience methods for applying unary and binary functions to elements of a vector. Each of these methods takes a function delegate. The Apply() method returns a new vector whose contents are the result of applying the given function to each element of the vector. The Transform() method modifies a vector object by applying the given function to each of its elements. For example, assuming MyFunc is a function that takes a double and returns a double:
Code Example – C# vector

```csharp
var v = new DoubleVector(10, 0, -1);

// Construct a delegate for MyFunc
Func<double, double> MyFuncDelegate =
    new Func<double, double>(MyFunc);

// Construct a new vector whose values are the result of applying
// MyFunc to the values in vector v. v remains unchanged.
DoubleVector w = v.Apply(MyFuncDelegate);

// Transform the contents of v.
v.Transform(MyFuncDelegate);

v == w; // true!
```

Code Example – VB vector

```vbnet
Dim V As New DoubleVector(10, 0, -1)

' Construct a delegate for MyFunc
Dim MyFuncDelegate As New Func(Of Double, Double)(AddressOf MyFunc)

' Construct a new vector whose values are the result of applying
' MyFunc to the values in vector v. v remains unchanged.
Dim W As DoubleVector = V.Apply(MyFuncDelegate)

' Transform the contents of v.
V.Transform(MyFuncDelegate)

V = W ' true!
```

NMath provides delegates for many commonly used math functions in the **NMathFunctions** class.

5.8 Vector Enumeration

NMath vector classes provide standard .NET **GetEnumerator()** methods for returning **IEnumerator** objects. For example:

Code Example – C# vector

```csharp
var v = new FloatVector(12, -4.3F);
IEnumerator elements = v.GetEnumerator();
```
var data = new float[v.Length];
int i = 0;
while (elements.MoveNext())
{
 data[i++] = (float) elements.Current;
}

Code Example – VB vector

Dim V As New FloatVector(12, -4.3F)
Dim Elements As IEnumerator = V.GetEnumerator()

Dim Data(V.Length) As Single
Dim I = 0
While Elements.MoveNext()
 I = I + 1
 Data(I) = CType(Elements.Current, Single)
End While

Note that the Current property on an IEnumerator returns the current object in the collection, which must then be cast to the appropriate type. NMath also provides custom strongly-typed enumerators: IFloatEnumerator, IDoubleEnumerator, IFloatComplexEnumerator, and IDoubleComplexEnumerator. These avoid casting, and are therefore much faster. For instance:

Code Example – C# vector

var v = new FloatVector(12, -4.3F);
IFloatEnumerator elements = v.GetFloatEnumerator();

var data = new float[v.Length];
int i = 0;
while (elements.MoveNext())
{
 data[i++] = elements.Current; // No need to cast to float
}

Code Example – VB vector

Dim V As New FloatVector(12, -4.3F)
Dim Elements As IFloatEnumerator = V.GetFloatEnumerator()

Dim Data(V.Length) As Single
Dim I = 0
While Elements.MoveNext()
 I = I + 1
 Data(I) = elements.Current ' No need to cast to float
End While
The NMath matrix classes represent mathematical matrices of a particular datatype. Each class contains a reference to the data block they are viewing (see Chapter 4), along with the parameter values necessary to define their view:

- the number of rows and columns
- the distance between successive row elements, called the *row stride*
- the distance between successive column elements, called the *column stride*

This is generally transparent to you. NMath provides indexers to perform the necessary indirection. For example, \(A[i,j] \) always returns the element in the \(i \)th row and \(j \)th column of matrix \(A \)’s view of the data.

NOTE—Indexing starts at 0.

6.1 Class Names

The classes that encapsulate matrices in NMath are named `<Type>Matrix`, where `<Type>` is `Float`, `Double`, `FloatComplex`, or `DoubleComplex`. (See Chapter 3 for a description of the complex number classes.) Thus:

- The `FloatMatrix` class represents a matrix of single-precision floating point numbers.
- The `DoubleMatrix` class represents a matrix of double-precision floating point numbers.
- The `FloatComplexMatrix` class represents a matrix of single-precision complex numbers.
- The `DoubleComplexMatrix` class represents a matrix of double-precision complex numbers.

6.2 Creating Matrices

This section describes how to create instances of the matrix classes.
Creating Matrices from Numeric Values

You can construct matrix objects from numeric values in a variety of ways. All such constructors create a new view of a new data block.

The simplest constructor creates a matrix of the specified dimensions, with all values initialized to zero. For example, this code creates a 4x5 matrix of floating point values:

Code Example – C# matrix

```csharp
var v = new FloatMatrix( 4, 5 );
```

Code Example – VB matrix

```vbnet
Dim V As New FloatMatrix(4, 5)
```

Another constructor enables you to set the initial value of all elements in the matrix. This creates a 3x3 matrix of `FloatComplex` instances with all values initialized to `1.0 - 3.0i`:

Code Example – C# matrix

```csharp
var c = new FloatComplex( 1.0, -3.0 );
var A = new FloatComplexMatrix( 3, 3, c );
```

Code Example – VB matrix

```vbnet
Dim C As New FloatComplex(1.0F, -3.0F)
Dim A As New FloatComplexMatrix(3, 3, c)
```

Similarly, the matrix classes provide a constructor that lets you specify the dimensions of the matrix, the value of the first element, and an amount to increment each successive element. That is:

Code Example – C# matrix

```csharp
A[i,j] = initialValue + (i+j) * increment
```

Code Example – VB matrix

```vbnet
A(I, J) = InitialValue + (I + J) * Increment
```

For instance:

Code Example – C# matrix

```csharp
var A = new DoubleMatrix( 5, 5, 0, 1 );
//     | 0 5 10 15 20 |
//     | 1 6 11 16 21 |
// A = | 2 7 12 17 22 |
//     | 3 8 13 18 23 |
//     | 4 9 14 19 24 |
```
You can easily create a matrix from a 2-dimensional array of values. For example:

Code Example – C# matrix

```csharp
float[,] data = new float[10,17];
for ( i = 0; i < 10; ++i )
{
    for ( j = 0; j < 17; ++j )
    {
        data[i,j] = 3.1415 * i + j;
    }
}
var A = new FloatMatrix( data );
```

Code Example – VB matrix

```vbnet
Dim Data(10, 17) As Single
For I As Integer = 0 To 9
    For J As Integer = 0 To 16
        Data(I, J) = 3.1415 * I + J
    Next
Next
Dim A As New FloatMatrix(Data)
```

You can also create a matrix from a 1-dimensional array of values, but in this case you must also specify the dimensions of the matrix, and whether the given array is laid out in row-major or column-major order. **NMath** provides the **StorageType** enumeration for indicating the storage scheme. For instance:

Code Example – C# matrix

```csharp
double[] data = { 0.0, 2.0, 4.0, 1.0, 3.0, 5.0 };
DoubleMatrix A =
    new DoubleMatrix( 3, 2, data, StorageType.ColumnMajor );
```

```csharp
//     | 0.0  1.0 |
// A =  | 2.0  3.0 |
//     | 4.0  5.0 |
```

Code Example – VB matrix

```vbnet
Dim Data() As Double = {0.0, 2.0, 4.0, 1.0, 3.0, 5.0}
Dim A As New DoubleMatrix(3, 2, Data, StorageType.ColumnMajor)
```
You can also tile a matrix by replicating an existing matrix or vector using the NMathFunctions RepMat() methods. For example, this code creates a large matrix \(B \) consisting of an \(m \)-by-\(n \) tiling of copies of \(A \):

Code Example – C# matrix

```csharp
var A = new DoubleMatrix( 15, 3, -0.4, 0.3 );
int m = 4;
int n = 8;
DoubleMatrix B = NMathFunctions.RepMat( A, m, n );
```

Code Example – VB matrix

```vbnet
Dim A As New DoubleMatrix(15, 3, -0.4, 0.3)
Dim M As Integer = 4
Dim N As Integer = 8
Dim B As DoubleMatrix = NMathFunctions.RepMat(A, M, N)
```

Lastly, you can use a random number generator to fill a matrix with random values. See Chapter 9 for more information.

Creating Matrices from Strings

You can also construct matrices from a string representation. The string must contain the number of rows, followed by an optional separator character such as \(\times \), followed by the number of columns. The matrix values, separated by white space, are then read in row by row. If the sequence of numbers begins with a left bracket ‘[’, then the numbers are read until a matching right bracket ‘]’ is encountered. If no brackets are used, numbers are read until the end of the string. For example:

Code Example – C# matrix

```csharp
var A = new DoubleMatrix( "3x3 [1 2 3 4 5 6 7 8 9]" );
var B =
    new FloatComplexMatrix( "2 2 (1,0) (2,1.2) (3.3,0) (4,3.12)" );
```

Code Example – VB matrix

```vbnet
Dim A As New DoubleMatrix("3x3 [1 2 3 4 5 6 7 8 9]")
Dim B As New FloatComplexMatrix(
    "2 2 (1,0) (2,1.2) (3.3,0) (4,3.12)"
)
An optional second parameter accepts values from the System.Globalization.NumberStyles enumeration. These styles are used by the Parse() methods of the numeric base types. For instance:

**Code Example – C# matrix**

```csharp
using System.Globalization;

string s = " 2 x 2 [1.1e+001 2.2e+000 4.4e+002 8.8e+000]";
var A = new DoubleMatrix(s, NumberStyles.Number | NumberStyles.AllowExponent);
```

**Code Example – VB matrix**

```vbnet
Imports System.Globalization

Dim S As String = " 2 x 2 [1.1e+001 2.2e+000 4.4e+002 8.8e+000]"
Dim A As New DoubleMatrix(S, NumberStyles.Number Or NumberStyles.AllowExponent)
```

Finally, you can construct a matrix from a given text reader. Just position the text reader at the start of a valid text representation of a matrix. In this case, the brackets are required, since the text reader reads the stream until a closing bracket is encountered.

For example:

**Code Example – C# matrix**

```csharp
var reader = new StreamReader("data.txt");
// Read until the start of the matrix
var A = new FloatMatrix(reader);
```

**Code Example – VB matrix**

```vbnet
Dim Reader As New StreamReader("data.txt")
' Read until the start of the matrix
Dim A As New FloatMatrix(Reader)
```

Again, an optional second parameter accept values from the System.Globalization.NumberStyles enumeration.

Instead of using a constructor, you can also create a matrix from a string representation using the static Parse() method. The matrix class provide overloads of the Parse() method that accept a string, a string plus number styles, a text reader, and a text reader plus number styles. Thus:

**Code Example – C# matrix**

```csharp
string s = "2x2 [[1 2 3 4]";
DoubleMatrix A = DoubleMatrix.Parse(s);
```
Code Example – VB matrix

Dim S As String = "2x2 [ [1 2 3 4 ]"
Dim A As DoubleMatrix = DoubleMatrix.Parse(S)

Conversely, the overridden ToString() member function returns a string representation of a matrix of the form:

[number of rows] x [number of columns] [ matrix values row by row]

A variant of the ToString() method also accepts a standard .NET numeric format string. For instance, the format string "C" indicates currency notion:

Code Example – C# matrix

var A = new FloatMatrix( "2x2 [4.523 4.323 4.555 -9.943]" );
Console.WriteLine(A.ToString("C"));
// prints out "2x2 [ $4.52 $4.32 $4.56 ($9.94) ]" in en-US locale

Code Example – VB matrix

Dim A As New FloatMatrix("2x2 [4.523 4.323 4.555 -9.943]"
Console.WriteLine(A.ToString("C"))
' prints out "2x2 [ $4.52 $4.32 $4.56 ($9.94) ]" in en-US locale

The Write() member function writes a text representation of a matrix to a given text writer. Again, a numeric format string is an optional second parameter.

Creating Matrices from ADO.NET Objects

You can create a matrix object from an ADO.NET object such as a DataTable, an array of DataRow objects, a DataRowCollection, or a DataView. See Chapter 52 for more information.
Implicit Conversion

The implicit conversion operators for the matrix classes are shown in Figure 3. An arrow indicates implicit promotion.

Figure 3 – Implicit conversion for matrices

![Diagram showing implicit conversion for matrices]

Copying Matrices

The matrix classes provide three copy methods:

- **Clone()** returns a deep copy of a matrix. Data is copied, so each matrix references different data.

- **ShallowCopy()** returns a shallow copy of a matrix. Data is not copied. Both matrices reference the same data.

- **DeepenThisCopy()** copies the data viewed by a matrix to new data block. This guarantees that there is only one reference to the underlying data, and that this data is in contiguous storage.

For instance:

**Code Example – C# matrix**

```csharp
var A = new FloatMatrix(4, 5, 1.0);
FloatMatrix B = A.ShallowCopy();

B[0,0] = 0; // A[0,0] == B[0,0]
B.DeepenThisCopy();
B[0,1] = 0; // A[0,1] != B[0,1]
```

**Code Example – VB matrix**

```vbnet
Dim A As New FloatMatrix(4, 5, 1.0)
Dim B As FloatMatrix = A.ShallowCopy()

B(0, 0) = 0 ' A[0,0] == B[0,0]
B.DeepenThisCopy()
B(0, 1) = 0 ' A[0,1] != B[0,1]
```
Matrix Views

Another way to create matrices in NMath is to create a new matrix view of data already referenced by another matrix. This is achieved using Slice and Range objects, as described in Section 4.2. Here’s an example using a Range object to create a new matrix view of the top left corner of a matrix:

Code Example – C# matrix

```csharp
var A = new DoubleMatrix(8, 8);
var topLeft = new Range(0, 3);
DoubleMatrix AtopLeft = A[topLeft, topLeft];
```

Code Example – VB matrix

```vbnet
Dim A As New DoubleMatrix(8, 8)
Dim TopLeft As New Range(0, 3)
Dim ATopLeft As DoubleMatrix = A(TopLeft, TopLeft)
```

Notice that the matrix indexer is overloaded to accept indexing objects, and return a new view of the indexed data.

6.3 Value Operations on Matrices

The matrix classes have the following read-only properties:

- **Cols** gets the number of columns in a matrix.
- **ColStride** gets the step increment between successive elements in a column.
- **Rows** gets the number of rows in a matrix.
- **RowStride** gets the step increment between successive elements in a column.
- **DataBlock** gets a reference to the data block that a matrix is viewing.

For example, if \( A \) is a FloatComplexMatrix instance:

Code Example – C# matrix

```csharp
int cols = A.Cols;
int rows = A.Rows;
FloatComplexDataBlock block = A.DataBlock;
```
Accessing and Modifying Matrix Values

The matrix classes provide standard indexers for getting and setting element value at a specified row and column position in a matrix. Thus, \( A[i,j] \) always returns the element in the \( i \)th row and \( j \)th column of matrix \( A \)’s view of the data.

**NOTE—Indexing starts at 0.**

Thus, this code sets the value in the lower right corner of the matrix to zero:

**Code Example – C# matrix**

```csharp
var A = new DoubleMatrix("2x2 [1 2 3 4]");
A[1,1] = 0;
```

**Code Example – VB matrix**

```vbnet
Dim A As New DoubleMatrix("2x2 [1 2 3 4]"
A(1, 1) = 0
```

The matrix indexer is also overloaded to accept Range and Slice indexing objects. For instance:

**Code Example – C# matrix**

```csharp
var A = new DoubleMatrix(5, 5, 2);
var B = new DoubleMatrix(2, 2, 1);
var s = new Slice(0, 2);
A[s,s] = B
```

**Code Example – VB matrix**

```vbnet
Dim A As New DoubleMatrix(5, 5, 2)
Dim B As New DoubleMatrix(2, 2, 1)
Dim S As New Slice(0, 2)
A(S, S) = B
```

You can also use the Set() member function to set the data elements of a matrix to a specified value. For instance, this code sets values in the last two columns of matrix \( A \) to zero:
Code Example – C# matrix

```csharp
int rows = 5, cols = 5;
var A = new DoubleMatrix(rows, cols, 0, 1);

var col = new Slice(3, 2);
Slice row = Slice.All;
A.Set(col, row, 0);
```

Code Example – VB matrix

```vbnet
Dim Rows As Integer = 5
Dim Cols As Integer = 5
Dim A As New DoubleMatrix(Rows, Cols, 0, 1)

Dim Col As New Slice(3, 2)
Dim Row As Slice = Slice.All
A.Set(Col, Row, 0)
```

You can replace either slice with an integer value indicating a particular row or column. Thus, this code changes the values in the first column of A to -1:

Code Example – C# matrix

```csharp
A.Set(1, Slice.All, -1);
```

Code Example – VB matrix

```vbnet
A.Set(1, Slice.All, -1)
```

NOTE—Any method that returns a vector view of the data referenced by a matrix can be used to modify the values of matrix, since the returned vector and the matrix share the data. See Section 6.6.

**Clearing and Resizing a Matrix**

The matrix classes provide two methods for changing the size of a matrix after it has been created:

- **Clear()** resets the value of all data elements to zero.
- **Resize()** changes the size of a matrix to the specified number of rows and columns, adding zeros or truncating as necessary.
- **ResizeAndClear()** performs the same function as **Resize()**, but also resets the value of all remaining data elements to zero.
6.4 Logical Operations on Matrices

Operator `==` tests for equality of two matrices, and returns `true` if both matrices have the same dimensions and all values are equal; otherwise, `false`. Following the convention of the .NET Framework, if both objects are `null`, they test equal. The comparison of the values for `DoubleMatrix` and `DoubleComplexMatrix` is done using operator `==` for doubles; comparison of the values for `FloatMatrix` and `FloatComplexMatrix` is done using operator `==` for floats. Therefore, the values of the matrices must be exactly equal for this method to return `true`. Operator `!=` returns the logical negation of `==`.

The `Equals()` member function also tests for equality. `NaNEquals()` ignores values that are Not-a-Number (NaN).

6.5 Arithmetic Operations on Matrices

`NMath` provides overloaded arithmetic operators for matrices with their conventional meanings for those .NET languages that support them, and equivalent named methods for those that do not. Table 6 lists the equivalent operators and methods.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Equivalent Named Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Add()</td>
</tr>
<tr>
<td>-</td>
<td>Subtract()</td>
</tr>
<tr>
<td>*</td>
<td>Multiply()</td>
</tr>
<tr>
<td>/</td>
<td>Divide()</td>
</tr>
<tr>
<td>Unary -</td>
<td>Negate()</td>
</tr>
<tr>
<td>++</td>
<td>Increment()</td>
</tr>
<tr>
<td>--</td>
<td>Decrement()</td>
</tr>
</tbody>
</table>

Unary negation, increment, and decrement operators are applied to every element in a matrix. The `Negate()` method returns a new matrix object; `Increment()` and `Decrement()` do not.

All binary operators and equivalent named methods work either with two matrices, or with a matrix and a scalar.
NOTE—Matrices must have the same dimensions to be combined using the element-wise operators. Otherwise, a MismatchedSizeException is thrown. (See Chapter 53.)

For example, this C# code uses the overloaded operators:

**Code Example – C# matrix**

```csharp
int rows = 3, cols = 3;

var A =
 new DoubleComplexMatrix(rows, cols, new DoubleComplex(1, 0));
var B =
 new DoubleComplexMatrix(rows, cols, new DoubleComplex(0,1));
var s = new DoubleComplex(2, 0);

DoubleComplexMatrix result = A + s*B;
```

This Visual Basic code uses the equivalent named methods:

**Code Example – VB matrix**

```vbnet
Dim rows As Integer = 3
Dim cols As Integer = 3

Dim A As _
 New DoubleComplexMatrix(rows, cols, New DoubleComplex(1, 0))
Dim B As _
 New DoubleComplexMatrix(rows, cols, New DoubleComplex(0, 1))
Dim s As New DoubleComplex(2, 0)

Dim result As DoubleComplexMatrix = _
 DoubleComplexMatrix.Add(A, DoubleComplexMatrix.Multiply(s, B))
```

**NMath** also provides overloads of the arithmetic named methods that accept three matrix arguments. The third matrix holds the result of applying the appropriate operation to the first two matrices. Because no new memory is allocated, efficiency is increased. This is especially useful for repeated operations, such as within loops. For instance, this code multiplies two matrices and stores the result in a third:

**Code Example – C# matrix**

```csharp
int rows = size;
int cols = size;
var A = new DoubleMatrix(rows, cols, 0, 1);
var B = new DoubleMatrix(rows, cols, 1, 1);
var C = new DoubleMatrix(rows, cols);

FloatMatrix.Multiply(A, B, C);
FloatMatrix.Multiply(A--, B, C);
FloatMatrix.Multiply(B, B, C);
// Still only three matrices allocated
```
Chapter 6. Matrix Classes

6.6 Vector Views

A variety of methods are providing for returning vector views of the data referenced by a matrix. The returned vector and the matrix share the data, so care must be exercised when modifying values. If after constructing a different view of an object’s data you want your own private view that you can modify without affecting any other objects, simply invoke the DeepenThisCopy() method on the vector:

Code Example – C# matrix

```csharp
var A = new DoubleMatrix(8, 8, 1, 1);
DoubleVector v = A.Diagonal();

v.DeepenThisCopy();
```

Code Example – VB matrix

```vbnet
Dim A As New DoubleMatrix(8, 8, 1.0, 1.0)
Dim V As DoubleVector = A.Diagonal()

V.DeepenThisCopy()
```
Row and Column Views

Member functions `Row()` and `Column()` return vector views of a specified row or column. For instance:

Code Example – C# matrix

```csharp
var A = new DoubleMatrix("3x3 [1 2 3 4 5 6 7 8 9]");

DoubleVector row1 = A.Row(1);
DoubleVector col0 = A.Col(0);
```

Code Example – VB matrix

```vbnet
Dim A As New DoubleMatrix("3x3 [1 2 3 4 5 6 7 8 9]")

Dim Row1 As DoubleVector = A.Row(1)
Dim Col0 As DoubleVector = A.Col(0)
```

Diagonal Views

The `Diagonal()` member function returns a vector view of a diagonal of a matrix. If no diagonal is specified, a vector view of the main diagonal is returned. For example, this code increments every element along the main diagonal:

Code Example – C# matrix

```csharp
var A = new FloatMatrix(5, 8);
A.Diagonal()++;
```

Code Example – VB matrix

```vbnet
Dim A As New FloatMatrix(5, 8)
A.Diagonal().Increment()
```

Arbitrary Slices

The `Slice()` member function returns a vector view of an arbitrary slice of a matrix. The parameters are:

- the starting row
- the starting column
- the number of elements
- the row stride
- the column stride
The slice begins at the starting row and column, and extends for the number of elements. The increment between successive elements in the vector is row stride rows and column stride columns. For example, this code returns a view of the diagonal from the bottom left corner to the top right of a 3x3 matrix:

**Code Example – C# matrix**

```csharp
var A = new DoubleMatrix("3x3 [1 2 3 4 5 6 7 8 9]");
DoubleVector v = A.Slice(2, 0, 3, -1, 1);
```

**Code Example – VB matrix**

```vbnet
Dim A As New DoubleMatrix("3x3 [1 2 3 4 5 6 7 8 9]"
Dim V As DoubleVector = A.Slice(2, 0, 3, -1, 1)
```

### 6.7 Functions of Matrices

NMath provides a variety of functions that take matrices as arguments.

#### Matrix Transposition

The matrix classes provide `Transpose()` member functions for calculating the transpose of a matrix: $B[i,k] = A[k,i]$. Class `NMathFunctions` also provides a static `Transpose()` method that returns the transpose of a matrix. For instance:

**Code Example – C# matrix**

```csharp
var A = new FloatComplexMatrix(5, 5, 1, 1);
FloatComplexMatrix B = A.Transpose();
FloatComplexMatrix C = NMathFunctions.Transpose(A);
// B == C
```

**Code Example – VB matrix**

```vbnet
Dim A As New FloatComplexMatrix(5, 5, 1.0F, 1.0F)
Dim B As FloatComplexMatrix = A.Transpose()
Dim C As FloatComplexMatrix = NMathFunctions.Transpose(A)
' B == C
```

In both cases, the matrix returned is a new view of the same data. `Transpose()` just swaps the number of rows and the number of columns, as well as the row strides and column strides. No data is copied.

#### Matrix Norms

The matrix classes provide member functions `OneNorm()` to compute the 1-norm (or largest column sum) of a matrix, `InfinityNorm()` to compute the infinity-
norm (or largest row sum) of a matrix, and \texttt{FrobeniusNorm()} to compute the Frobenius norm. For instance:

**Code Example – C# matrix**

```csharp
var A = new DoubleMatrix("3x3 [1 2 3 4 5 6 7 8 9]");
double d1 = A.OneNorm();
double d2 = A.InfinityNorm();
```

**Code Example – VB matrix**

```vbnet
Dim A As New DoubleMatrix("3x3 [1 2 3 4 5 6 7 8 9]")
Dim D1 As Double = A.OneNorm()
Dim D2 As Double = A.InfinityNorm()
```

## Matrix Products

Class \texttt{NMathFunctions} provides the static \texttt{Product()} method for calculating the matrix product of two matrices. For example:

**Code Example – C# matrix**

```csharp
var A = new FloatMatrix("3x3 [1 2 3 4 5 6 7 8 9]");
var B = new FloatMatrix(3, 3, 1, 1);
FloatMatrix C = NMathFunctions.Product(A, B);
```

**Code Example – VB matrix**

```vbnet
Dim A As New FloatMatrix("3x3 [1 2 3 4 5 6 7 8 9]")
Dim B As New FloatMatrix(3, 3, 1.0F, 1.0F)
Dim C As FloatMatrix = NMathFunctions.Product(A, B)
```

Transpose operations to be performed on the operands of a matrix-matrix multiply operation are specified using a value from the \texttt{NMathFunctions.ProductTransposeOption} enum:

- \texttt{TransposeNone} does not transpose either matrix before multiplying.
- \texttt{TransposeBoth} transposes both operands before multiplying.
- \texttt{TransposeFirst} transposes only the first operand before multiplying.
- \texttt{TransposeSecond} transposes only the second operand before multiplying.
- \texttt{ConjTransposeBoth} takes the conjugate transpose of both operands before multiplying.
- \texttt{ConjTransposeFirst} takes the conjugate transpose only of the first operand before multiplying.
- \texttt{ConjTransposeSecond} takes the conjugate transpose only of the second operand before multiplying.
Thus, this code calculates the inner product of the transpose of \( A \) with \( B \):

### Code Example – C# matrix

```csharp
var A = new FloatMatrix("3x3 [1 2 3 4 5 6 7 8 9]");
var B = new FloatMatrix(3, 3, 1, 1);
FloatMatrix C = NMathFunctions.Product(A, B,
 ProductTransposeOption.TransposeFirst);
```

### Code Example – VB matrix

```vbnet
Dim A As New FloatMatrix("3x3 [1 2 3 4 5 6 7 8 9]")
Dim B As New FloatMatrix(3, 3, 1.0F, 1.0F)
Dim C As FloatMatrix = NMathFunctions.Product(A, B,
 ProductTransposeOption.TransposeFirst)
```

Additional overloads of the `Product()` method calculate the inner product of a matrix and a scalar:

### Code Example – C# matrix

```csharp
var A = new DoubleMatrix("3x3 [1 2 3 4 5 6 7 8 9]");
var v = new DoubleVector("[3 2 1]");
DoubleVector u = NMathFunctions.Product(A, v);
```

### Code Example – VB matrix

```vbnet
Dim A As New DoubleMatrix("3x3 [1 2 3 4 5 6 7 8 9]")
Dim V As New DoubleVector("[3 2 1]"
Dim U As DoubleVector = NMathFunctions.Product(A, V)
```

Overloads are also provided which place the result of multiplying the first two operands into a third argument, rather than allocating new memory for the result:

### Code Example – C# matrix

```csharp
NMathFunctions.Product(A, B, C,
 ProductTransposeOption.TransposeBoth);
```

### Code Example – VB matrix

```vbnet
NMathFunctions.Product(A, B, C,
 ProductTransposeOption.TransposeBoth)
```

## Matrix Inverse and Pseudoinverse

Class `NMathFunctions` provides the static `Inverse()` method for calculating the inverse of a matrix:

### Code Example – C# matrix

```csharp
var A = new FloatMatrix("3x3 [1 2 3 4 5 6 7 8 9]");
FloatMatrix AInv = NMathFunctions.Inverse(A);
```
Code Example – VB matrix

Dim A As New FloatMatrix("3x3 1 2 3 4 5 6 7 8 9")
Dim AInv As FloatMatrix = NMathFunctions.Inverse(A)

The standard inverse fails if the matrix is singular or not square.

The pseudoinverse $A^+$ is a generalization of the inverse, and exists for any $n \times m$ matrix, where $n \geq m$:

$$A^+ = (A^T A)^{-1} A^T$$

NMathFunctions provides the static Pseudoinverse() method:

Code Example – C# matrix

FloatMatrix APseudoInv = NMathFunctions.Pseudoinverse( A );

Code Example – VB matrix

Dim APseudoInv As FloatMatrix = NMathFunctions.PseudoInverse(A)

To test the quality of the pseudoinverse, you can check the condition number of $A^T A$:

Code Example – C# matrix

float cond = NMathFunctions.ConditionNumber(  
    NMathFunctions.TransposeProduct( A, A ), NormType.OneNorm );
if (cond > 0.000001)  
{  
    // good  
}

Code Example – VB matrix

Dim Cond As Single = NMathFunctions.ConditionNumber(  
    NMathFunctions.TransposeProduct(A, A), NormType.OneNorm )
If Cond > 0.000001 Then  
    ' good  
End If

NOTE—The best way to compute the pseudoinverse is to use singular value decomposition. Method MatrixFunctions.Pseudoinverse() implements this method.

Rounding Functions

Class NMathFunctions provides static methods for rounding the elements of a matrix:

- Round() rounds each element of a given matrix to the specified number of decimal places.
- **Ceil()** applies the ceiling rounding function to each element of a given matrix.

- **Floor()** applies the floor rounding function to each element of a given matrix.

### Sums and Differences

The static **Sum()** method on **NMathFunctions** accepts a matrix and returns a vector containing the sums of the elements in each column. To sum the rows, simply **Transpose()** the matrix first.

For example:

**Code Example – C# matrix**

```csharp
var A = new DoubleMatrix(5, 8, 1, 1);

DoubleVector AColSums = NMathFunctions.Sum(A);
DoubleVector ARowSums = NMathFunctions.Sum(A.Transpose());
A.Transpose() // return A to original view
```

**Code Example – VB matrix**

```vbnet
Dim A As New DoubleMatrix(5, 8, 1.0, 1.0)
Dim AColSums As DoubleVector = NMathFunctions.Sum(A)
Dim ARowSums As DoubleVector = NMathFunctions.Sum(A.Transpose())
A.Transpose() ' return A to original view
```

**Transpose()** just swaps the number of rows and the number of columns, as well as the row strides and column strides. No data is copied.

**NaNSum()** ignores values that are Not-A-Number (NaN).

**NOTE—NaN functions are available for real-value matrices only, not complex number matrices.**

The static **Delta()** method on **NMathFunctions** returns a new matrix with the same dimensions as a given matrix, whose values are the result of applying the vector delta function to each column of the matrix. The vector delta computes the differences between successive elements in a given vector, such that:

\[
\begin{align*}
u[0] &= v[0] \\
u[i] &= v[i] - v[i-1]
\end{align*}
\]

Applied to a matrix, **Delta()** returns a new matrix such that:

\[
\begin{align*}
B[0,j] &= A[0,j] \\
\end{align*}
\]
Again, to apply the `Delta()` function to rows rather than columns, just transpose the matrix first.

**Min/Max Functions**

Class `NMathFunctions` provides static min/max finding methods that return a vector containing the value of the element in each column that meets the appropriate criterion:

- `Max()` returns a vector containing the greatest values in each column.
- `Min()` returns a vector containing the smallest values in each column.
- `NaNMax()` returns a vector containing the greatest values in each column, ignoring values that are Not-a-Number (NaN).
- `NaNMin()` returns a vector containing the smallest values in each column.

**NOTE—**NaN functions are available for real-value matrices only, not complex number matrices.

To apply these functions to the rows of a matrix, simply `Transpose()` the matrix first.

**Statistical Functions**

The static `Mean()`, `Median()`, `Variance()`, and `SumOfSquares()` methods on `NMathFunctions` are overloaded to accept a matrix and return a vector containing the result of applying the appropriate function to each column in the matrix:

```csharp
var A = new FloatMatrix(5, 5, 0, 2);
FloatVector means = NMathFunctions.Mean(A);
FloatVector medians = NMathFunctions.Median(A);
FloatVector variances = NMathFunctions.Variance(A);
```

```vbnet
Dim A As New FloatMatrix(5, 5, 0.0F, 2.0F)
Dim Means As FloatVector = NMathFunctions.Mean(A)
Dim Medians As FloatVector = NMathFunctions.Median(A)
Dim Variances As FloatVector = NMathFunctions.Variance(A)
```

NaN functions are available for real-value matrices only, not complex matrices.
To apply these functions to the rows of a matrix, simply `Transpose()` the matrix first.

**Trigonometric Functions**

**NMath** extends standard trigonometric functions `Acos()`, `Asin()`, `Atan()`, `Cos()`, `Cosh()`, `Sin()`, `Sinh()`, `Tan()`, and `Tanh()` to take matrix arguments. Class **NMathFunctions** provides these functions as static methods. For instance, this code constructs a matrix whose contents are the sines of another matrix:

**Code Example – C# matrix**

```csharp
var A = new FloatMatrix(10, 10, 0, Math.PI/4);
FloatMatrix cosA = NMathFunctions.Cos(A);
```

**Code Example – VB matrix**

```vbnet
Dim A As New FloatMatrix(10, 10, 0.0F, Math.PI / 4.0F)
Dim CosA As FloatMatrix = NMathFunctions.Cos(A)
```

The static `Atan2()` method takes two matrices and applies the two-argument arc tangent function to corresponding pairs of elements.

**Transcendental Functions**

**NMath** extends standard transcendental functions `Exp()`, `Log()`, `Log10()`, and `Sqrt()` to take matrix arguments. Class **NMathFunctions** provides these functions as static methods; each takes a single matrix as an argument and returns a matrix as a result. For example, this code creates a matrix whose elements are the square root of the elements in another matrix:

**Code Example – C# matrix**

```csharp
var A = new DoubleMatrix(3, 3, 1, 1);
DoubleMatrix sqrt = NMathFunctions.Sqrt(A);
```

**Code Example – VB matrix**

```vbnet
Dim A As New DoubleMatrix(3, 3, 1.0, 1.0)
Dim Sqrt As DoubleMatrix = NMathFunctions.Sqrt(A)
```

Function `Expm()` on **NMathFunctions** raises the constant $e$ to a given matrix power, using a scaling and squaring method based upon Pade approximation. This is different than method `Exp()` which exponentiates each element of a matrix independently.

Class **NMathFunctions** also provides the exponential function `Pow()` to raise each element of a matrix to a real exponent.
Code Example – C# matrix

```csharp
var A = new DoubleMatrix("2x2 [1 2 3 4]");
DoubleMatrix cubed = NMathFunctions.Pow(A, 3);
```

Code Example – VB matrix

```vbnet
Dim A As New DoubleMatrix("2x2 [1 2 3 4]")
Dim Cubed As DoubleMatrix = NMathFunctions.Pow(A, 3)
```

**Absolute Value and Square Root**

The static `Abs()` function on class `NMathFunctions` applies the absolute value function to each element of a given matrix:

Code Example – C# matrix

```csharp
var A = new DoubleMatrix(10, 10, 0, -1);
DoubleMatrix abs = NMathFunctions.Abs(A);
```

Code Example – VB matrix

```vbnet
Dim A As New DoubleMatrix(10, 10, 0.0, -1.0)
Dim Abs As DoubleMatrix = NMathFunctions.Abs(A)
```

**NMath** also extends the standard `Sqrt()` function to take a matrix argument. Thus, this code creates a matrix whose elements are the square root of another matrix’s elements:

Code Example – C# matrix

```csharp
var A = new FloatMatrix(10, 10, 1, 2);
FloatMatrix sqrt = NMathFunctions.Sqrt(A);
```

Code Example – VB matrix

```vbnet
Dim A As New FloatMatrix(10, 10, 1.0F, 2.0F)
Dim Sqrt As FloatMatrix = NMathFunctions.Sqrt(A)
```

**Sorting Functions**

The static `SortByColumn()` method on class `NMathFunctions` sorts the rows of a matrix by the values in a specified column. For instance, this code sorts matrix `A` by values in the first column:

Code Example – C# matrix

```csharp
var A = new FloatMatrix(20, 20, 0, 1);
A = NMathFunctions.SortByColumn(A, 0);
```
Complex Matrix Functions

Static methods Real() and Imag() on class NMathFunctions return the real and imaginary part of the elements of a matrix. If the elements of the given matrix are real, Real() simply returns the given matrix and Imag() returns a matrix of the same dimensions containing all zeros.

Static methods Arg() and Conj() on class NMathFunctions return the arguments (or phases) and complex conjugates of the elements of a matrix. If the elements of the given matrix are real, both methods simply return the given matrix.

For instance:

Code Example – C# matrix

```csharp
DoubleComplexMatrix A =
 new DoubleComplexMatrix("2x2 [(1,-1) (2,-.5) (2.2,1.1) (7,9)]");

DoubleComplexMatrix AConj = NMathFunctions.Conj(A);
// AConj = 2x2 [(1,1) (2,0.5) (2.2,-1.1) (7,-9)]

// Now use the Imag method to create a real matrix containing
// the imaginary parts of AConj.
DoubleMatrix AConjImag = NMathFunctions.Imag(AConj);
```

Code Example – VB matrix

```vbnet
Dim A As New DoubleComplexMatrix(
 "2x2 [(1,-1) (2,-.5) (2.2,1.1) (7,9)]"
)

Dim AConj As DoubleComplexMatrix = NMathFunctions.Conj(A)
' AConj = 2x2 [(1,1) (2,0.5) (2.2,-1.1) (7,-9)]

' Now use the Imag method to create a real matrix containing
' the imaginary parts of AConj.
Dim AConjImag As DoubleMatrix = NMathFunctions.Imag(AConj)
```

6.8 Generic Functions

NMath provides generic functions that apply a given function delegate to every element in a matrix, or to every column in a matrix.
Applying Elementwise Functions

NMATH provides convenience methods for applying unary and binary functions to elements of a matrix. Each of these methods takes a function delegate. The `Apply()` method returns a new matrix whose contents are the result of applying the given function to each element of the matrix. The `Transform()` method modifies a matrix object by applying the given function to each of its elements. For example, assuming `MyFunc` is a function that takes a `double` and returns a `double`:

Code Example – C# matrix

```csharp
var A = new DoubleMatrix(5, 5, 0, Math.PI/4);
var MyFuncDelegate = new Func<double, double>(MyFunc);
DoubleMatrix B = A.Apply(MyFuncDelegate);
```

Code Example – VB matrix

```vbnet
Dim A As New DoubleMatrix(5, 5, 0.0, Math.PI / 4.0)
Dim MyFuncDelegate As New Func(Of Double, Double)(MyFunc)
Dim B As DoubleMatrix = A.Apply(MyFuncDelegate)
```

Applying Columnwise Functions

NMATH provides the `ApplyColumns()` method on the matrix classes for applying a vector function to columns of a matrix. This function takes a function delegate that accepts a vector and returns a single value.

For instance, assuming `MyFunc` takes a `FloatVector` and returns a `float`:

Code Example – C# matrix

```csharp
var A = new FloatMatrix(5, 5, 0, Math.Pi/4);
var MyFuncDelegate = new Func<FloatVector, float>(MyFunc);
FloatVector v = A.ApplyColumns(MyFuncDelegate);
```

Code Example – VB matrix

```vbnet
Dim A As New FloatMatrix(5, 5, 0.0F, Math.PI / 4.0F)
Dim MyFuncDelegate As New Func(Of FloatVector, Single)(MyFunc)
Dim V As FloatVector = A.ApplyColumns(MyFuncDelegate)
```

To apply a function to the rows of matrix, just `Transpose()` the matrix first. `Transpose()` simply swaps the number of rows and the number of columns, as well as the row strides and column strides. No data is copied, so it’s a relatively cheap operation. For instance:

Code Example – C# matrix

```csharp
FloatVector v = A.Transpose().ApplyColumns(MyFuncDelegate);
A.Transpose(); // return A to original view
```
6.9 Matrix Enumeration

**NMath** matrix classes provide standard .NET `GetEnumerator()` methods for returning `IEnumerator` objects. For example:

**Code Example – C# matrix**

```csharp
int rows = 13, cols = 3;
var A = new DoubleMatrix(rows, cols, 0, .25);
IEnumerator elements = A.GetEnumerator();

var data = new double[rows*cols];
i = 0;
while (elements.MoveNext())
{
 data[i++] = (double)elements.Current;
}
```

**Code Example – VB matrix**

```vbnet
Dim Rows As Integer = 13
Dim Cols As Integer = 3
Dim A As New DoubleMatrix(Rows, Cols, 0.0, 0.25)
Dim Elements As IEnumerator = A.GetEnumerator()

Dim Data(Rows * Cols) As Double
Dim I As Integer = 0
While Elements.MoveNext()
 I += 1
 Data(I) = CType(Elements.Current, Double)
End While
```

Note that the `Current` property on an `IEnumerator` returns the current object in the collection, which must then be cast to the appropriate type. **NMath** also provides custom strongly-typed enumerators: `IFloatEnumerator`, `IDoubleEnumerator`, `IFloatComplexEnumerator`, and `IDoubleComplexEnumerator`. These avoid casting, and are therefore much faster.
For instance:

**Code Example – C# matrix**

```csharp
int rows = 13, cols = 3;
var A = new DoubleMatrix(rows, cols, 0, .25);
IDoubleEnumerator elements = A.GetDoubleEnumerator();

var data = new double[rows*cols];
i = 0;
while (elements.MoveNext())
{
 data[i++] = elements.Current; // No need to cast to double
}
```

**Code Example – VB matrix**

```vbnet
Dim Rows As Integer = 13
Dim Cols As Integer = 3
Dim A As New DoubleMatrix(Rows, Cols, 0.0, 0.25)
Dim Elements As IDoubleEnumerator = A.GetDoubleEnumerator()

Dim Data(Rows * Cols) As Double
Dim I As Integer = 0
While Elements.MoveNext()
 I += 1
 Data(I) = Elements.Current ' No need to cast to Double
End While
```
NMath provides classes for computing and storing the LU factorization for a matrix.

*LU factorization* is a procedure for decomposing a matrix into a product of a *lower* triangular matrix and an *upper* triangular matrix. Given a matrix \(A\), an LU factorization class factors \(A\) as follows:

\[ PA = LU \]

where \(P\) is a permutation matrix, \(L\) is a lower triangular matrix with ones on the diagonal, and \(U\) is an upper triangular matrix.

Once an LU factorization is constructed, it can be reused to solve for different right-hand sides, to compute inverses, to compute condition numbers, and so on.

NMath also provides several static functions for solving linear systems, and for computing determinants, inverses, and condition numbers.

### 7.1 Class Names

The classes that compute and store LU factorizations in NMath are named `<Type>LUFact`, where `<Type>` is `Float`, `Double`, `FloatComplex`, or `DoubleComplex`. (See Chapter 3 for a description of the complex number classes.)

Thus:

- The `FloatLUFact` class represents the LU factorization of a matrix of single-precision floating point numbers.
- The `DoubleLUFact` class represents the LU factorization of a matrix of double-precision floating point numbers.
- The `FloatComplexLUFact` class represents the LU factorization of a matrix of single-precision complex numbers.
- The `DoubleComplexLUFact` class represents the LU factorization of a matrix of double-precision complex numbers.
7.2 Creating LU Factorizations

You can create an instance of an LU factorization class by supplying the constructor with a matrix to factor. Thus:

**Code Example – C# LU factorization**

```csharp
var A = new DoubleComplexMatrix(5, 5, 1, 1);
var lu = new DoubleComplexLUFact(A);
```

**Code Example – VB LU factorization**

```vbnet
Dim A As New DoubleComplexMatrix(5, 5, 1, 1)
Dim LU As New DoubleComplexLUFact(A)
```

You can also use an existing instance to factor other matrices with the provided `Factor()` method. For instance:

**Code Example – C# LU factorization**

```csharp
var A = new FloatMatrix(n, n, 1, 1.62F);
var lu = new FloatLUFact(A);
B = new FloatVector(n, -1.2F, 1.78F);
lu.Factor(B);
```

**Code Example – VB LU factorization**

```vbnet
Dim A As New FloatMatrix(N, N, 1, 1.62F)
Dim LU As New FloatLUFact(A)
Dim B As New FloatVector(N, -1.2F, 1.78F)
LU.Factor(B)
```

The read-only `IsGood` property gets a boolean value that is `true` if the matrix factorization succeeded and the factorization may be used to solve equations, compute determinants, inverses, and so on. Otherwise, it returns `false`. For example:

**Code Example – C# LU factorization**

```csharp
if (lu.IsGood)
{
 // Do something here...
}
```

**Code Example – VB LU factorization**

```vbnet
If LU.IsGood Then
 ' Do something here...
End If
```
Other read-only properties provide information about the matrix used to construct an LU factorization:

- `Cols` gets the number of columns of the factored matrix.
- `Rows` gets the number of rows of the factored matrix.
- `IsSingular` returns `true` if the matrix was singular; otherwise, `false`.

### 7.3 Using LU Factorizations

Once an LU factorization is constructed from a matrix (see Section 7.2), it can be reused to solve for different right hand sides, to compute inverses, to compute condition numbers, and so on.

#### Component Matrices

Read-only properties provide access to the component matrices of the LU factorization:

- `P` gets the permutation matrix.
- `L` gets the lower triangular matrix.
- `U` gets the upper triangular matrix.
- `Pivots` gets an array of pivot indices, where row `i` was interchanged with `Pivots[i]`.

#### Solving for Right-Hand Sides

You can use an LU factorization to solve for right-hand sides using the `Solve()` method. For instance, this code solves for one right-hand side.: 

**Code Example – C# LU factorization**

```csharp
var A = new DoubleMatrix("3x3 [2 1 1 4 1 0 -2 2 1]");
var lu = new DoubleLUFact(A);
var v = new DoubleVector("[8 11 3]");
DoubleVector x = lu.Solve(v);
```

**Code Example – VB LU factorization**

```vbnet
Dim A As New DoubleMatrix("3x3 [2 1 1 4 1 0 -2 2 1]")
Dim LU As New DoubleLUFact(A)
```
Dim V As New DoubleVector("[8 11 3]")
Dim X As DoubleVector = LU.Solve(V)

The returned vector \( \mathbf{x} \) is the solution to the linear system \( \mathbf{A}\mathbf{x} = \mathbf{v} \). Note that the length of vector \( \mathbf{v} \) must be equal to the number of rows in the factored matrix \( \mathbf{A} \) or a **MismatchedSizeException** is thrown. (See Section 53.1.)

Similarly, you can use the **Solve()** method to solve for multiple right-hand sides:

**Code Example – C# LU factorization**

```csharp
var A = new FloatMatrix("3x3 [2 1 1 4 1 0 -2 2 1]");
var lu = new FloatLUFact(A);

var B = new FloatMatrix("3x2[8 3 11 11 3 8]");
FloatMatrix X = fact.Solve(B);
```

**Code Example – VB LU factorization**

```vbnet
Dim A As New FloatMatrix("3x3 [2 1 1 4 1 0 -2 2 1]")
Dim LU As New FloatLUFact(A)

Dim B As New FloatMatrix("3x2[8 3 11 11 3 8]")
Dim X As FloatMatrix = Fact.Solve(B)
```

The returned matrix \( \mathbf{X} \) is the solution to the linear system \( \mathbf{A}\mathbf{X} = \mathbf{B} \). That is, the right-hand sides are the columns of \( \mathbf{B} \), and the solutions are the columns of \( \mathbf{X} \). Matrix \( \mathbf{B} \) must have the same number of rows as the factored matrix \( \mathbf{A} \).

**SolveInPlace()** methods are also provided which place the solution in the given vector or matrix, without allocating new memory. The given right-hand side data must have unit stride.

## Computing Inverses, Determinants, and Condition Numbers

You can use an LU factorization to compute inverses using the **Inverse()** method, and determinants using the **Determinant()** method. For example:

**Code Example – C# LU factorization**

```csharp
var A = new FloatMatrix("3x3 [2 1 1 4 1 0 -2 2 1]");
var lu = new FloatLUFact(A);

FloatMatrix AInv = lu.Inverse();
float ADet = lu.Determinant();
```

**Code Example – VB LU factorization**

```vbnet
Dim A As New FloatMatrix("3x3 [2 1 1 4 1 0 -2 2 1]")
Dim LU As New FloatLUFact(A)

Dim AInv As New FloatMatrix("3x3 [2 1 1 4 1 0 -2 2 1]")
Dim ADet As Single = Fact.Determinant()
```
Dim AInv As FloatMatrix = LU.Inverse()
Dim ADet As Single = LU.Determinant()

The ConditionNumber() method computes the condition number in a specified norm type. The condition number of a matrix $A$ is:

$$kappa = \|A\| \|AInv\|$$

where $AInv$ is the inverse of the matrix $A$.

**NOTE**—The ConditionNumber() method returns the reciprocal of the condition number, $\rho$, where $\rho = 1/kappa$.

The provided NormType enumeration contains values for specifying the matrix norm. You can also choose to estimate the condition number, which is faster but less accurate, or to compute it directly. For small matrices, the results are usually the same. Thus, this code estimates the condition number in the infinity-norm:

**Code Example – C# LU factorization**

```csharp
var A = new DoubleMatrix("3x3 [2 1 1 4 3 3 8 7 9]");
var lu = new DoubleLUFact(A);

double AEstimatedConditionNum =
 lu.ConditionNumber(NormType.InfinityNorm, true);
```

**Code Example – VB LU factorization**

```vbnet
Dim A As New DoubleMatrix(“3x3 [2 1 1 4 3 3 8 7 9]”)
Dim LU As New DoubleLUFact(A)

Dim AEstimatedConditionNum As Double =
 LU.ConditionNumber(NormType.InfinityNorm, True)
```

This code computes the condition number directly in the 1-norm:

**Code Example – C# LU factorization**

```csharp
double AComputedConditonNum =
 lu.ConditionNumber(NormType.OneNorm, false);
```

**Code Example – VB LU factorization**

```vbnet
Dim AComputedConditonNum As Double =
 LU.ConditionNumber(NormType.OneNorm, False)
```
7.4 Static Methods

As a convenience, **NMath** provides static methods on class **NMathFunctions** for solving linear systems, and for computing determinants, inverses, and condition numbers. All methods accept a matrix.

The following static methods are provided:

- **NMathFunctions.Solve()** solves linear systems for single or multiple right-hand sides.
- **NMathFunctions.Inverse()** computes the inverse of a given matrix.
- **NMathFunctions.Determinant()** computes the determinant of a given matrix.
- **NMathFunctions.EstimateConditionNumber()** estimates the condition number of a given matrix in the specified norm type.
- **NMathFunctions.ConditionNumber()** directly computes the condition number of a given matrix in the specified norm type.

For instance:

**Code Example – C# LU factorization**

```csharp
var A = new DoubleMatrix("3x3 [2 1 1 4 1 0 -2 2 1]");

var b = new DoubleVector("[8 11 3]");
DoubleVector x = NMathFunctions.Solve(A, b);

var B = new DoubleMatrix("3x2 [8 3 11 11 3 8]");
DoubleMatrix X = NMathFunctions.Solve(A, B);

DoubleMatrix AInv = NMathFunctions.Inverse(A);
double ADet = NMathFunctions.Determinant(A);
double ACond =
 NMathFunctions.ConditionNumber(A, NormType.InfinityNorm);
```

**Code Example – VB LU factorization**

```vbnet
Dim A As New DoubleMatrix("3x3 [2 1 1 4 1 0 -2 2 1]")

Dim B As New DoubleVector("[8 11 3]")
Dim X As DoubleVector = NMathFunctions.Solve(A, B)

Dim B As New DoubleMatrix("3x2 [8 3 11 11 3 8]")
Dim X As DoubleMatrix = NMathFunctions.Solve(A, B)

Dim AInv As DoubleMatrix = NMathFunctions.Inverse(A)
Dim ADet As Double = NMathFunctions.Determinant(A)
```
Dim ACond As Double =
    NMathFunctions.ConditionNumber(A, NormType.InfinityNorm)

Note that an LU factorization instance is created with each call to
NMathFunctions.Solve(). If you are calling Solve() repeatedly (inside a loop,
for example), and the coefficient matrix is not changing between calls, this is more
efficient:

**Code Example – C# LU factorization**

```csharp
var fact = new DoubleLUFact(A, false);
...
fact.Solve(B);
```

**Code Example – VB LU factorization**

```vbnet
Dim Fact As New DoubleLUFact(A, False)
...
Fact.Solve(B)
```
CHAPTER 8.
LEAST SQUARES

**NMATH** provides classes for computing the minimum-norm solution to a linear system $Ax = y$. In a linear model, a quantity $y$ depends on one or more independent variables $a_1, a_2, \ldots, a_n$ such that $y = x_0 + x_1a_1 + \ldots + x_na_n$. (Parameter $x_0$ is called the intercept parameter.) The goal of a least squares problem is to solve for the best values of $x_0, x_1, \ldots, x_n$.

Several observations of the independent values $a_i$ are recorded, along with the corresponding values of the dependent variable $y$. If $m$ observations are performed, and for the $i$th observation we denote the values of the independent variables $a_{i1}, a_{i2}, \ldots, a_{in}$ and the corresponding dependent value of $y$ as $y_i$, then we form the linear system $Ax = y$, where $A = (a_{ij})$ and $y = (y_i)$. The general least squares solution is the value of $x$ that minimizes $||Ax - y||$. The nonnegative least squares solution is the value of $x$ subject to the constraint that each element of $x$ is nonnegative.

Note that if the model contains a non-zero intercept parameter, then the first column of $A$ is all ones.

The **NMATH** least squares classes use a complete orthogonal factorization of $A$ to compute the solution. Matrix $A$ is rectangular, and may be rank deficient.

### 8.1 Class Names

The classes that compute general least squares solutions in **NMATH** are named `<Type>LeastSquares`, where `<Type>` is `Float`, `Double`, `FloatComplex`, or `DoubleComplex`. (See Chapter 3 for a description of the complex number classes.) Thus:

- The **FloatLeastSquares** class computes the least squares solution to the linear system $Ax = y$, where $A$ is a `FloatMatrix` of independent observations, and $y$ is a `FloatVector` of corresponding values for the dependent variable.

- The **DoubleLeastSquares** class computes the least squares solution to the linear system $Ax = y$, where $A$ is a `DoubleMatrix` of independent
observations, and \( y \) is a **DoubleVector** of corresponding values for the dependent variable.

- The **FloatComplexLeastSquares** class computes the least squares solution to the linear system \( Ax = y \), where \( A \) is a **FloatComplexMatrix** of independent observations, and \( y \) is a **FloatComplexVector** of corresponding values for the dependent variable.

- The **DoubleComplexLeastSquares** class computes the least squares solution to the linear system \( Ax = y \), where \( A \) is a **DoubleComplexMatrix** of independent observations, and \( y \) is a **DoubleComplexVector** of corresponding values for the dependent variable.

The classes that compute nonnegative least squares solutions in **NMath** are named `<Type>NonnegativeLeastSquares`, where `<Type>` is `Float` or `Double`—`FloatNonnegativeLeastSquares` and `DoubleNonnegativeLeastSquares`.

### 8.2 Creating Least Squares Solutions

Least squares solutions to the linear system \( Ax = y \) are constructed from a rectangular matrix \( A \) and a vector of values \( y \). For instance:

**Code Example – C# least squares**

```csharp
var A =
 new DoubleMatrix("4x2[1.0 20.0 1.0 30.0 40.0 1.0 50.0 1.0]");
var y = new DoubleVector("[.446 .601 .786 .928]");

var lsq = new DoubleLeastSquares(A, y);
```

**Code Example – VB least squares**

```vbnet
Dim A =
 New DoubleMatrix("4x2[1.0 20.0 1.0 30.0 40.0 1.0 50.0 1.0]")
Dim Y = New DoubleVector("[.446 .601 .786 .928]")
Dim LSQ = New DoubleLeastSquares(A, Y)
```

An optional Boolean parameter to the constructor can be used to add an intercept parameter to the model. If `true`, a column of ones is prepended to a deep copy of matrix \( A \) before solving for the least squares solution.

**NOTE**—**The input matrix A is not changed.**

For example:

**Code Example – C# least squares**

```csharp
var lsq = new FloatComplexLeastSquares (A, y, true);
```
Code Example – VB least squares

Dim LSQ As New FloatComplexLeastSquares(A, Y, True)

Finally, for advanced users, you can specify a non-default tolerance to be used in computing the effective rank. The effective rank of $A$ is determined by treating as zero those singular values that are less than the tolerance times the largest singular value.

Thus:

Code Example – C# least squares

double tolerance = 1e-5;
var lsq =
    new DoubleComplexLeastSquares( A, y, false, tolerance );

Code Example – VB least squares

Dim Tolerance As Double = "1e-5"
Dim LQS As New DoubleComplexLeastSquares(A, Y, False, Tolerance)

NOTE—For details of the effective rank computation, see the documentation for LAPACK routines sgelsy(), dgelsy(), zgelsy(), and cgelsy().

8.3 Using Least Squares Solutions

Once constructed, an NMath least squares class provides read-only properties to access the least squares solution to the linear system $Ax = y$:

- $x$ gets the least squares solution.
- $\hat{y}$ gets the predicted value $\hat{y} = Ax$, where $x$ is the calculated solution.
- $\text{Residuals}$ gets the vector of residuals $r$ where $r_i = y_i - \hat{y}_{\text{hat}_i}$.
- $\text{ResidualSumOfSquares}$ gets the residual sum of squares $(y_0 - \hat{y}_{\text{hat}_0})^2 + (y_1 - \hat{y}_{\text{hat}_1})^2 + \ldots + (y_{m-1} - \hat{y}_{\text{hat}_{m-1}})^2$.
- $\text{Rank}$ gets the effective rank of the matrix $A$.
- $\text{Tolerance}$ gets the tolerance used to compute the effective rank of the matrix $A$.

For instance, this code calculates the slope and intercept of a linear least squares fit through five data points, then prints out the properties of the solution:
Code Example – C# least squares

```csharp
var A = new DoubleMatrix("5x1[20.0 30.0 40.0 50.0 60.0]");
var y = new DoubleVector("[.446 .601 .786 .928 .950]");
var lsq = new DoubleLeastSquares(A, y, true);

Console.WriteLine("Y-intercept = {0}", lsq.X[0]);
Console.WriteLine("Slope = {0}", lsq.X[1]);
Console.WriteLine("Residuals = {0}", lsq.Residuals);
Console.WriteLine("Residual Sum of Squares (RSS) = {0}",
 lsq.ResidualSumOfSquares);
```

Code Example – VB least squares

```vbnet
Dim A As New DoubleMatrix("5x1[20.0 30.0 40.0 50.0 60.0]")
Dim Y As New DoubleVector("[.446 .601 .786 .928 .950]")
Dim LSQ As New DoubleLeastSquares(A, Y, True)

Console.WriteLine("Y-intercept = {0}", LSQ.X(0))
Console.WriteLine("Slope = {0}", LSQ.X(1))
Console.WriteLine("Residuals = {0}", LSQ.Residuals)
Console.WriteLine("Residual Sum of Squares (RSS) = {0}",
 LSQ.ResidualSumOfSquares)
```

### 8.4 Nonnegative Least Squares Solutions

Classes `FloatNonnegativeLeastSquares` and `DoubleNonnegativeLeastSquares` find nonnegative least squares solutions—that is, the value of $x$ that minimizes $||Ax - y||$ subject to the constraint that each element of the vector $x$ is nonnegative.

The interface is the same as for the general least squares classes (Section 8.2 and Section 8.3), with the addition of a `RankDeficiencyDetected` property. If a rank deficiency is detected while solving an unconstrained least squares problem during the nonnegative least squares iterative algorithm, this property returns `true`. 
CHAPTER 9.
RANDOM NUMBER GENERATORS

NMath provides random number generators that generate random deviates from a variety of probability distributions, including the beta, binomial, Cauchy, exponential, gamma, geometric, Gumbel, Johnson, Laplace, log-normal, normal, Pareto, Poisson, Rayleigh, triangular, uniform, and Weibull distributions.

NMath provides two sets of random number generators:

- **Scalar** random number generators, which generate random deviates one at a time, via the `Next()` method. All NMath scalar generators inherit from the abstract base class `RandomNumberGenerator`, providing a common interface.

- **Vectorized** random number generators, which yield a stream of random numbers. Vectorized random number generators generally outperform scalar generators in computations requiring multiple deviates. All NMath scalar generators implement the `IRandomNumberDistribution` interface, and use a `RandomNumberStream`.

This chapter describes how to use the random number generator classes.

9.1 **Scalar Random Number Generators**

NMath provides scalar generator classes that return random deviates from a variety of probability distributions.

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RandGenUniform</td>
<td>Uniform distribution.</td>
</tr>
<tr>
<td>RandGenBeta</td>
<td>Beta distribution.</td>
</tr>
<tr>
<td>RandGenBinomial</td>
<td>Binomial distribution.</td>
</tr>
<tr>
<td>RandGenExponential</td>
<td>Exponential distribution.</td>
</tr>
<tr>
<td>RandGenGamma</td>
<td>Gamma distribution.</td>
</tr>
<tr>
<td>RandGenGeometric</td>
<td>Geometric distribution.</td>
</tr>
</tbody>
</table>
Underlying Uniform Generators

All NMath scalar random number generators, regardless of the distribution, require an underlying uniform random number generator that returns random deviates in the range zero to one. Each generator first generates a random uniform deviate in the range zero to one, then from this deviate derives a random number from the appropriate probability distribution. Thus, the statistical properties and performance of the generators largely depend on the statistical properties and performance of the underlying random number generator.

By default, all scalar generators use the NMath class RandGenMTwist as the underlying uniform generator. RandGenMTwist implements the Mersenne Twister algorithm, developed by Makoto Matsumoto and Takuji Nishimura in 1996-1997. This algorithm is faster and more efficient, and has a far longer period and far higher order of equidistribution, than other existing generators.

If you have your own uniform random number generator that you wish to use, all NMath random number generators provide constructor overloads that accept a RandomNumberGenerator.UniformRandomNumber function delegate. The function must generate uniform deviates in the range zero to one, and return a double.
For example, this code creates a delegate object from the method `System.Random.NextDouble()`, then constructs a binomial random number generator that uses this delegate:

**Code Example – C# random number generators**

```csharp
var sysRand = new Random();
var uniformDeviates =
 new RandomNumberGenerator.UniformRandomNumber(
 sysRand.NextDouble);

int trials = 2000;
double prob = .002;
var binRand =
 new RandGenBinomial(trials, prob, uniformDeviates);
```

**Code Example – VB random number generators**

```vbnet
Dim SysRand As New Random()
Dim UniformDeviates As New
 RandomNumberGenerator.UniformRandomNumber(
 AddressOf SysRand.NextDouble)

Dim Trials As Integer = 2000
Dim Prob As Double = 0.002
Dim BinRand As New RandGenBinomial(Trials, Prob, UniformDeviates)
```

All generators inherit a `UniformDeviateMethod` property from `RandNumberGenerator` for accessing and modify the underlying delegate method. For example, this code changes the delegate used by `binRand`:

**Code Example – C# random number generators**

```csharp
var mt = new RandGenMTwist();
binRand.UniformDeviateMethod =
 new RandomNumberGenerator.UniformRandomNumber(mt.NextDouble);
```

**Code Example – VB random number generators**

```vbnet
Dim MT As New RandGenMTwist()
BinRand.UniformDeviateMethod =
 New RandomNumberGenerator.UniformRandomNumber(AddressOf
 MT.NextDouble)
```

### Generating Random Numbers

All **NMath** generators provide a `Next()` method that returns a random deviate as a `double`, except for `RandGenBinomial` and `RandGenPoisson` that return an `int`. For example, this code prints out 100 random deviates from a normal distribution with mean of -12.9 and variance of 2.066:
Code Example – C# random number generators

double mean = -12.9;
double variance = 2.066;
var gen = new RandGenNormal(mean, variance);

for (int i=0; i<100; i++)
{
    Console.WriteLine(gen.Next());
}

Code Example – VB random number generators

Dim Mean As Double = -12.9
Dim Variance As Double = 2.066
Dim Gen As New RandGenNormal(Mean, Variance)

For I As Integer = 0 To 99
    Console.WriteLine(Gen.Next())
Next

The base class RandomNumberGenerator also provides the abstract method NextDouble(), which is equivalent to calling Next(). This is a common method for applications that require polymorphic random number generation across the different generators, but also incurs the extra overhead of a virtual function call.

The Fill() method enables you to fill an array of float, double, FloatComplex, or DoubleComplex with random values. Thus:

Code Example – C# random number generators

var array1 = new double[100];
var array2 = new FloatComplex[100];

var gen = new RandGenPoisson();
gen.Fill(array1);
gen.Fill(array2);

Code Example – VB random number generators

Dim Array1(100) As Double
Dim Array2(100) As FloatComplex

Dim Gen As New RandGenPoisson()
Gen.Fill(Array1)
Gen.Fill(Array2)
Lastly, as a convenience, **NMath** vector and matrix classes provide constructor overloads that initialize all elements with random values. For example:

**Code Example – C# random number generators**

```csharp
var gen = new RandGenUniform(0, 100);
var v = new DoubleVector(10, gen);
var A = new DoubleComplexMatrix(25, 25, gen);
```

**Code Example – VB random number generators**

```vbnet
Dim Gen As New RandGenUniform(0, 100)
Dim V As New DoubleVector(10, Gen)
Dim A As New DoubleComplexMatrix(25, 25, Gen)
```

### Random Seeds

As described above, all **NMath** random number generators, regardless of the distribution, use an underlying uniform random number generator to generate random deviates in the range $(0,1)$, then derive from the deviate a random number from the appropriate probability distribution. Thus, the seed that determines the pseudorandom sequence is associated with the underlying uniform generator, *not* with the wrapping generator.

All **NMath** random number generator classes have `Reset()` and `Reset(int)` methods that attempt to reset the underlying uniform generator with the time of day, for the no argument reset, or the given seed, for the integer argument version. These methods return `true` if the reset was successful and `false` if it was not. The reset methods succeed if the following conditions are met:

1. The uniform generator delegate is an instance method; that is, the `Target` property of the `Delegate` class returns a non-null reference.

2. The object reference thus obtained has a method named `Initialize()` that returns void and takes no arguments, for the `Reset()` method, or a single integer argument for the `Reset(int)` method.

For example, this code attempts to generate two identical sequences by explicitly setting and resetting the seed:

**Code Example – C# random number generators**

```csharp
int seed = 0x124;
var mt = new RandGenMTwist(seed);
var uniformDeviates =
 new RandomNumberGenerator.UniformRandomNumber(mt.NextDouble);
var gen = new RandGenNormal(50, 5, uniformDeviates);
var randomSequence1 = new DoubleVector(100, gen);
```
if ( gen.Reset(seed) ) {
    var randomSequence2 = new DoubleVector( 100, gen );
} else {
    Console.WriteLine( "Could not reset generator" );
}

Code Example – VB random number generators

Dim Seed As Integer = &H124
Dim MT As New RandGenMTwist(Seed)
Dim UniformDeviates As New
    RandomNumberGenerator.UniformRandomNumber(AddressOf MT.NextDouble)

Dim Gen As New RandGenNormal(50, 5, UniformDeviates)
Dim RandomSequence1 As New DoubleVector(100, Gen)

If Gen.Reset(Seed) Then
    Dim RandomSequence2 As New DoubleVector(100, Gen)
Else
    Console.WriteLine("Could not reset generator")
End If

9.2 Vectorized Random Number Generators

Unlike scalar-type generators, whose output is a successive random number (Section 9.1), vectorized generators produce a vector of \( n \) successive random numbers from a given distribution. Vectorized generators typically outperform scalar generators because the overhead expense of a function call is comparable to the total time required for computation.

\textbf{NMath} provides vectorized distribution classes for many continuous (Table 8) and discrete (Table 9) distributions.

\textbf{Table 8 – Continuous Distributions}
### Table 8 – Continuous Distributions

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoubleRandomExponentialDistribution</td>
<td>Exponential distribution</td>
</tr>
<tr>
<td>FloatRandomExponentialDistribution</td>
<td></td>
</tr>
<tr>
<td>DoubleRandomGammaDistribution</td>
<td>Gamma distribution.</td>
</tr>
<tr>
<td>FloatRandomGammaDistribution</td>
<td></td>
</tr>
<tr>
<td>DoubleRandomGaussianDistribution</td>
<td>Gaussian distribution.</td>
</tr>
<tr>
<td>FloatRandomGaussianDistribution</td>
<td></td>
</tr>
<tr>
<td>DoubleRandomGumbelDistribution</td>
<td>Gumbel distribution.</td>
</tr>
<tr>
<td>FloatRandomGumbelDistribution</td>
<td></td>
</tr>
<tr>
<td>DoubleRandomLaplaceDistribution</td>
<td>Laplace distribution.</td>
</tr>
<tr>
<td>FloatRandomLaplaceDistribution</td>
<td></td>
</tr>
<tr>
<td>DoubleRandomLogNormalDistribution</td>
<td>Log-normal distribution.</td>
</tr>
<tr>
<td>FloatRandomLogNormalDistribution</td>
<td></td>
</tr>
<tr>
<td>DoubleRandomRayleighDistribution</td>
<td>Rayleigh distribution.</td>
</tr>
<tr>
<td>FloatRandomRayleighDistribution</td>
<td></td>
</tr>
<tr>
<td>DoubleRandomUniformDistribution</td>
<td>Uniform distribution.</td>
</tr>
<tr>
<td>FloatRandomUniformDistribution</td>
<td></td>
</tr>
<tr>
<td>DoubleRandomWeibullDistribution</td>
<td>Weibull distribution.</td>
</tr>
<tr>
<td>FloatRandomWeibullDistribution</td>
<td></td>
</tr>
</tbody>
</table>

### Table 9 – Discrete Distributions

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IntRandomBernoulliDistribution</td>
<td>Bernoulli distribution.</td>
</tr>
<tr>
<td>IntRandomBinomialDistribution</td>
<td>Binomial distribution.</td>
</tr>
<tr>
<td>IntRandomGeometricDistribution</td>
<td>Geometric Distribution</td>
</tr>
<tr>
<td>IntRandomHypergeometricDistribution</td>
<td>Hypergeometric distribution.</td>
</tr>
<tr>
<td>IntRandomNegativeBinomialDistribution</td>
<td>Negative Binomial distribution.</td>
</tr>
<tr>
<td>IntRandomPoissonDistribution</td>
<td>Poisson distribution.</td>
</tr>
</tbody>
</table>
Distribution objects are constructed from the relevant distribution parameters. For example:

**Code Example – C# random number generators**

double mean = 1.0;
double sigma = 1.0;
DoubleRandomGaussianDistribution dist =
    new DoubleRandomGaussianDistribution(mean, sigma);

**Code Example – VB random number generators**

Dim Mean = 1.0
Dim Sigma = 1.0
Dim Dist As New DoubleRandomGaussianDistribution(Mean, Sigma)

### Generating Random Numbers

Class **RandomNumberStream** encapsulates a vectorized random number generator which yields a stream of random numbers.

A stream is constructed from an optional seed, and an optional enumerated value specifying which algorithm to use for generating random numbers uniformly distributed in the interval \([0, 1]\).

**Code Example – C# random number generators**

```csharp
int seed = 0x345;
var stream = new RandomNumberStream(seed,
 RandomNumberStream.BasicRandGenType.MersenneTwister);
```

**Code Example – VB random number generators**

```vbnet
Dim Seed As Integer = &H345
Dim Stream As New RandomNumberStream(Seed,
 RandomNumberStream.BasicRandGenType.MersenneTwister
```
You can use a stream and distribution to fill an array:

Code Example – C# random number generators

```c#
int n = 100;
int start = 0;
var a = new double[n];
dist.Fill(stream, a, start, n);
```

Code Example – VB random number generators

```vb
Dim N As Integer = 100
Dim Start As Integer = 0
Dim A(N) As Double
Dist.Fill(Stream, A, Start, N)
```

Or to fill a new vector or matrix:

Code Example – C# random number generators

```c#
var v = new DoubleVector(n, stream, dist);
```

Code Example – VB random number generators

```vb
Dim V As New DoubleVector(N, Stream, Dist)
```

### Successive Random Numbers

If you want the performance of a vectorized random number generator, but still need to access the random deviates sequentially, NMath provides class RandomNumbers, which uses a stream to buffer the random numbers internally.

For instance:

Code Example – C# random number generators

```c#
int bufferSize = 100;
RandomNumbers<double, DoubleRandomGaussianDistribution> rnd =
 new RandomNumbers<double, DoubleRandomGaussianDistribution>(seed,
 dist, bufferSize);

for (int i = 0; i < 10; i++)
{
 Console.WriteLine("Next() = {0}", rnd.Next());
}
```
Dim BufferSize As Integer = 100
Dim RND As New RandomNumbers(Of Double,
    DoubleRandomGaussianDistribution)(Seed, Dist, BufferSize)

For I As Integer = 0 To 9
    Console.WriteLine("Next() = {0}", RND.Next())
Next

Independent Streams

NMath provides classes for generating several independent streams of random numbers using two methods:

- In the leapfrog method, the independent sequences are created by splitting the original sequence into \( k \) disjoint subsets, where \( k \) is the number of independent streams, is such a way that the first stream generates the random numbers \( x_1, x_{k+1}, x_{2k+1}, x_{3k+1}, \ldots \), the second stream generates the numbers \( x_2, x_{k+2}, x_{2k+2}, x_{3k+2}, \ldots \), and, finally, the \( k \)th stream would generate \( x_k, x_{2k}, x_{3k}, \ldots \). Class LeapfrogRandomStreams uses the leapfrog method.

- In the skip-ahead, or block-splitting, method, the independent sequences are created by splitting the original sequence into \( k \) non-overlapping blocks, where \( k \) is the number of independent streams. Each stream generates numbers only from its corresponding block. Class SkipAheadRandomStreams uses the skip-ahead method.

For example, this code creates 10 streams of length 100 using the skip-ahead method:

```
int seed = 0x124;
RandomNumberStream.BasicRandGenType genType =
 RandomNumberStream.BasicRandGenType.MultiplicativeCongruent31;
int nstreams = 10;
int streamLen = 100;
SkipAheadRandomStreams gen =
 new SkipAheadRandomStreams(seed, genType, nstreams, streamLen);
```

```
Dim Seed = &H124
Dim GenType =
 RandomNumberStream.BasicRandGenType.MultiplicativeCongruent31
Dim NStreams = 10
Dim StreamLen = 100
Dim Gen As New SkipAheadRandomStreams(Seed, GenType, NStreams, StreamLen)
```
You can use a single distribution to fill an array or matrix:

**Code Example – C# random number generators**

```csharp
var dist = new DoubleRandomUniformDistribution();
var A = new DoubleMatrix(streamLen, nstreams);
gen.Fill(dist, A);
```

**Code Example – VB random number generators**

```vb
Dim Dist As New DoubleRandomUniformDistribution()
Dim A As New DoubleMatrix(StreamLen, NStreams)
Gen.Fill(Dist, A)
```

Or to create a new matrix:

**Code Example – C# random number generators**

```csharp
var dist = new DoubleRandomLogNormalDistribution();
DoubleMatrix B = gen.Next(dist);
```

**Code Example – VB random number generators**

```vb
Dim Dist As New DoubleRandomLogNormalDistribution()
Dim B As DoubleMatrix = Gen.Next(Dist)
```

You can also use an array of distributions, one per stream:

**Code Example – C# random number generators**

```csharp
nstreams = 3;
var intDists = new IRandomNumberDistribution<double>[nstreams];
intDists[0] = new DoubleRandomUniformDistribution();
intDists[1] = new DoubleRandomBetaDistribution();
intDists[2] = new DoubleRandomCauchyDistribution();
var gen = new SkipAheadRandomStreams(seed, genType, nstreams, streamLen);
DoubleMatrix C = gen.Next(intDists);
```

**Code Example – VB random number generators**

```vb
nstreams = 3
Dim IntDists(NStreams) As IRandomNumberDistribution(Of Double)
IntDists(0) = New DoubleRandomUniformDistribution()
IntDists(1) = New DoubleRandomBetaDistribution()
IntDists(2) = New DoubleRandomCauchyDistribution()
Dim Gen = New SkipAheadRandomStreams(Seed, GenType, NStreams, StreamLen)
Dim C As DoubleMatrix = Gen.Next(IntDists)
```
Quasirandom Numbers

NMath provides classes for generating sequences of *quasirandom* points. A quasirandom sequence is a sequence of n-tuples that fills n-space more uniformly than uncorrelated random points. `NiederreiterQuasiRandomGenerator` generates quasirandom numbers using the Niederreiter method; `SobolQuasiRandomGenerator` uses the Sobol method.

For example:

**Code Example – C# quasirandom numbers**

```csharp
int dim = 3;
var nqrg = new NiederreiterQuasiRandomGenerator(dim);
```

**Code Example – VB quasirandom numbers**

```vbnet
Dim Dimensions As Integer = 3
Dim NQRG As New NiederreiterQuasiRandomGenerator(Dimensions)
```

You can fill an existing matrix or array. (The points are the columns of the matrix, so the number of rows in the given matrix must be equal to the `Dimension` of the quasirandom number generator.)

**Code Example – C# quasirandom numbers**

```csharp
int numPts = 5000;
var A = new DoubleMatrix(nqrg.Dimension, numPts);
nqrg.Fill(A);
```

**Code Example – VB quasirandom numbers**

```vbnet
Dim NumPts As Integer = 5000
Dim A As New DoubleMatrix(NQRG.Dimension, NumPts)
NQRG.Fill(A)
```

Or create a new matrix:

**Code Example – C# quasirandom numbers**

```csharp
DoubleMatrix B = nqrg.Next(
 new DoubleRandomUniformDistribution(), numPts);
```

**Code Example – VB quasirandom numbers**

```vbnet
Dim B As DoubleMatrix = NQRG.Next(
 New DoubleRandomUniformDistribution(), NumPts)
```

The quasirandom numbers will follow the given distribution.
NMath provides classes for performing Fast Fourier Transforms (FFTs) on real and complex 1D and 2D data, and for performing linear convolution and correlation on real and complex 1D data. This chapter describes how to use the FFT, convolution, and correlation classes.

10.1 Fast Fourier Transforms

Fast Fourier Transforms (FFTs) are efficient algorithms for calculating the discrete Fourier transform (DFT) and its inverse. NMath provides classes for performing FFTs on real and complex 1D and 2D data.

FFT Classes

The classes that perform FFTs in NMath are named in the form <Type><Direction><Dimensionality>FFT, where

- <Type> is Float, Double, FloatComplex, or DoubleComplex based on the precision of the data and the forward domain of the FFT, either real or complex.
- <Direction> is Forward for calculating the DFT, and Backward for calculating its inverse.
- <Dimensionality> is 1D or 2D, depending on the dimensionality of the signal data.

For example, class DoubleForward2DFFT performs the forward DFT on 2D double-precision real signal data. Class FloatComplexBackward1DFFT represents the backward DFT of a 1D single-precision complex signal vector.

This set of classes elegantly supports all common 1D and 2D FFT computations in a robust, easy to use, object-oriented interface.
Creating FFT Instances

FFT instances are constructed by specifying the size of the signal data. For example, this code constructs a DoubleForward1DFFT for a signal vector of length 1024:

Code Example – C# FFT

```csharp
var fft = new DoubleForward1DFFT(1024);
```

Code Example – VB FFT

```vbnet
Dim FFT As New DoubleForward1DFFT(1024)
```

This creates a DoubleComplexBackward2DFFT for a 500 x 500 data matrix:

Code Example – C# FFT

```csharp
var fft = new DoubleComplexBackward2DFFT(500, 500);
```

Code Example – VB FFT

```vbnet
Dim FFT As New DoubleComplexBackward2DFFT(500, 500)
```

FFT instances can also be created by copying the configuration from another FFT instance. For example:

Code Example – C# FFT

```csharp
var fft2 = new FloatForward1DFFT(fft1);
```

Code Example – VB FFT

```vbnet
Dim FFT2 As New FloatForward1DFFT(FFT1)
```

An NMathFormatException is raised if the given FFT is not of a compatible precision, domain, and dimensionality. You can, however, create a forward FFT from a backward FFT instance, and vice versa.

Scale Factors

FFT classes provide properties for setting the scale factor of the FFT:

- **Forward** FFT classes provide a `ForwardScaleFactor` property.
- **Backward** FFT classes provide a `BackwardScaleFactor` property.

The default scale factor is 1.0. This code sets the scale factor on a DoubleForward1DFFT instance to 2.0:

Code Example – C# FFT

```csharp
var fft = new DoubleForward1DFFT(1024);
fft.ForwardScaleFactor = 2.0;
```
As a convenience, backward FFT classes also provide a `setScaleFactorByLength()` method which sets the scale factor to the inverse of the signal length. If the forward FFT scale factor is 1.0, using this backward scale factor guarantees that `backwardFFT(forwardFFT(signal)) = signal`. Note that MATLAB uses this scale factor by default.

**Computing FFTs**

FFTs can be computed either *in place*, overwriting the input data, or with the result placed in a separate, pre-allocated data structure passed by reference.

The `FFTInPlace()` method computes the FFT in place, while the `FFT()` method places the result in a second data structure. For example, this code compute an FFT in place:

**Code Example – C# FFT**

```csharp
var data = new DoubleVector(1024, new RandGenUniform());
var fft = new DoubleForward1DFFT(1024);
fft.FFTInPlace(data);
```

**Code Example – VB FFT**

```vbnet
Dim data As New DoubleVector(1024, New RandGenUniform())
Dim FFT As New DoubleForward1DFFT(1024)
FFT.FFTInPlace(data)
```

This code places the result in a second data structure:

**Code Example – C# FFT**

```csharp
var data = new FloatMatrix(5, 5, new RandGenUniform());
var result = new FloatMatrix(5, 5);
var fft = new FloatForward2DFFT(5, 5);
fft.FFT(data, ref result);
```

**Code Example – VB FFT**

```vbnet
Dim Data As New FloatMatrix(5, 5, New RandGenUniform())
Dim Result As New FloatMatrix(5, 5)
Dim FFT As New FloatForward2DFFT(5, 5)
FFT.FFT(data, Result);
```

Data can be supplied either using **NMath** vector and matrix types, or using arrays. For **NMath** types, an offset into the data can be specified on the vector or matrix instance. For arrays, a separate integer offset may be passed to the FFT methods.
NOTE—In general, the FFT classes require that all input signal data be in contiguous (packed) storage—that is, have positive or negative unit stride. More complex memory layouts can be handled with class DoubleGeneral1DFFT (see “Strided Signals” below).

Unpacking Real Results

Results from computing an FFT on real signal data are returned in MKL Pack format\(^1\), a compact representation of a complex conjugate-symmetric sequence. The result is the same size as the original signal data.

For convenience, reader classes are provided for unpacking the results. The FFT instance used to generated the result can be queried for the appropriate reader using the GetSignalReader() method. This guarantees that the correct packed signal reader is constructed.

For example:

**Code Example – C# FFT**

```csharp
var data = new DoubleVector(1024, new RandGenUniform());
var fft = new DoubleForward1DFFT(1024);
fft.FFTInPlace(data);
DoubleSymmetricSignalReader reader = fft.GetSignalReader(data);
```

**Code Example – VB FFT**

```vbnet
Dim Data As New DoubleVector(1024, New RandGenUniform())
Dim FFT As New DoubleForward1DFFT(1024)
FFT.FFTInPlace(Data)
Dim Reader As DoubleSymmetricSignalReader = FFT.GetSignalReader(Data)
```

Readers provide random access to any element in the pack FFT result:

**Code Example – C# FFT**

```csharp
DoubleComplex thirdelement = reader[2];
```

**Code Example – VB FFT**

```vbnet
Dim ThirdElement As DoubleComplex = Reader(2)
```

Reader classes also provide methods for unpacking the entire result:

- The *full* unpack methods—such as UnblockToTArray() and UnblockToMatrix()—build the unpacked signal representation of the entire packed complex symmetric signal.

- The *symmetric half* unpack methods—such as UnpackSymmetricHalfToTArray() and

---

UnpackSymmetricHalfToMatrix()—build the unpacked signal representation of the symmetric leading half of the packed signal.

For instance, this code unpacks the entire signal:

**Code Example – C# FFT**

```csharp
DoubleSymmetric2DSignalReader reader =
 fft.GetSignalReader(ref result);

DoubleComplexMatrix unpacked = reader.UnpackFullToMatrix();
```

**Code Example – VB FFT**

```vbnet
Dim Reader As DoubleSymmetric2DSignalReader =
 FFT.GetSingalReader(Result)

Dim Unpacked As DoubleComplexMatrix = reader.UnpackFullToMatrix()
```

**NOTE**—Complex FFTs do not create packed results. The result is already the same size as the signal data.

### Inverting Real Results

Results from computing an FFT on real signal data are returned in symmetric complex conjugate form, and NMath provides special classes for inverting this data back to the real domain.

For example, this code computes a forward FFT on real 1D signal data:

**Code Example – C# FFT**

```csharp
var data = new DoubleVector("[1 2 2 1]");
var result = new DoubleVector(4);

var fft = new DoubleForward1DFFT(4);
fft.FFT(data, ref result);
```

**Code Example – VB FFT**

```vbnet
Dim Data As New DoubleVector("[1 2 2 1]")
Dim Result As New DoubleVector(4)

Dim FFT As New DoubleForward1DFFT(4)
FFT.FFT(Data, Result)
```
This code uses class **DoubleSymmetricBackward1DFFT** to invert the result:

**Code Example – C# FFT**

```csharp
var reverse = new DoubleVector(4);

var rfft = new DoubleSymmetricBackward1DFFT(4);
rfft.SetScaleFactorByLength();
rfft.FFT(result, ref reverse);
```

**Code Example – VB FFT**

```vbnet
Dim Reverse As New DoubleVector(4)

Dim RFFT As New DoubleSymmetricBackward1DFFT(4)
RFFT.SetScaleFactorByLength()
RFFT.FFT(Result, Reverse)
```

Symmetric backward FFT classes, such as **DoubleSymmetricBackward1DFFT**, exploit the complex conjugate symmetry of the forward FFT result. The scaling is necessary for `reverse` to match `data`. (See “Scale Factors” above.)

**Strided Signals**

In general, the FFT classes require that all input signal data be in contiguous (packed) storage—that is, have unit stride. When working with strided signals, the FFT must be configured separately, and then used to create an advanced general FFT instance.

**NOTE—Strided signals are supported for 1D signals only.**

For example, suppose we have the following signal data, and wish to perform an FFT on the subset of the data specified by an offset of 3 and a stride of 2:

**Code Example – C# FFT**

```csharp
double[] data =
{ 94423, -341, 42343, 1, -1, 2, -1, 2, -1, 1, -85, 22 };
```

**Code Example – VB FFT**

```vbnet
Dim Data() As Double =
{94423.0, -341.0, 42343.0, 1.0, -1.0, 2.0, -1.0, 2.0, -1.0, 1.0, -85.0, 22.0}
```
The desired subset has a length of 4. To perform an FFT on this subset:

1. Build an `FFTConfiguration` instance which describes the FFT to be computed, including the stride and offset:

   **Code Example – C# FFT**
   ```csharp
 int dimension = 1;
 int length = 4;
 var config = new FFTConfiguration(
 FFTDirection.FORWARD,
 FFTPrecision.DOUBLE,
 FFTDomain.REAL,
 dimension,
 length);
 configcomplex.DataOffset = 3;
 configcomplex.DataStride = 2;
 configcomplex.InPlace = true;
   ```

   **Code Example – VB FFT**
   ```vbnet
 Dim Dimension As Integer = 1
 Dim Length As Integer = 4
 Dim Config As New FFTConfiguration(
 FFTDirection.FORWARD,
 FFTPrecision.DOUBLE,
 FFTDomain.REAL,
 Dimension,
 Length)
 ConfigComplex.DataOffset = 3
 ConfigComplex.DataStride = 2
 ConfigComplex.InPlace = True
   ```

2. Build a `DoubleGeneral1DFFT` instance from the configuration:

   **Code Example – C# FFT**
   ```csharp
 var fft = new DoubleGeneral1DFFT(ref config);
   ```

   **Code Example – VB FFT**
   ```vbnet
 Dim FFT As New DoubleGeneral1DFFT(Config)
   ```

3. Create an array to hold the result, and compute the FFT:

   **Code Example – C# FFT**
   ```csharp
 var result = new double[4];
 fft.FFT(signal, ref result);
   ```
Code Example – VB FFT

Dim Result(4) As Double
FFT.FFT(Signal, Result)

Class **DoubleGeneral1DFFT** is intended for advanced users. If the provided configuration does not correctly match the layout and type of the input signal data, exceptions and erroneous outputs will result.

### 10.2 Convolution and Correlation

**Convolution** is used to linearly filter a signal. The convolution $z(n)$ of two discrete input sequences $x(n)$ and $y(n)$ is defined as:

$$z(k) = \sum_j x(j)y(k-j)$$

Mathematically, the two convolved vectors, $x$ and $y$, can be interchanged without changing the convolution result, $z$. In practice, however, one vector, called the convolution kernel, is often much shorter than the other and is typically used in many convolution operations against different data sets. The kernel can be thought of as a moving window scanned across the data vector. The output value is the weighted sum of the data within the window multiplied by the kernel. Where necessary, the sum is computed by padding the edges of the data with zeros. If the data is of length $m$ and the kernel is of length $n$, then the output is of length $m+n-1$.

**Correlation** is used to characterize the statistical similarity between two signals. The operation is very similar to convolution, in that correlation uses two signals to produce a third signal, called the **cross-correlation**, or, if a signal is correlated with itself, the **autocorrelation**. The correlation is defined as:

$$z(k) = \sum_j x(j)y(k+j)$$

**NMath** provides classes for performing linear convolutions on real and complex 1D data. The API is

**Convolution and Correlation Classes**

The classes that perform 1D convolution and correlation in **NMath** are named `<Type>1DConvolution` and `<Type>1DCorrelation`, respectively, where `<Type>` is `Float`, `Double`, `FloatComplex`, or `DoubleComplex`. For example, class **Double1DConvolution** performs convolutions of two 1D sequences of double-precision floating point values.
Creating Convolution and Correlation Instances

Convolution and correlation instances are constructed by specifying the kernel and the length of the data vector. For example, this code constructs a Double1DConvolution for a kernel of length 5, representing a moving average, and data vector of length 1024:

Code Example – C# FFT

```csharp
var kernel = new DoubleVector("0.2 0.2 0.2 0.2 0.2");
int dataLength = 1024;
Double1DConvolution conv =
 new Double1DConvolution(kernel, dataLength);
```

Code Example – VB FFT

```vbnet
Dim Kernel As New DoubleVector("0.2 0.2 0.2 0.2")
Dim DataLength = 1024
Dim Conv As New Double1DConvolution(Kernel, DataLength)
```

The kernel can be supplied either using an NMath vector or an array. For an NMath vector, a kernel offset and stride can be specified on the vector instance. For an array, a separate integer kernel offset and stride may be passed to the constructor:

Code Example – C# FFT

```csharp
var kernel = new DoubleVector("-1 0.2 -1 0.2 -1 0.2");
int kernelOffset = 1;
int kernelStride = 2;
int dataLength = 1024;
var corr = new Double1DCorrelation(kernel, kernelOffset,
 kernelStride, dataLength);
```

Code Example – VB FFT

```vbnet
Dim Kernel As New DoubleVector("-1 0.2 -1 0.2 -1 0.2")
Dim KernelOffset = 1
Dim KernelStride = 2
Dim DataLength = 1024
Dim Corr As New Double1DCorrelation(Kernel, KernelOffset,
 KernelStride, DataLength)
```

Convolution and Correlation Properties

Once constructed, an NMath convolution or correlation object provides the following read-only properties:

- **KernelLength** gets the length of the kernel.
- **DataLength** gets the expected convolution or correlation data length.
• **Length** gets the length of the output convolution or correlation. The output length equals \( \text{DataLength} + \text{KernelLength} - 1 \).

**Computing Convolutions and Correlations**

The `Convolve()` method computes the convolution and the `Correlate()` method computes the correlation between the stored kernel, and a given data vector. For example:

**Code Example – C# FFT**

```csharp
var data = new FloatVector(500, new RandGenUniform());
FloatVector result = corr.Correlate(data);
```

**Code Example – VB FFT**

```vbnet
Dim Data As New FloatVector(500, New RandGenUniform())
Dim Result As FloatVector = Corr.Correlate(Data)
```

An **InvalidArgumentException** is raised if the length of the given data does not match the data length previously specified in the constructor.

If you are performing multiple convolutions or correlations using the same object—within a loop, for example—you can reuse the same pre-allocated vector to hold the result:

**Code Example – C# FFT**

```csharp
var data = new FloatVector(500, new RandGenUniform());
var result = new FloatVector(corr.Length);
corr.Correlate(data, ref result);
```

**Code Example – VB FFT**

```vbnet
Dim Data As New FloatVector(500, New RandGenUniform())
Dim Result As New FloatVector(Corr.Length)
Corr.Correlate(Data, Result)
```

**Windowing Options**

The `Convolve()` and `Correlate()` methods compute the full result, with length \( \text{DataLength} + \text{KernelLength} - 1 \). Boundary values, where the kernel partially overlaps the data, are computed by padding the edges of the data with zeros. The `TrimConvolution()` and `TrimCorrelation()` methods create a clipped view into a given result, using the specified **Windowing** option:

- **Windowing.Unwindowed** (the default) retrieves the full result.
- **Windowing.CenterWindow** clips the result to the length of the data, shifted to the center.
- *Windowing.FullKernelOverlap* returns the data portion that entirely overlaps the kernel.

For instance:

**Code Example – C# FFT**

```csharp
DoubleVector result = conv.Convolve(data);
DoubleVector trimmed = conv.TrimConvolution(result,
 CorrelationBase.Windowing.FullKernelOverlap);
```

**Code Example – VB FFT**

```vbnet
Dim Result As DoubleVector = Conv.Convolve(Data)
Dim Trimmed As DoubleVector = Conv.TrimConvolution(result,
 CorrelationBase.Windowing.FullKernelOverlap)
```

No data is copied. The returned vector is a view into the same data referenced by the given result.
A \textit{wavelet} is a wave-like oscillation, which integrates to zero and is well-localized in time. A \textit{discrete wavelet transform} (DWT) is any wavelet transform for which the wavelets are discretely sampled. DWT captures both frequency and location information, an important advantage over FFT (Chapter 10).

DWTs have found engineering applications in computer vision, pattern recognition, signal filtering and perhaps most widely in signal and image compression. In 2000 the ISO JPEG committee proposed a new JPEG2000 image compression standard that is based on the wavelet transform using two Daubechies wavelets. This standard made the relatively new image decomposition algorithm ubiquitous on desktops around the world.

\textsc{NMath} provides classes for performing DWT using most common wavelet families, including Harr, Daubechies, Symlet, Best Localized, and Coiflet. Custom wavelets can also be created. DWT classes support both single step forward and reverse DWTs, and multilevel signal deconstruction and reconstruction. Details thresholding at any level and threshold calculations are also supported.

### 11.1 Creating Wavelets

\textsc{NMath} provides classes for creating wavelet objects: \texttt{FloatWavelet} and \texttt{DoubleWavelet}. Each derives from an abstract \texttt{Wavelet} base class.

Wavelets are constructed by specifying the wavelet family, using a value from the \texttt{Wavelet.Wavelets} enum. Five types of built-in wavelets are supported: Harr, Daubechies, Least Asymmetric, Best Localized, and Coiflet. Built-in wavelets are identified by short name: the first letter abbreviates the wavelet family name, and the number that follows indicates the wavelet length. For example, this code builds a single-precision Coiflet wavelet of length 4:

\textbf{Code Example – C# Wavelet}

```csharp
var wavelet = new FloatWavelet(Wavelet.Wavelets.C4);
```

\textbf{Code Example – VB Wavelet}

```vbnet
Dim WaveletInstance As New FloatWavelet(Wavelet.Wavelets.C4)
```
Custom wavelets can also be created by passing in the wavelet's low and high pass decimation filter values. The wavelet class then imposes the wavelet's symmetry properties to compute the reconstruction filters.

For example, this code builds a custom reverse bi-orthogonal wavelet:

**Code Example – C# Custom Wavelet**

```csharp
var low = new double[] {0.0, 0.0, 0.7071068, 0.7071068, 0.0, 0.0};
var high = new double[] {0.0883883, 0.0883883, -0.7071068,
 0.7071068, -0.0883883, -0.0883883};
var wavelet = new DoubleWavelet(low, high);
```

**Code Example – VB Custom Wavelet**

```vbnet
Dim Low = New Double() {0.0, 0.0, 0.7071068, 0.7071068, 0.0, 0.0}
Dim High = New Double() {0.0883883, 0.0883883, -0.7071068,
 0.7071068, -0.0883883, -0.0883883}
Dim WaveletInstance As New DoubleWavelet(Low, High)
```

After creating a wavelet object, you can access various properties of the wavelet:

- **FamilyName** gets the wavelet family name (long-form), or **Custom** in the case of a custom wavelet.
- **ShortName** gets the wavelet name abbreviation.
- **Length** gets the length of the wavelet.
- **HighDecFilter** gets the high-pass decimation filter values.
- **LowDecFilter** gets the low-pass decimation filter values.
- **HighRecFilter** gets the high-pass reconstruction filter values.
- **LowRecFilter** gets the low-pass reconstruction filter values.

### 11.2 Computing Discrete Wavelet Transforms

As with Fourier analysis (Chapter 10), there are three basic steps to filtering signals using wavelets:

- Decompose the signal using the DWT.
- Filter the signal in the wavelet space using thresholding.
- Invert the filtered signal to reconstruct the original, now filtered signal, using the inverse DWT.
The filtering of signals using wavelets is based on the idea that as the DWT decomposes the signal into details and approximation parts, at some scale the details contain mostly insignificant noise and can be removed or zeroed out using thresholding without affecting the signal.

In NMath, classes FloatDWT and DoubleDWT perform discrete wavelet transforms. Both derive from the DiscreteWaveletTransform abstract base class. DWT classes support both single step forward and reverse DWTs and multilevel signal deconstruction and reconstruction.

Instances of DWT types are constructed from signal data and a wavelet instance (Section 11.1). For example:

**Code Example – C# DWT**

```csharp
var data = new DoubleVector(26, new RandGenNormal(1.0, 1.0));
var wavelet = new DoubleWavelet(Wavelet.Wavelets.D2);
var dwt = new DoubleDWT(data.DataBlock.Data, wavelet);
```

**Code Example – VB DWT**

```vb
Dim Data As New DoubleVector(26, New RandGenNormal(1.0, 1.0))
Dim WaveletInstance As New DoubleWavelet(Wavelet.Wavelets.D2)
Dim DWT As New DoubleDWT(Data.DataBlock.Data, waveletInstance)
```

An edge management mode can also be specified using values from the DiscreteWaveletTransform.WaveletMode enum. The default value is WaveletMode.PeriodicPadding.

### Single Step DWT

For convenience, DWT classes provide DWT() and IDWT() methods for performing single-step forward and reverse DWTs. For example, this code performs a single-step deconstruction and reconstruction.

**Code Example – C# Single-Step DWT**

```csharp
// Decompose signal with DWT
double[] approx;
double[] details;
dwt.DWT(data.DataBlock.Data, out approx, out details);

// Rebuild the signal
double[] signal = dwt.IDWT(approx, details);
```

**Code Example – VB Single-Step DWT**

```vb
' Decompose signal with DWT
Dim Approx() As Double
Dim Details() As Double
DWT.DWT(Data.DataBlock.Data, Approx, Details)
```
' Rebuild the signal
Dim Signal As Double() = DWT.IDWT(Approx, Details)

Multilevel DWT

The Decompose() method performs a multilevel discrete wavelet decomposition at a specified level. For instance:

Code Example – C# Multilevel DWT
dwt.Decompose( 5 );

Code Example – VB Multilevel DWT
DWT.Decompose(5)

MaximumDecompLevel() provides the maximum number of DWT decompositions possible based on the signal and wavelet lengths. CurrentDecompLevel() provides the current maximum level to which this signal has been decomposed.

The Reconstruct() method performs a multilevel discrete wavelet reconstruction at a specified level. A signal decomposition must be first completed. If no level is specified, a complete reconstruction is performed. For example, this code rebuilds the signal to level 2:

Code Example – C# Multilevel DWT
double[] reconstructedData2 = dwt.Reconstruct( 2 );

Code Example – VB Multilevel DWT
Dim ReconstructedData2() As Double = DWT.Reconstruct(2)

This code rebuilds the signal to level 1—the original (filtered) signal.

Code Example – C# Multilevel DWT
double[] reconstructedData1 = dwt.Reconstruct();

Code Example – VB Multilevel DWT
Dim ReconstructedData1() As Double = DWT.Reconstruct()

Accessing the Coefficients

After a signal decomposition is completed, the coefficient vectors can be accessed. The WaveletCoefficients() method takes the wavelet coefficient type, either details or approximation, and the detail level desired, starting with level 1 and continuing to the maximum level of decomposition completed (similar to MATLAB’s wrcoef function). Depending on the length of the wavelet and signal
vector the approximations may have an extra element at the end of the vector due to the IDWT.

**Code Example – C# Wavelet Coefficients**

```csharp
var approx = dwt.WaveletCoefficients(
 DiscreteWaveletTransform.WaveletCoefficientType.Details, 2);
```

**Code Example – VB Wavelet Coefficients**

```vbnet
Dim Approx() As Double = DWT.WaveletCoefficients(
 DiscreteWaveletTransform.WaveletCoefficientType.Details, 2)
```

---

**Threshold Calculations**

ComputeThreshold() finds a single threshold for a given thresholding method and decomposition level. Four different thresholding methods are supported: Universal, UniversalMAD, Sure, and Hybrid (also known as SureShrink).

For example, this code computes the Universal threshold at level 1:

**Code Example – C# Wavelet Threshold Calculation**

```csharp
double lambdaU = dwt.ComputeThreshold(
 DiscreteWaveletTransform.ThresholdMethod.Universal, 1);
```

**Code Example – VB Wavelet Threshold Calculation**

```vbnet
Dim LambdaU As Double = DWT.ComputeThreshold(
 DiscreteWaveletTransform.ThresholdMethod.Universal, 1)
```

---

**Thresholding**

**NMath** supports details thresholding at any level.

ThresholdAllLevels() thresholds all levels of detail in the current signal decomposition. The method accepts a thresholding policy from the DiscreteWaveletTransform.ThresholdPolicy enum, and a vector of threshold values, with the first value applied to level 1, the second applied to level 2, and so on. The length of the threshold vector must be at least the depth of the current decomposition as indicated by CurrentDecompLevel().

For example, this code thresholds all detail levels using the same threshold with a Soft policy:

**Code Example – C# Wavelet Thresholding**

```csharp
dwt.ThresholdAllLevels(
 DiscreteWaveletTransform.ThresholdPolicy.Soft,
 new double[] { lambdaU, lambdaU, lambdaU, lambdaU, lambdaU });
```
Code Example – VB Wavelet Thresholding

DWT.ThresholdAllLevels(
    DiscreteWaveletTransform.ThresholdPolicy.Soft,
    New Double() {LambdaU, LambdaU, LambdaU, LambdaU, LambdaU})

ThresholdLevel() thresholds the specified details level in the current signal decomposition.
In NMath, instances of the Histogram class construct and maintain a histogram of input data. Input data is sorted into bins, and a count is kept of how many data points fall into each bin.

12.1 Creating Histograms

The Histogram class provides various methods for defining the bins into which input data will be sorted. For example, you can create a histogram with a specified number of equal-sized bins spanning specified maximum and minimum values. Thus, this code creates a histogram with 10 equal-sized bins spanning 0.0 to 100.0:

**Code Example – C# histogram**

```csharp
var hist = new Histogram(10, 0.0, 100.0);
```

**Code Example – VB histogram**

```vbnet
Dim Hist As New Histogram(10, 0.0, 100.0)
```

The first n-1 bins are closed with respect to the lower bound, but open with respect to the upper bound. For instance, in the histogram created above, the first bin includes 0.0 but excludes 10.0, the second bin includes 10.0 but excludes 20.0, and so forth. The final bin is closed with respect to both upper and lower bounds. Thus, in the code above, the last bin includes both 90.0 and 100.0.

If you do not wish to create equal-sized bins, you can create a Histogram from a vector of bin boundaries. Bin boundaries must be strictly monotonically increasing; that is, `binBoundaires[i]` must be strictly less than `binBoundaries[i+1]` for each i. For example, this constructs a histogram with 3 unequal-sized bins spanning 0.0 to 100.0:

**Code Example – C# histogram**

```csharp
var v = new DoubleVector("0.0 25.0 75.0 100.0");
var hist = new Histogram(v);
```

**Code Example – VB histogram**

```vbnet
Dim V As New DoubleVector("0.0 25.0 75.0 100.0")
Dim Hist As New Histogram(V)
```
Again, the first \( n-1 \) bins are closed with respect to the lower bound, but open with respect to the upper bound. The final bin is closed with respect to both upper and lower bounds.

Finally, for complete control, you can create a Histogram from an array of Interval objects. An Interval represents a numeric interval with inclusive or exclusive lower and upper bounds. The Interval constructor accepts a lower and upper bound, plus a value from the Interval.Type enumeration indicated whether the interval is open or closed with respect to each boundary. Thus:

**Code Example – C# histogram**

```csharp
// (0,10)
var il = new Interval(0, 10, Interval.Type.OpenOpen);

// [0,10)
var il = new Interval(0, 10, Interval.Type.ClosedOpen);

// (0,10]
var il = new Interval(0, 10, Interval.Type.OpenClosed);

// [0,10]
var il = new Interval(0, 10, Interval.Type.ClosedClosed);
```

**Code Example – VB histogram**

```vbnet
' (0,10)
Dim I1 As New Interval(0, 10, Interval.Type.OpenOpen)

' [0,10)
Dim I1 As New Interval(0, 10, Interval.Type.ClosedOpen)

' (0,10]
Dim I1 As New Interval(0, 10, Interval.Type.OpenClosed)

' [0,10]
Dim I1 As New Interval(0, 10, Interval.Type.ClosedClosed)
```

A Histogram can be created from an array of Interval objects. The intervals must be continuous and non-overlapping.

### 12.2 Adding Data to Histograms

The provided AddData() method adds a vector of data to a Histogram. The histogram bin count containing each given data point is updated. For example, this code constructs a vector of 100 random numbers from a normal distribution and adds the data to Histogram hist.
12.3 Value Operations of Histograms

The **Histogram** class has the following read-only properties:

- **Bins** gets the bin boundaries as an array of **Interval** objects.
- **Counts** gets the counts for each bin as an array of integers.
- **NumBins** gets the number of bins in the histogram.
- **NumSmaller** gets the number of data points that were smaller than the smallest bin boundary.
- **NumLarger** gets the number of data points that were larger than the largest bin boundary.
- **Total** gets the total number of data points added to the histogram.

Similarly, the **Count()** member function gets the bin count for a given bin. **Reset()** resets all bin counts (and **NumSmaller** and **NumLarger**) to zero; the number of bins and the bin boundaries remain unchanged.

**PDF()** computes the probability density function (PDF) for a specified value or bin, and **CDF()** computes the cumulative distribution function (CDF).

### 12.4 Displaying Histograms

The **Histogram** class provides two methods for displaying a histogram textually. The **ToString()** member function returns a formatted string representation of a histogram. If the bin boundaries are \( b_0, b_1, b_2, \ldots, b_{n-1} \), and the counts for these bins are \( c_1, c_2, \ldots, c_n \), respectively, then **ToString()** returns a string with the following format:

\[
\begin{align*}
[b_0,b_1) & : c_1 \\
[b_1,b_2) & : c_2 \\
[b_2,b_3) & : c_3 \\
& \quad \quad \quad \cdots \\
& \quad \quad \quad \cdots \\
[b_{n-2},b_{n-1}] & : c_n
\end{align*}
\]

The provided **StemLeaf()** method formats the contents of a histogram into a simple ASCII stem-leaf diagram with the following form:

\[
\begin{align*}
[b_0,b_1): & \quad *****c_1 \\
[b_1,b_2): & \quad **********c_2 \\
[b_2,b_3): & \quad ****************c_3 \\
& \quad \quad \quad \cdots \\
& \quad \quad \quad \cdots \\
[b_{n-2},b_{n-1}): & \quad *****c_n
\end{align*}
\]

The number of asterisks represents the count for that bin minus one.
NMath provides classes for encapsulating functions of one variable, \( f(x) \). Once constructed, function objects enable you to:

- evaluate a function at a given \( x \)-value or vector of \( x \)-values;
- integrate a function over a given interval;
- compute the derivative of a function at a given \( x \)-value;
- manipulate functions algebraically.

This chapter describes how to create and manipulate function objects.

### 13.1 Encapsulating Functions

Class `OneVariableFunction` encapsulates an arbitrary function, and works with other numerical classes to approximate integrals and derivatives.

**NOTE**—Class `Polynomial` extends `OneVariableFunction`, and provides exact methods for integration and differentiation of polynomials, as well as various convenience functions for creating and manipulating polynomials. This is the preferred class to use if your function is a polynomial. See Section 13.4 for more information.

### Creating a Function of One Variable

A `OneVariableFunction` is constructed from a `Func<double, double>`, a function delegate that takes a single double parameter and returns a double.

For example, suppose you wish to encapsulate this function:

```csharp
public double MyFunction(double x)
{
 return Math.Sin(x) + Math.Pow(x, 3) / Math.PI;
}
```
Code Example – VB calculus

Function MyFunction(X As Double) As Double
    Return Math.Sin(X) + Math.Pow(X, 3) / Math.PI
End Function

First, create a delegate for the MyFunction() method:

Code Example – C# calculus

var d = new Func<double, double>(MyFunction);

Code Example – VB calculus

Dim D As New Func(Of Double, Double)(AddressOf MyFunction)

Then construct a OneVariableFunction encapsulating the delegate:

Code Example – C# calculus

var f = new OneVariableFunction(d);

Code Example – VB calculus

Dim F As New OneVariableFunction(D)

A Func<double, double> delegate is also implicitly converted to a OneVariableFunction. Thus:

Code Example – C# calculus

OneVariableFunction f = d;

Code Example – VB calculus

OneVariableFunction f = d;

Properties of Functions

A OneVariableFunction object has the following properties:

- **Function** gets the encapsulated function delegate.
- **Integrator** gets and sets the integration object associated with the function (see Section 13.2).
- **Differentiator** gets and sets the differentiation object associated with the function (see Section 13.3).

Evaluating Functions

The Evaluate() method on OneVariableFunction evaluates a function at a given x-value. For instance, if \( f \) is a OneVariableFunction:
Evaluate() also accepts a vector of \( x \)-values, and returns a vector of \( y \)-values, such that \( y[i] = f(x[i]) \). Thus, this code evaluates \( f \) at 100 points between 0 and 1:

**Code Example – C# calculus**

```csharp
var x = new DoubleVector(100, 0, 1.0/100);
DoubleVector y = f.Evaluate(x);
```

**Code Example – VB calculus**

```vbnet
Dim X As New DoubleVector(100, 0, 1.0 / 100.0)
Dim Y As DoubleVector = F.Evaluate(X)
```

Finally, `Evaluate()` accepts another `OneVariableFunction`, and returns a new function encapsulating the composite. For example, if \( f \) encapsulates the function \( f(x) = \sin(x) \) and \( g \) encapsulates \( g(x) = \sqrt{x + 1} \), you can create a new function that encapsulates \( f(g(x)) = \sin(\sqrt{x + 1}) \) like so:

**Code Example – C# calculus**

```csharp
OneVariableFunction composite = f.Evaluate(g);
```

**Code Example – VB calculus**

```vbnet
Dim Composite As OneVariableFunction = F.Evaluate(g)
```

### Algebraic Manipulation of Functions

**NMath** provides overloaded arithmetic operators for functions with their conventional meanings for those .NET languages that support them, and equivalent named methods for those that do not. Table 10 lists the equivalent operators and methods.

**Table 10 – Arithmetic operators**

<table>
<thead>
<tr>
<th>Operator</th>
<th>Equivalent Named Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Add()</td>
</tr>
<tr>
<td>-</td>
<td>Subtract()</td>
</tr>
<tr>
<td>*</td>
<td>Multiply()</td>
</tr>
</tbody>
</table>
Table 10 – Arithmetic operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Equivalent Named Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>Divide()</td>
</tr>
<tr>
<td>Unary -</td>
<td>Negate()</td>
</tr>
</tbody>
</table>

All binary operators and equivalent named methods work either with two functions, or with a function and a scalar. For example, this C# code uses the overloaded operators:

**Code Example – C# calculus**

```csharp
OneVariableFunction g = f/2;
OneVariableFunction sum = f + g;
OneVariableFunction neg = -f;
```

This Visual Basic code uses the equivalent named methods:

**Code Example – VB calculus**

```vbnet
Dim G As OneVariableFunction = OneVariableFunction.Divide(F, 2)
Dim Sum As OneVariableFunction = OneVariableFunction.Add(F, g)
Dim Neg As OneVariableFunction = OneVariableFunction.Negate(F)
```

Finally, as a convenience, `NMathFunctions` provides a `Pow()` method that raises a function to a scalar power:

**Code Example – C# calculus**

```csharp
OneVariableFunction g = NMathFunctions.Pow(f, 3.5);
```

**Code Example – VB calculus**

```vbnet
Dim G As OneVariableFunction = NMathFunctions.Pow(F, 3.5)
```

### 13.2 Numerical Integration

Numerical integration, also called quadrature, computes an approximation of the integral of a function over some interval. There are many methods for numerically evaluating integrals. `NMath` provides two of the most widely used, general purpose families of methods: Romberg integration, and Gauss-Kronrod integration.

**NOTE**—Class `Polynomial` provides a method for constructing the exact antiderivative of a polynomial. See Section 13.4 for more information.
Computing Integrals

The `Integrate()` method on `OneVariableFunction` (Section 13.1) computes the integral of a function over a given interval. For example, if \( f \) is a `OneVariableFunction`, this code integrates \( f \) over the interval \(-1\) to \(1\):

Code Example – C# calculus

```csharp
double integral = f.Integrate(-1, 1);
```

Code Example – VB calculus

```vbnet
Dim Integral As Double = F.Integrate(-1, 1)
```

**NOTE**—NMath does not directly support improper intervals; that is, it must be possible to evaluate the function at both the lower and upper bounds, and at any point in between (no singularities).

To perform integration, every `OneVariableFunction` has an `IIntegrator` object associated with it. NMath integration classes such as `RombergIntegrator` and `GaussKronrodIntegrator` implement the `IIntegrator` interface. The default integrator for a `OneVariableFunction` is an instance of `RombergIntegrator`, which may be changed using the `Integrator` property. Thus:

Code Example – C# calculus

```csharp
f.Integrator = new GaussKronrodIntegrator();
double integral = f.Integrate(0, Math.PI);
```

Code Example – VB calculus

```vbnet
F.Integrator = New GaussKronrodIntegrator()
Dim Integral As Double = F.Integrate(0, Math.PI)
```

You can also change the default `IIntegrator` associated with all instances of `OneVariableFunction` using the static `DefaultIntegrator` property. For instance:

Code Example – C# calculus

```csharp
OneVariableFunction.DefaultIntegrator =
 new GaussKronrodIntegrator();
var d = new Func<double, double>(MyFunction);
var f = new OneVariableFunction(d);

double integral = f.Integrate(0, 1); // uses Gauss-Kronrod
```

Code Example – VB calculus

```vbnet
OneVariableFunction.DefaultIntegrator = New GaussKronrodIntegrator()
```
Dim D As New Func(Of Double, Double)(AddressOf MyFunction)
Dim F As New OneVariableFunction(D)

Dim Integral As Double = f.Integrate(0, 1) ' uses Gauss-Kronrod

**Romberg Integration**

In general, the class of methods known as *Newton-Cotes formulas* estimate the integral of a function over a given interval by dividing the interval into $2^k$ panels, where $k$ is called the *order*, estimating the integral within each panel, then summing the estimates. For instance, the *trapezoidal rule* approximates the function in each panel by a straight line between the end points. *Simpson’s rule* approximates the function in two adjacent panels by a quadratic function connecting the two outer points and the common midpoint. Higher-level methods are obtained by interpolating higher degree polynomial segments.

Because all methods evaluate the function at the same set of points, higher-level approximations can be derived from lower-level approximations. For example, it can be shown that a $k$th-order Simpson’s rule approximation can be derived from two trapezoidal rule approximations of order $k$ and $k-1$. Similarly, a *Boole’s rule* approximation, which fits third-degree polynomials through the points associated with four-panel partitions of the interval, can be derived from two Simpson’s rule approximations of order $k$ and $k-1$. In this way, all higher level approximations can be derived from a series of trapezoidal rule approximations.

This iterated application of trapezoidal rule approximations is known as *Romberg integration*. Romberg integration is a very powerful method for quickly and accurately integrating smooth functions.

In *NMath*, instances of class *RombergIntegrator* compute successive Romberg approximations of increasing order until the estimated error in the approximation is less than a specified error tolerance, or until the maximum order is reached. The default error tolerance is $1e-8$, and the default maximum order is 20.

To perform integration, every *OneVariableFunction* has an *IIntegrator* object associated with it, which is used by the *Integrate()* method to compute integrals. The default *IIntegrator* for a *OneVariableFunction* is an instance of *RombergIntegrator*. For example, assuming $f$ is a *OneVariableFunction*, this code uses the default *RombergIntegrator* to integrate over the interval $-1$ to $1$:

**Code Example – C# calculus**

double estimate = f.Integrate( -1, 1);

**Code Example – VB calculus**

Dim Estimate As Double = f.Integrate(-1, 1)

The underlying *IIntegrator* can be accessed using the *Integrator* property.
In some cases, you may wish to create a **RombergIntegrator** yourself. This gives you more control over the integration process, and allows you to reuse a customized integrator to integrate several functions, or one function over several intervals. Thus, this code instantiates a **RombergIntegrator**, uses the provided **Tolerance** property to change the error tolerance and the **MaximumOrder** property to change the maximum order, then calls the **Integrate()** method on **RombergIntegrator** to integrate functions \( f \) and \( g \):

**Code Example – C# calculus**

```csharp
var rom = new RombergIntegrator();
rom.Tolerance = 1e-6;
rom.MaximumOrder = 16;
double integralF = rom.Integrate(f, -1, 1);
double integralG = rom.Integrate(g, 0, 2 * Math.PI);
```

**Code Example – VB calculus**

```vbnet
Dim Rom As New RombergIntegrator()
Rom.Tolerance = "1e-6"
Rom.MaximumOrder = 16
Dim IntegralF As Double = Rom.Integrate(f, -1, 1)
Dim IntegralG As Double = Rom.Integrate(g, 0, 2 * Math.PI)
```

To compute a Romberg estimate of a specific order, \( k \), you can also set the **MaximumOrder** to \( k \) and the **Tolerance** to a negative value. This code configures the **RombergIntegrator** to compute an 8th-order approximation:

**Code Example – C# calculus**

```csharp
var rom = new RombergIntegrator();
rom.Tolerance = -1;
rom.MaximumOrder = 8;
double estimate = rom.Integrate(f, -1, 1);
```

**Code Example – VB calculus**

```vbnet
Dim Rom = New RombergIntegrator()
Rom.Tolerance = -1
Rom.MaximumOrder = 8
Dim Estimate As Double = Rom.Integrate(f, -1, 1)
```

After computing an estimate, a **RombergIntegrator** holds a record of the iteration process. Read-only properties are provided for accessing this information:

- **RombergEstimate** gets the Romberg estimate for the integral, as returned by the **Integrate()** method.
- **RombergErrorEstimate** gets an estimate of the error in the Romberg estimate of the integral just computed.
- **ToleranceMet** returns **true** if the estimate of the error in the Romberg approximation just computed is less than or equal to the tolerance;
otherwise, \texttt{false}. (Integration ends either when the estimated error in the approximation is less than tolerance, or when the maximum order is reached.)

- \texttt{Order} gets the order of the Romberg approximation just computed.

- \texttt{TrapezoidEstimate} gets the estimate for the integral yielded by the compound trapezoid rule where the number of panels is equal to the order of the Romberg estimate.

- \texttt{SimpsonEstimate} gets the estimate for the integral yielded by the compound Simpson’s rule where the number of panels is equal to the order of the Romberg estimate. (Note: Returns 0 if \texttt{Order = 0}.)

- \texttt{Tableau} gets the entire \texttt{DoubleMatrix} of successive approximations computed while computing a Romberg estimate. The rows are the order of approximation. The columns are the level of approximation. The first column contains the trapezoidal approximations, the second column the Simpson’s rule approximations, the third column the Boole’s rule approximations, and so on, up to the \texttt{Order} of the approximation just computed.

Thus, this code retrieves the Boole’s rule approximation:

\textbf{Code Example – C# calculus}

```csharp
var rom = new RombergIntegrator();
double integral = rom.Integrate(f, 0, 1);
int order = rom.Order;
DoubleMatrix tableau = rom.Tableau;

double boole;
if (order >= 2)
{
 boole = tableau[order, 2];
}
```

\textbf{Code Example – VB calculus}

```vbnet
Dim Rom As New RombergIntegrator()
Dim Integral As Double = Rom.Integrate(f, 0, 1)
Dim Order As Integer = Rom.Order
Dim Tableau As DoubleMatrix = Rom.Tableau

Dim Boole As Double
If Order >= 2 Then
 Boole = Tableau(Order, 2)
End If
```

\textbf{Gauss-Kronrod Integration}
Gaussian integration estimates an integral by evaluating the function at non-equally spaced points over the interval. The method attempts to pick optimal points at which to evaluate the function, and furthermore to weight the contribution of each point. Gauss-Kronrod integration is an adaptive Gaussian quadrature method in which the function is evaluated at special points known as Kronrod points. The Gauss-Kronrod method is especially suited for non-singular oscillating integrands.

**NMMath** includes Gauss-Kronrod classes for different numbers of Kronrod points \((2n + 1, \begin{array} \text{beginning with a Gauss 10-point rule:} \\
\quad &\text{GaussKronrod21Integrator approximates integrals using the Gauss 10-point and the Kronrod 21-point rule.}
\quad &\text{GaussKronrod43Integrator approximates integrals using the Gauss 21-point and the Kronrod 43-point rule.}
\quad &\text{GaussKronrod87Integrator approximates integrals using the Gauss 43-point and the Kronrod 87-point rule.}
\end{array} \)\]

Finally, the automatic **GaussKronrodIntegrator** class uses Gauss-Kronrod rules with increasing number of points. Approximation ends when the relative error is less than the tolerance scaled by the integration result, or when the maximum number of points is reached. The default error tolerance is 1e-7; the default maximum number of points is 87. Unless you have reason to believe in advance that a particular Gauss-Kronrod rule is optimal for your function, it is recommended that you use the automatic integrator.

By default, **OneVariableFunction** objects use **RombergIntegrator** objects to compute integrals, but this may be changed using the **Integrator** property. For instance:

**Code Example – C# calculus**

```csharp
f.Integrator = new GaussKronrodIntegrator();
double integral = f.Integrate(0, Math.PI);
```

**Code Example – VB calculus**

```vbnet
f.Integrator = New GaussKronrodIntegrator()
Dim Integral As Double = F.Integrate(0, Math.PI)
```

This code specifically uses the **GaussKronrod43Integrator**, rather than the automatic **GaussKronrodIntegrator**:

**Code Example – C# calculus**

```csharp
f.Integrator = new GaussKronrod43Integrator();
double integral = f.Integrate(-1, 1);
```

**Code Example – VB calculus**

```vbnet
F.Integrator = New GaussKronrod43Integrator()
```
Dim Integral As Double = F.Integrate(-1, 1)

In some cases you may wish to create a Gauss-Kronrod integrator yourself. This gives you more control over the integration process, and allows you to reuse a customized integrator to integrate several functions, or one function over several intervals. Thus, this code instantiates a `GaussKronrodIntegrator`, uses the provided `Tolerance` property to change the error tolerance, then calls the `Integrate()` method on `GaussKronrodIntegrator` to integrate functions \( f \) and \( g \):

**Code Example – C# calculus**

```csharp
var gk = new GaussKronrodIntegrator();
gk.Tolerance = 1e-6;
double integralF = gk.Integrate(f, -1, 1);
double integralG = gk.Integrate(g, 0, 2 * Math.PI);
```

**Code Example – VB calculus**

```vbnet
Dim GK As New GaussKronrodIntegrator()
GK.Tolerance = "1e-6"
Dim IntegralF As Double = GK.Integrate(f, -1, 1)
Dim IntegralG As Double = GK.Integrate(g, 0, 2 * Math.PI)
```

Read-only properties are provided for accessing information about an integral approximation, once it has been computed:

- **RelativeErrorEstimate** gets an estimate of the relative error for the integral approximation.

- **ToleranceMet** gets a boolean value indicating whether or not the relative error for the integral approximation is less than the tolerance scaled by the integration result.

- **PreviousEstimate** gets the integral approximation calculated using the previous rule—for example, the Gauss 10-point rule for a `GaussKronrod21Integrator`, the Kronrod 21-point rule for a `GaussKronrod43Integrator`, and so forth.

For instance, this code checks whether the error tolerance was met before proceeding:

**Code Example – C# calculus**

```csharp
var gk = new GaussKronrodIntegrator();
gk.Tolerance = 1e-6;
double integral = gk.Integrate(f, -1, 1);
if (gk.ToleranceMet)
{
 // Do something here...
}
```
13.3  Differentiation

The **Differentiate()** method on **OneVariableFunction** (Section 13.1) computes the derivative of a function at a given \( x \)-value. For example, if \( f \) is **OneVariableFunction**, this code estimates the derivative at 0:

**Code Example – C# calculus**

```csharp
double d = f.Differentiate(0);
```

**Code Example – VB calculus**

```vbnet
Dim D As Double = F.Differentiate(0)
```

**NOTE**—Class **Polynomial** provides a method for constructing the exact derivative of a polynomial. See Section 13.4 for more information.

To perform differentiation, every **OneVariableFunction** has an **IDifferentiator** object associated with it. **NMath** provides class **RiddersDifferentiator**, which computes the derivative of a given function at a given \( x \)-value by Ridders’ method of polynomial extrapolation, and implements the **IDifferentiator** interface.

Extrapolations of higher and higher order are produced. Iteration stops when either the estimated error is less than a specified error *tolerance*, the error estimate is significantly worse than the previous order, or the *maximum order* is reached.

The default **IDifferentiator** for a **OneVariableFunction** is an instance of **RiddersDifferentiator**. To achieve more control over how differentiation is performed, you can instantiate your own **RiddersDifferentiator**. For instance, this code uses the **Tolerance** property to set the error tolerance to a non-default value, and the **MaximumOrder** property to set the maximum order, then calls the **Differentiate()** method to differentiate function \( f \) at \( \pi \):

**Code Example – C# calculus**

```csharp
var ridders = new RiddersDifferentiator();
ridders.Tolerance = 1e-6;
ridders.MaximumOrder = 20;
double d = ridders.Differentiate(f, Math.PI);
```
Code Example – VB calculus

Dim Ridders As New RiddersDifferentiator()
Ridders.Tolerance = "1e-6"
Ridders.MaximumOrder = 20
Dim D As Double = Ridders.Differentiate(F, Math.PI)

Setting the error tolerance to a value less than zero ensures that the Ridders differentiation is of the maximum order:

Code Example – C# calculus

var ridders = new RiddersDifferentiator();
ridders.Tolerance = -1;
double d = ridders.Differentiate( f, 1 );

Code Example – VB calculus

Dim Ridders As New RiddersDifferentiator()
Ridders.Tolerance = -1
Dim D As Double = Ridders.Differentiate(F, 1)

Read-only properties are provided for accessing information about a derivative approximation, once it has been computed:

- ErrorEstimate gets an estimate of the error of the derivative just computed.
- Order gets the order of the final polynomial extrapolation.
- ToleranceMet gets a boolean value indicating whether or not the error estimate for the derivative approximation is less than the tolerance.
- Tableau gets a matrix of successive approximations produced while computing the derivative. Successive columns in the matrix contain higher orders of extrapolation; successive rows decreasing step size.

For instance, this code checks whether the error tolerance was met before proceeding:

Code Example – C# calculus

var ridders = new RiddersDifferentiator();
double d = ridders.Differentiate( f, Math.PI );

if ( ridders.ToleranceMet ) {
    // Do something here...
}

Code Example – VB calculus

Dim Ridders As New RiddersDifferentiator()
Dim D As Double = ridders.Differentiate(F, Math.PI)
13.4 Polynomials

Class Polynomial extends OneVariableFunction (Section 13.1). Rather than encapsulating an arbitrary function delegate, Polynomial represents a polynomial by its coefficients, arranged in ascending order—that is, a vector \( a_0, a_1, \ldots, a_n \) such that:

\[
f(x) = a_0 x^0 + a_1 x^1 + \ldots + a_n x^n
\]

Thus, the polynomial \( 5x^4 - 2x^2 + x + 3 \) is represented as a DoubleVector of length 5 with elements “3 1 -2 0 5”.

Creating Polynomials

A Polynomial instance can be constructed in two ways. If you know the exact form of the polynomial, simply pass in the vector of coefficients:

Code Example – C# polynomials

```csharp
var coef = new DoubleVector("1 0 2"); // 2x^2 + 1
var p = new Polynomial(coef);
```

Code Example – VB polynomials

```vbnet
Dim Coef As New DoubleVector("1 0 2") ' 2x^2 + 1
Dim P As New Polynomial(Coef)
```

Alternatively, you can interpolate a polynomial through a set of points. If the number of points is \( n \), then the constructed polynomial will have degree \( n - 1 \) and pass through the interpolation points. For example, this code interpolates the polynomial \( 2x^2 - x + 5 \) through the points \( (1,6) \), \( (2,11) \), and \( (3,20) \):

Code Example – C# polynomials

```csharp
var x = new DoubleVector("1 2 3");
var y = new DoubleVector("6 11 20");
var p = new Polynomial(x, y);
```

Code Example – VB polynomials

```vbnet
Dim X As New DoubleVector("1 2 3")
Dim Y As New DoubleVector("6 11 20")
Dim P As New Polynomial(X, Y)
```
You can also construct a **Polynomial** instance from a vector of \(x\)-values and a **OneVariableFunction** evaluated at each \(x\):

**Code Example – C# polynomials**

```csharp
var f = new Func<double, double>(myFunction);
var x = new DoubleVector(10, 1, 1);
var p = new Polynomial(x, f);
```

**Code Example – VB polynomials**

```vbnet
Dim F As New Func(Of Double, Double)(AddressOf myFunction)
Dim X As New DoubleVector(10, 1, 1)
Dim P As New Polynomial(X, F)
```

### Properties of Polynomials

Class **Polynomial** inherits **Function**, **Integrator**, and **Differentiator** properties from **OneVariableFunction** (Section 13.1). Additionally, **Polynomial** provides these properties:

- **Coeff** gets and sets the vector of coefficients.
- **Degree** gets the degree of the polynomial.

The degree is the order of the highest non-zero coefficient. Therefore, the degree may be less than the length of the underlying coefficient vector, as returned for example by **Coeff.Length**. The **Reduce()** method is provided for removing trailing zeros from the coefficient vector.

### Evaluating Polynomials

Class **Polynomial** inherits the **Evaluate()** method from **OneVariableFunction**. This method evaluates a polynomial at a given \(x\)-value, or vector of \(x\)-values. Thus:

**Code Example – C# polynomials**

```csharp
var coeff = new DoubleVector("6 -1 5 0 3 -2");
var p = new Polynomial(coeff);

double y = p.Evaluate(1.25);
```

**Code Example – VB polynomials**

```vbnet
Dim Coeff As New DoubleVector("6 -1 5 0 3 -2")
Dim P As New Polynomial(Coeff)

Dim Y As Double = P.Evaluate(1.25)
```
Algebraic Manipulation of Polynomials

Because a Polynomial is-a OneVariableFunction, all of the overloaded arithmetic operators and equivalent named methods described in Section 13.1 accept polynomials. For example, this code adds a Polynomial to a OneVariableFunction to create a new OneVariableFunction:

Code Example – C# polynomials

```csharp
var coeff = new DoubleVector("1 4 -1 1 2 -3");
var p = new Polynomial(coeff);
var d = new Func<double, double>(MyFunction);
var f = new OneVariableFunction(d);
OneVariableFunction g = p + f;
```

Code Example – VB polynomials

```vbnet
Dim Coeff As New DoubleVector("1 4 -1 1 2 -3")
Dim P As New Polynomial(Coeff)
Dim D As New Func(Of Double, Double)(AddressOf MyFunction)
Dim F As New OneVariableFunction(D)
Dim G As Func(Of Double, Double) = P + F
```

Additionally, class Polynomial provides overloads of the arithmetic operators and named methods. These operators and methods work either with two polynomials, or with a polynomial and a scalar. They operate directly on the underlying vector(s) of coefficients, and therefore return instances of Polynomial. For example:

Code Example – C# polynomials

```csharp
var coeff = new DoubleVector("-11 3 1 1 0 -1 2");
var p = new Polynomial(coeff);
Polynomial p2 = p / 2;
Polynomial p3 = p + p2;
```

Code Example – VB polynomials

```vbnet
Dim Coeff As New DoubleVector("-11 3 1 1 0 -1 2")
Dim P As New Polynomial(Coeff)
Dim P2 As Polynomial = P / 2.0
Dim P3 As Polynomial = P + P2
```

NOTE—You can divide one Polynomial by another, but the result is a OneVariableFunction rather than a Polynomial, since the quotient is a rational function, and not necessarily a polynomial.
Integration

Class **Polynomial** inherits the `Integrate()` method from **OneVariableFunction** (Section 13.2), which computes the integral of the current function over a given interval. **Polynomial** also extends the interface to include an `AntiDerivative()` method that returns a new polynomial encapsulating the antiderivative (indefinite integral) of the current polynomial. For example:

**Code Example – C# polynomials**

```csharp
var p = new Polynomial(new DoubleVector("5 3 0 2"));
double integral = p.Integrate(-1, 1);
Polynomial i = p.AntiDerivative();
```

**Code Example – VB polynomials**

```vbnet
Dim P As New Polynomial(New DoubleVector("5 3 0 2"))
Dim Integral As Double = P.Integrate(-1, 1)
Dim I As Polynomial = P.AntiDerivative()
```

In constructing the antiderivative, the constant of integration is assumed to be zero.

Each **Polynomial** object has a **PolynomialIntegrator** associated with it, which implements the **IIntegrator** interface. Because the antiderivative of a polynomial can be easily constructed, **PolynomialIntegrator** simply constructs the antiderivative and evaluates it at the lower and upper bounds. This gives the exact integral.

**NOTE**—You can, of course, set the **IIntegrator** associated with a **Polynomial** to a non-default value, such as a Romberg numerical integrator. But since this would only compute an approximation of the integral, there would be little point.

Differentiation

Class **Polynomial** inherits both `Differentiate()` and `Derivative()` methods from **OneVariableFunction** (Section 13.3). `Differentiate()` returns the derivative of the current function at a given x-value. `Derivative()` is overridden to return a new polynomial that is the first derivative of the current polynomial. Thus:

**Code Example – C# polynomials**

```csharp
var coeff = new DoubleVector("1 -2 3");
var p = new Polynomial(coeff);
Polynomial der = p.Derivative(); // der.Coeff = "-2 6"
```

**Code Example – VB polynomials**

```vbnet
Dim Coeff As New DoubleVector("1 -2 3")
```
Dim P As New Polynomial(Doeff)
Dim Der As Polynomial = P.Derivative() ' Der.Coeff = "-2 6"

Each Polynomial object has a PolynomialDifferentiator associated with it, which implements the IDifferentiator interface. Because the derivative of a polynomial can be easily constructed, PolynomialDifferentiator simply constructs the first derivative and evaluates it at the given x-value. This gives the exact derivative.

NOTE—You can, of course, set the Differentiator associated with a polynomial to a non-default value, such as a Ridders numerical differentiator. But again, as this would only compute an approximation of the derivative, there would be little point.

13.5 Function Interpolation

Abstract class TabulatedFunction extends OneVariableFunction (Section 13.1). Rather than encapsulating an arbitrary function delegate, TabulatedFunction holds paired vectors of known x- and y-values. The function can be evaluated at arbitrary points using derived function interpolation classes. As a OneVariableFunction, a TabulatedFunction can be manipulated algebraically. Numerical integrals and derivatives can also be computed.

A TabulatedFunction type is constructed from paired vectors of known x- and y-values. The values for x must be in strictly increasing order. Class TabulatedFunction inherits Function, Integrator, and Differentiator properties from OneVariableFunction (Section 13.1). Additionally, TabulatedFunction provides these properties:

- x gets the vector of x-values represented by the function.
- y gets the vector of y-values represented by the function.
- NumberOfTabulatedValues gets the number of tabulated values.

The x and y properties return a copy of the tabulated data. Therefore, modifying the returned vectors does not change the TabulatedFunction.

To change the tabulated values represented by a TabulatedFunction, use the SetTabulatedValues() method. ProvidedGetX(), SetX(), GetY(), and SetY() methods also enable you to get and set individual tabulated values, or a range of values.

Class TabulatedFunction inherits the Evaluate() method from OneVariableFunction. This method evaluates the interpolated function at a given x-value, or vector of x-values.
Linear Spline Interpolation

Class LinearSpline extends TabulatedFunction and represents a function whose values are determined by linear interpolation between tabulated values. For example:

Code Example – C# linear spline interpolation

```csharp
var xValues = new DoubleVector(10, 0, 1);
DoubleVector yValues = xValues * xValues;
var ls = new LinearSpline(xValues, yValues);
double yInterpolated = ls.Evaluate(3.5);
```

Code Example – VB linear spline interpolation

```vbnet
Dim XValues As New DoubleVector(10, 0, 1)
Dim YValues = XValues * XValues
Dim LS As New LinearSpline(XValues, YValues)
Dim YInterpolated = LS.Evaluate(3.5)
```

Evaluating x-values outside the range of tabulated values returns the last known y-value. In the example above, `ls.Evaluate(9.5) == ls.Evaluate(9)`.

Cubic Spline Interpolation

Abstract class CubicSpline extends TabulatedFunction and represents a function whose values are determined by cubic spline interpolation between the tabulated values. NMath provides two concrete implementations of CubicSpline: NaturalCubicSpline and ClampedCubicSpline. The natural cubic spline is a cubic spline where the second derivative of the interpolating function is required to be zero at the left and right endpoints. The clamped cubic spline is a cubic spline where the first derivative of the interpolating function is specified at the left and right endpoints.

For example, this code creates a NaturalCubicSpline to resample at a fixed sampling interval a cubic spline fit constructed from data with a variable sampling interval:

Code Example – C# cubic spline interpolation

```csharp
var x = new DoubleVector("1.0 1.3 1.4 1.8 2.0");
var y = new DoubleVector("2.4 4.6 4.7 2.3 1.0");
var s = new NaturalCubicSpline(x, y);
var xx = new DoubleVector("1.0 1.25 1.5 1.75 2.0");
DoubleVector yy = s.Evaluate(xx);
```

Code Example – VB cubic spline interpolation

```vbnet
Dim X As New DoubleVector("1.0 1.3 1.4 1.8 2.0")
Dim Y As New DoubleVector("2.4 4.6 4.7 2.3 1.0")
Dim S As New NaturalCubicSpline(X, Y)
Dim XX As New DoubleVector("1.0 1.25 1.5 1.75 2.0")
Dim YY As DoubleVector = S.Evaluate(XX)
```
Dim Y As New DoubleVector("2.4 4.6 4.7 2.3 1.0")

Dim S As New NaturalCubicSpline(X, Y)

Dim XX As New DoubleVector("1.0 1.25 1.5 1.75 2.0")
Dim YY As DoubleVector = S.Evaluate(XX)

This code creates a ClampedCubicSpline that enforces endslopes of zero for the cubic spline fit:

Code Example – C# cubic spline interpolation

var s = new ClampedCubicSpline( x, y, 0, 0 );

Code Example – VB cubic spline interpolation

Dim S As New ClampedCubicSpline(X, Y, 0, 0)

Class ClampedCubicSpline provides LeftEndSlope and RightEndSlope properties for getting and setting the clamped values, and method SetEndSlopes() for modifying them together.

Evaluating x-values outside the range of tabulated values in a NaturalCubicSpline returns the last known y-value. In a ClampedCubicSpline, the last fitted cubic is used, or a linear extrapolation is performed in the case of only 2 or 3 tabulated values.

Smooth Splines

Class SmoothCubicSpline derives from TabulatedFunction. The API is the same as for other cubic spline classes, with the addition of a smoothing factor, $p$. The smoothing factor takes values in the range $0 \leq p \leq 1$, where $0$ results in zero curvature (linear interpolation), and $1$ results to a conventional cubic spline.

Creating Your Own Interpolation Classes

The NMath interpolation class framework is easily extensible. To create your own interpolation class, simply extend TabulatedFunction. Specify a delegate function of type Func<double, double> for the instance variable function in the base class OneVariableFunction. This delegate computes and returns values for arbitrary x-values.

In addition, deriving classes may override the virtual method ProcessTabulatedValues(). This method is invoked by TabulatedFunction instances whenever the tabulated values are changed.
**Chapter 14.**

**Signal Processing**

NMath provides classes for processing 1D signal data, including

- filtering, using `MovingWindowFilter` or `SavitzkyGolayFilter`;
- peak finding, using `PeakFinderSavitzkyGolay` or `PeakFinderRuleBased`.

This chapter describes how to create and manipulate signal processing objects.

### 14.1 Moving Window Filtering

Class `MovingWindowFilter` replaces data points $f(i)$ with a linear combination, $g(i)$, of the data points immediately to the left and right of $f(i)$, based on a given set of coefficients, $c$, to use in the linear combination. The neighboring points are determined by the number of points to the left, $nL$, and the number of points to the right, $nR$:

$$g(i) = \sum_{n = -nL}^{nR} c(n)f(i + n)$$

`MovingWindowFilter` extends class `CorrelationFilter` which provides basic correlation services.

**Creating Moving Window Filter Objects**

A `MovingWindowFilter` instance is constructed from the number of points to the left and right of the input point, and the coefficients of the linear combination.

For example, this code constructs an asymmetric moving window filter of length 5:

**Code Example – C# signal filtering**

```csharp
int numberLeft = 1;
int numberRight = 3;
var filterCoefficients = new DoubleVector(5, 0.20);
var filter = new MovingWindowFilter(numberLeft, numberRight, filterCoefficients);
```

**Code Example – VB signal filtering**

```vbnet
Dim NumberLeft = 1
```
Dim NumberRight = 3
Dim FilterCoefficients As New DoubleVector(5, 0.2)
Dim Filter As New MovingWindowFilter(NumberLeft, NumberRight, FilterCoefficients)

An **InvalidOperationException** is raised if the length of the coefficient vector is not equal to `numberLeft + numberRight + 1`.

Static class methods are provided for generating coefficient vectors of three common types:

- **MovingAverageCoefficients()** constructs a coefficient vector that implements a moving average filter.

- **ExponentiallyWeightedMovingAverageCoefficients()** constructs a coefficient vector of exponentially weighted moving average (EWMA) coefficients of the specified length. As the number of EWMA coefficients increases, the filter captures at most $\approx 86.47\%$ of the total weight due to the finite length of the filter. The filter length $n$ and the exponential weight $\alpha$ are related by $\alpha = 2/(n+1)$.

- **SavitzkyGolayCoefficients()** constructs a coefficient vector that implements a Savitzky-Golay smoothing filter (also known as least-squares, or DIgital Smoothing POlynomial, DISPO). The filter coefficients are chosen such that the filtered point is the value of an approximating polynomial of the specified order, typically quadratic or quartic. The polynomial is fit using a least squares algorithm.

For example, the following code constructs a moving average filter to replace each input data point with the average of it's value and the surrounding points:

**Code Example – C# signal filtering**

```csharp
int numberLeft = 4;
int numberRight = 5;
DoubleVector filterCoefficients =
 MovingWindowFilter.MovingAverageCoefficients(numberLeft, numberRight);
var filter = new MovingWindowFilter(numberLeft, numberRight, filterCoefficients);
```

**Code Example – VB signal filtering**

```vbnet
Dim NumberLeft = 4
Dim NumberRight = 5
Dim FilterCoefficients As DoubleVector =
 MovingWindowFilter.MovingAverageCoefficients(NumberLeft, NumberRight)
Dim Filter As New MovingWindowFilter(NumberLeft, NumberRight, FilterCoefficients)
```
This code creates a Savitzky-Golay filter that replaces each input data point with the value of a fourth degree polynomial fit through the input value and it’s surrounding points:

**Code Example – C# signal filtering**

```csharp
int numberLeft = 3;
int numberRight = 3;
int degree = 4;
DoubleVector filterCoefficients =
 MovingWindowFilter.SavitzkyGolayCoefficients(numberLeft, numberRight, degree);
var filter = new MovingWindowFilter(numberLeft, numberRight, filterCoefficients);
```

**Code Example – VB signal filtering**

```vbnet
Dim NumberLeft = 3
Dim NumberRight = 3
Dim Degree = 4
Dim FilterCoefficients As DoubleVector =
 MovingWindowFilter.SavitzkyGolayCoefficients(NumberLeft, NumberRight, Degree)
Dim Filter As New MovingWindowFilter(NumberLeft, NumberRight, FilterCoefficients)
```

This code creates an exponential moving average filter of length **18**:

**Code Example – C# signal filtering**

```csharp
int n = 18;
DoubleVector filterCoefficients =
 MovingWindowFilter.ExponentiallyWeightedMovingAverageCoefficients(n);
var EWMAfilter = new MovingWindowFilter(0, coef.filterCoefficients - 1, filterCoefficients);
```

**Code Example – VB signal filtering**

```vbnet
Dim N = 18
Dim FilterCoefficients As DoubleVector =
 MovingWindowFilter.ExponentiallyWeightedMovingAverageCoefficients(N)
Dim EWMAfilter As New MovingWindowFilter(0, Coef.FilterCoefficients - 1, filterCoefficients)
```

After construction, the **SetFilterParameters()** method can be used to reset the filter parameters on a filter instance:
Code Example – C# signal filtering

```csharp
filter.SetFilterParameters(numberLeft, numberRight,
 filterCoefficients);
```

Code Example – VB signal filtering

```vbnet
Filter.SetFilterParameters(NumberLeft, NumberRight,
 FilterCoefficients)
```

### Moving Window Filter Properties

Once constructed, a `MovingWindowFilter` object provides the following read-only properties:

- `NumberLeft` gets the number of points to the left for the filter window.
- `NumberRight` gets the number of points to the right for the filter window.
- `WindowWidth` gets the width of the moving window (equal to `NumberLeft` + `NumberRight` + 1).
- `NumberOfCoefficients` gets the number of filter coefficients (equal to `WindowWidth`).
- `Coefficients` gets the vector of filter coefficients.

### Filtering Data

The `Filter()` method on `MovingWindowFilter` applies a filter to a given data set using the specified boundary option.

The `MovingWindowFilter.BoundaryOption` enumeration specifies options for handling the boundaries in a moving window filter, where the filter does not complete overlap with the data:

- `BoundaryOption.PadWithZeros` adds `NumberLeft` zeros to the beginning of the data to be filtered and `NumberRight` zeros to end.
- `BoundaryOption.DoNotFilterBoundaryPoints` specifies that the first `NumberLeft` and the last `NumberRight` data will not be filtered.

For example, the following code constructs a noisy cosine signal, and then filters the data:

Code Example – C# signal filtering

```csharp
var rng = new RandGenNormal();
var noisySignal = new DoubleVector(length);
for (int i = 0; i < length; i++)
```
14.2 Savitzky-Golay Filtering

Class `SavitzkyGolayFilter` is a correlation filter specialized for filtering with Savitzky-Golay coefficients. Unlike `MovingWindowFilter` (Section 14.1), `SavitzkyGolayFilter` has additional boundary options for better edge continuity.

`SavitzkyGolayFilter` uses class `SavitzkyGolay` to generate the Savitzky-Golay filter coefficients for smoothing data, or computing smoothed derivatives, and extends class `CorrelationFilter` which provides basic correlation services.

Creating Savitzky-Golay Filter Objects

A `SavitzkyGolayFilter` instance is constructed from the number of points to the left and right of the input point, and the degree of polynomial used to fit data. Either the data or a derivative of the data can be smoothed.

For example, this code builds a Savitzky-Golay filter with a window width of 7, and a 4th degree smoothing polynomial:

**Code Example – C# Savitzky-Golay**

```csharp
int numberLeft = 3;
int numberRight = 3;
int degree = 4;
SavitzkyGolayFilter sgf =
 new SavitzkyGolayFilter(numberLeft, numberRight, degree);
```

**Code Example – VB Savitzky-Golay**

```vbnet
Dim NumberLeft = 3
```
Dim NumberRight = 3
Dim Degree = 4
Dim SGF As New SavitzkyGolayFilter(NumberLeft, NumberRight, Degree)

This code creates a Savitzky-Golay filter for smoothing the first derivative using a 5th degree polynomial:

**Code Example – C# Savitsky-Golay**

```csharp
int numberLeft = 3;
int numberRight = 3;
int degree = 5;
int derivativeOrder = 1;

var sgf = new SavitzkyGolayFilter(numberLeft, numberRight, degree, derivativeOrder);
```

**Code Example – VB Savitzky-Golay**

```vbnet
Dim NumberLeft = 3
Dim NumberRight = 3
Dim Degree = 5
Dim DerivativeOrder = 1

Dim SGF As New SavitzkyGolayFilter(NumberLeft, NumberRight, Degree, DerivativeOrder)
```

**Savitzky-Golay Filter Properties**

Once constructed, a `SavitzkyGolayFilter` object provides the following read-only properties:

- `NumberLeft` gets the number of points to the left for the filter window.
- `NumberRight` gets the number of points to the right for the filter window.
- `WindowWidth` gets the width of the moving window (equal to `NumberLeft + NumberRight + 1`).

**Filtering Data**

The `Filter()` method on `SavitzkyGolayFilter` applies a filter to a given data set:

**Code Example – C# Savitsky-Golay**

```csharp
DoubleVector filteredSignal = filter.Filter(noisySignal);
```

**Code Example – VB Savitzky-Golay**

```vbnet
Dim FilteredSignal As DoubleVector = Filter.Filter(NoisySignal)
```
A boundary option may also be specified using the
`SavitzkyGolayFilter.SavitzkyGolayBoundaryOption` enumeration, which
provides options for handling the boundaries in a Savitzky-Golay filter, where the
filter does not completely overlap with the data:

- `SavitzkyGolayBoundaryOption.PadWithZeros` adds `NumberLeft` zeros to
  the beginning of the data to be filtered and `NumberRight` zeros to end.
- `SavitzkyGolayBoundaryOption.DoNotFilterBoundaryPoints` specifies
  that the first `NumberLeft` and the last `NumberRight` data will not be filtered.
- `SavitzkyGolayBoundaryOption.ShiftFilterCenter` (the default) uses the
  Savitzky-Golay smoothing of the same order of the filter to smooth the
  boundaries. The filter width, and polynomial order is kept fixed, while the
  filter centerpoint is shifted toward the boundaries.
- `SavitzkyGolayBoundaryOption.ShrinkFilterWidth` uses the Savitzky-
  Golay smoothing of the same order of the filter to smooth the ends points.
  The polynomial order is kept fix, and the filter width is shrunk as the filter
  center approaches the data boundary.

For instance:

**Code Example – C# Savitsky-Golay**

```csharp
DoubleVector filteredSignal = filter.Filter(noisySignal,
 SavitzkyGolayBoundaryOption.PadWithZeros);
```

**Code Example – VB Savitzky-Golay**

```vbnet
Dim FilteredSignal As DoubleVector = Filter.Filter(NoisySignal,
 SavitzkyGolayBoundaryOption.PadWithZeros)
```

### 14.3 Savitzky-Golay Peak Finding

Class `PeakFinderSavitzkyGolay` uses smooth Savitzky-Golay derivatives to find
peaks in data. A *peak* is defined as a smoothed derivative zero crossing.

`PeakFinderSavitzkyGolay` extends `PeakFinderBase`, the abstract base class for all
peak finding algorithms, and an enumerable collection of all found peaks.

#### Creating Savitzky-Golay Peak Finders

A `PeakFinderSavitzkyGolay` instance is constructed from a vector of data, a
window width, and the degree of polynomial used to fit the data. For instance, this
code builds a data set from a `sinc()` function, then constructs a peak finder with a
width of 6, and 4th degree smoothing polynomial:
Code Example – C# peak finding

```csharp
var x = new DoubleVector(5000, 0.01, 0.1);
DoubleVector data = NMathFunctions.Sin(x) / x;
PeakFinderSavitzkyGolay pf =
 new PeakFinderSavitzkyGolay(data, 6, 4);
```

Code Example – VB peak finding

```vbnet
Dim X As New DoubleVector(5000, 0.01, 0.1)
Dim Data As DoubleVector = NMathFunctions.Sin(X) / X
Dim PF As New PeakFinderSavitzkyGolay(Data, 6, 4)
```

The constructor parameters must satisfy the following rules:

- The window width must be less than the length of the data.
- The polynomial degree must be less than the window width.

Typically, the degree of the smoothing polynomial is between 3 and 5.

**Savitzky-Golay Peak Finder Results**

Once you’ve constructed a `PeakFinderSavitzkyGolay` object, the `LocatePeaks()` method finds all peak abscissae and their smoothed ordinates in current data set:

Code Example – C# peak finding

```csharp
pf.LocatePeaks();
```

Code Example – VB peak finding

```vbnet
PF.LocatePeaks()
```

The provided indexer on `PeakFinderSavitzkyGolay` gets each peak as an instance of struct `Extrema`. Property `NumberPeaks` gets the total number of peaks found. For example, this code dump all peaks to the console:

Code Example – C# peak finding

```csharp
for (int i = 0; i < pf.NumberPeaks; i++)
{
 Extrema peak = pf[i];
 Console.WriteLine("Found peak at = ({0},{1})", peak.X, peak.Y);
}
```

Code Example – VB peak finding

```vbnet
For I As Integer = 0 To PF.NumberPeaks - 1
 Dim Peak As Extrema = PF(I)
 Console.WriteLine("Found peak at = ({0},{1})", Peak.X, Peak.Y)
Next
```
### Advanced Savitzky-Golay Peak Finder Properties

Additional properties on `PeakFinderSavitzkyGolay` control the set of peaks that are found by the `LocatePeaks()` method:

- **SlopeSelectivity** gets and sets the slope selectivity. The selectivity of the peak finder can be reduced by increasing the `SlopeSelectivity`. If `SlopeSelectivity` is set to 0 (default), all found peaks are reported.

- **AbscissaInterval** gets and sets the abscissa interval for the data. This is used to scale the derivatives to the correct units. For proper scaling of the peak abscissa locations, set `AbscissaInterval` to the data sample interval.

- **RootFindingTolerance** gets and sets the error tolerance for the underlying `RiddersRootFinder`. The default is 0.00001.

For instance:

**Code Example – C# peak finding**

```csharp
pf.AbscissaInterval = 0.1;
pf.SlopeSelectivity = 0;
pf.LocatePeaks();
```

**Code Example – VB peak finding**

```vb
PF.AbscissaInterval = 0.1
PF.SlopeSelectivity = 0
PF.LocatePeaks()
```

### 14.4 Rule-Based Peak Finding

Class `PeakFinderRuleBased` finds peaks subject to rules about peak height and peak separation. A peak is defined as a point which is higher than both neighbors or infinity. Non-infinite end points are excluded as a peak. This class is analogous to MATLAB's `findpeaks()` function.

### Creating Rule-Based Peak Finders

A `PeakFinderRuleBased` instance is constructed from a vector of data.

**Code Example – C# rule-based peak finding**

```csharp
var x = new DoubleVector(5000, 0.01, 0.1);
DoubleVector data = NMathFunctions.Sin(x) / x;
var pf = new PeakFinderRuleBased(data);
```
Code Example – VB rule-based peak finding

Dim X As New DoubleVector(5000, 0.01, 0.1)
Dim Data As DoubleVector = NMathFunctions.Sin(X) / X
Dim PF As New PeakFinderRuleBased(Data)

Adding Rules

Peak finding rule types are specified with the PeakFinderRuleBased.Rules enumeration.

- **Rules.MinHeight**
  
  Removes peaks that have an amplitude less than a specified amount.

- **Rules.Threshold**
  
  Find peaks that are at least a specified amount higher than their neighboring samples.

Rules are added using the AddRule() method, and removed using RemoveRule(). Only one rule of each type is allowed. After updating the rule list, call either LocatePeaks() or LocatePeakIndices() to update the peak inventory.

For example, this rule finds all peaks with an amplitude greater than 1.5.

Code Example – C# rule-based peak finding

```csharp
pf.AddRule(PeakFinderRuleBased.Rules.MinHeight, 1.5);
pf.LocatePeaks();
```

Code Example – VB rule-based peak finding

```vbnet
PF.AddRule(PeakFinderRuleBased.Rules.MinHeight, 1.5);
PF.LocatePeaks();
```

If a Rules.MinHeight rule was already specified, it is removed before adding the new rule.

Rule-Based Peak Finder Results

The provided indexer on PeakFinderRuleBased gets each peak as an instance of struct Extrema. Property NumberPeaks gets the total number of peaks found. For example, this code dump all peaks to the console:

Code Example – C# peak finding

```csharp
for (int i = 0; i < pf.NumberPeaks; i++)
{
 Extrema peak = pf[i];
 Console.WriteLine("Found peak at = ({0},{1})", peak.X, peak.Y);
}
```
Code Example – VB peak finding

For I As Integer = 0 To PF.NumberPeaks - 1
    Dim Peak As Extrema = PF(I)
    Console.WriteLine("Found peak at = ({0},{1})", Peak.X, Peak.Y)
Next
NMath provides class `SpecialFunctions` for functions such as factorial, binomial, the gamma function and related functions, Bessel functions, elliptic integrals, and many more. These functions cover many of the most commonly needed functions in physics and engineering.

## 15.1 Special Functions

Class `SpecialFunctions` provides the special functions shown in Table 1.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airy()</td>
<td>The Airy and Bairy functions are the two solutions of the differential equation $y'''(x) = xy$.</td>
</tr>
<tr>
<td>BesselI0()</td>
<td>Modified Bessel function of the first kind, order zero.</td>
</tr>
<tr>
<td>BesselI1()</td>
<td>Modified Bessel function of the first kind, first order.</td>
</tr>
<tr>
<td>BesselIv()</td>
<td>Modified Bessel function of the first kind, non-integer order.</td>
</tr>
<tr>
<td>BesselJ0()</td>
<td>Bessel function of the first kind, order zero.</td>
</tr>
<tr>
<td>BesselJ1()</td>
<td>Bessel function of the first kind, first order.</td>
</tr>
<tr>
<td>BesselJn()</td>
<td>Bessel function of the first kind, arbitrary integer order.</td>
</tr>
<tr>
<td>BesselJv()</td>
<td>Bessel function of the first kind, non-integer order.</td>
</tr>
<tr>
<td>BesselK0()</td>
<td>Modified Bessel function of the second kind, order zero.</td>
</tr>
</tbody>
</table>
Table 11 – NMath Special Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BesselK1()</td>
<td>Modified Bessel function of the second kind, order one.</td>
</tr>
<tr>
<td>BesselKn()</td>
<td>Modified Bessel function of the second kind, arbitrary integer order.</td>
</tr>
<tr>
<td>BesselY0()</td>
<td>Bessel function of the second kind, order zero.</td>
</tr>
<tr>
<td>BesselY1()</td>
<td>Bessel function of the second kind, order one.</td>
</tr>
<tr>
<td>BesselYn()</td>
<td>Bessel function of the second kind of integer order.</td>
</tr>
<tr>
<td>BesselYv()</td>
<td>Bessel function of the second kind, non-integer order.</td>
</tr>
<tr>
<td>Beta()</td>
<td>The beta function (also known as the Eulerian integral of the first kind): ( \text{Beta}(a, b) = \frac{\Gamma(a) \cdot \Gamma(b)}{\Gamma(a+b)} ).</td>
</tr>
<tr>
<td>Binomial()</td>
<td>The binomial coefficient (n choose k)—the number of ways of picking k unordered outcomes from n possibilities.</td>
</tr>
<tr>
<td>BinomialLn()</td>
<td>The natural log of the binomial coefficient.</td>
</tr>
<tr>
<td>Cn()</td>
<td>Jacobian elliptic function ( Cn() ) for real, pure imaginary, or complex arguments.</td>
</tr>
<tr>
<td>Digamma()</td>
<td>The digamma, or psi, function, defined as ( \psi(z) = \frac{\Gamma'(z)}{\Gamma(z)} ).</td>
</tr>
<tr>
<td>Ei()</td>
<td>Exponential integral.</td>
</tr>
<tr>
<td>EllipJ()</td>
<td>The real valued Jacobi elliptic functions.</td>
</tr>
<tr>
<td>EllipticE()</td>
<td>The complete elliptic integral of the second kind.</td>
</tr>
<tr>
<td>EllipticF()</td>
<td>The incomplete elliptic integral of the first kind.</td>
</tr>
<tr>
<td>EllipticK()</td>
<td>The complete elliptic integral, ( K(m) ), of the first kind.</td>
</tr>
<tr>
<td>EulerGamma</td>
<td>A constant, also known as the Euler-Machhernoni constant. Famously, rationality unknown.</td>
</tr>
</tbody>
</table>
Using these special functions in your code is easy.

**Code Example – C# special functions**

// Compute the Jacobi function Sn() with a complex argument.
var cmplx = new DoubleComplex( 0.1, 3.3 );
DoubleComplex sn = SpecialFunctions.Sn( cmplx, .3 );

// Compute the elliptic integral, K(m)
double ei = SpecialFunctions.EllipticK( 0.432 );

**Code Example – VB special functions**

' Compute the Jacobi function Sn() with a complex argument.
Dim Complex As New DoubleComplex( 0.1, 3.3 )
Dim SN as DoubleComplex = SpecialFunctions( Complex, 0.3 )

---

**Table 11 – NMath Special Functions**

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factorial()</td>
<td>Factorial. The number of ways that n objects can be permuted.</td>
</tr>
<tr>
<td>FactorialLn()</td>
<td>The natural log factorial of n, ( \ln(n!) ).</td>
</tr>
<tr>
<td>Gamma()</td>
<td>The gamma function.</td>
</tr>
<tr>
<td>GammaLn()</td>
<td>The natural log of the gamma function.</td>
</tr>
<tr>
<td>GammaReciprocal()</td>
<td>The reciprocal of the gamma function.</td>
</tr>
<tr>
<td>HarmonicNumber()</td>
<td>The harmonic number, ( H_n ), is a truncated sum of the harmonic series.</td>
</tr>
<tr>
<td>Hypergeometric1F1()</td>
<td>The confluent hypergeometric series of the first kind.</td>
</tr>
<tr>
<td>Hypergeometric2F1()</td>
<td>The Gauss or generalized hypergeometric function.</td>
</tr>
<tr>
<td>IncompleteBeta()</td>
<td>The incomplete beta function().</td>
</tr>
<tr>
<td>IncompleteGamma()</td>
<td>The incomplete gamma integral.</td>
</tr>
<tr>
<td>IncompleteGammaComplement()</td>
<td>The complemented incomplete gamma integral.</td>
</tr>
<tr>
<td>PolyLogarithm()</td>
<td>The polylogarithm, ( Li_n(x) ).</td>
</tr>
<tr>
<td>Sn()</td>
<td>The Jacobian elliptic function ( Sn() ) for real, pure imaginary, or complex arguments.</td>
</tr>
<tr>
<td>Zeta()</td>
<td>The Riemann zeta function.</td>
</tr>
</tbody>
</table>
' Compute the elliptic integral, $K(m)$
Dim EI as Double = SpecialFunctions.EllipticK( 0.432 )
PART III - MATRIX ANALYSIS
The `CenterSpace.NMath.Core` namespace provides the following matrix and linear algebra functionality:

- Structured sparse matrix classes, including triangular, symmetric, Hermitian, banded, tridiagonal, symmetric banded, and Hermitian banded.

- Functions for converting between general matrices and structured sparse matrix types.

- Functions for transposing structured sparse matrices, computing inner products, and calculating matrix norms.

- Classes for factoring structured sparse matrices, including LU factorization for banded and tridiagonal matrices, Bunch-Kaufman factorization for symmetric and Hermitian matrices, and Cholesky decomposition for symmetric and Hermitian positive definite matrices. Once constructed, matrix factorizations can be used to solve linear systems and compute determinants, inverses, and condition numbers.

- General sparse vector and matrix classes, and matrix factorizations.

- Orthogonal decomposition classes for general matrices, including QR decomposition and singular value decomposition (SVD).

- Advanced least squares factorization classes for general matrices, including Cholesky, QR, and SVD.

- Classes for solving symmetric, Hermitian, and nonsymmetric eigenvalue problems.

To avoid using fully qualified names, preface your code with an appropriate namespace statement:

**Code Example – C#**

```csharp
using CenterSpace.NMath.Core;
```

**Code Example – VB**

```vbnet
imports CenterSpace.NMath.Core
```
NMath provides a wide variety of structured sparse matrix types, including triangular, symmetric, Hermitian, banded, tridiagonal, symmetric banded, and Hermitian banded.

A sparse matrix is a matrix with only a small number of nonzero elements. A structured sparse matrix is one in which the zero elements (or elements contributing no new information) are distributed according to some pattern. By exploiting this pattern, structured sparse matrices can be manipulated more efficiently than general matrices, since all of the elements do not need to be stored.

This chapter describes the NMath structured sparse matrix types, and the storage schemes they use. See Chapter 19 for general sparse matrix classes.

17.1 Lower Triangular Matrices

A lower triangular matrix is a square matrix with all elements above the main diagonal equal to zero. That is, $a_{ij} = 0$ for $i < j$. For example, this is a $4 \times 4$ lower triangular matrix:

$$
\begin{bmatrix}
3 & 0 & 0 & 0 \\
2 & -1 & 0 & 0 \\
1 & -2 & 2 & 0 \\
1 & 3 & 4 & 2
\end{bmatrix}
$$

Lower triangular matrices often arise at an intermediate stage in solving systems of equations and inverting matrices.
**NMath** provides lower triangular matrix classes for four datatypes: single- and double-precision floating point numbers, and single- and double-precision complex numbers. The classnames are `FloatLowerTriMatrix`, `DoubleLowerTriMatrix`, `FloatComplexLowerTriMatrix`, and `DoubleComplexLowerTriMatrix`.

For efficiency, zero elements above the main diagonal are not stored. Instead, matrix values are stored in a vector row by row. For example, the following 5 x 5 lower triangular matrix:

\[
\begin{bmatrix}
    a_{00} & 0 & 0 & 0 & 0 \\
    a_{10} & a_{11} & 0 & 0 & 0 \\
    a_{20} & a_{21} & a_{22} & 0 & 0 \\
    a_{30} & a_{31} & a_{32} & a_{33} & 0 \\
    a_{40} & a_{41} & a_{42} & a_{43} & a_{44}
\end{bmatrix}
\]

is stored in a data vector as:

\[v = [ a_{00} \ a_{10} \ a_{11} \ a_{20} \ a_{21} \ a_{22} \ a_{30} \ a_{31} \ a_{32} \ a_{33} \ a_{40} \ a_{41} \ a_{42} \ a_{43} \ a_{44} ]\]

In general, the relationship between matrix and vector indices is:

\[A[i,j] = v[i(i+1)/2 + j]\]

## 17.2 Upper Triangular Matrices

An upper triangular matrix is a square matrix with all elements below the main diagonal equal to zero. That is, \( a_{ij} = 0 \) for \( i > j \). For example, this is a 4 x 4 upper triangular matrix:

\[
\begin{bmatrix}
    2 & 0 & 1 & 1 \\
    0 & -1 & -2 & 3 \\
    0 & 0 & 1 & 4 \\
    0 & 0 & 0 & 2
\end{bmatrix}
\]

Like lower triangular matrices, upper triangular matrices often arise at an intermediate stage in solving systems of equations and inverting matrices.
**NMath** provides upper triangular matrix classes for four datatypes: single- and double-precision floating point numbers, and single- and double-precision complex numbers. The classnames are **FloatUpperTriMatrix**, **DoubleUpperTriMatrix**, **FloatComplexUpperTriMatrix**, and **DoubleComplexUpperTriMatrix**.

For efficiency, zero elements below the main diagonal are not stored. Instead, matrix values are stored in a vector column by column. For example, the following 5 x 5 upper triangular matrix:

$$
A = \begin{bmatrix}
    a_{00} & a_{01} & a_{02} & a_{03} & a_{04} \\
    0 & a_{11} & a_{12} & a_{13} & a_{14} \\
    0 & 0 & a_{22} & a_{23} & a_{24} \\
    0 & 0 & 0 & a_{33} & a_{34} \\
    0 & 0 & 0 & 0 & a_{44}
\end{bmatrix}
$$

is stored in a data vector as:

$$
v = [a_{00} \ a_{01} \ a_{11} \ a_{02} \ a_{12} \ a_{22} \ a_{03} \ a_{13} \ a_{23} \ a_{33} \ a_{04} \ a_{14} \ a_{24} \ a_{34} \ a_{44}]$$

In general, the relationship between matrix and vector indices is:

$$A[i,j] = v[i + j(j+1)/2]$$

### 17.3 Symmetric Matrices

A *symmetric* matrix is a square matrix that satisfies $A = A^T$ where $A^T$ denotes the transpose of $A$. That is, $a_{ij} = a_{ji}$ for all $i,j$. For example, this is a 4 x 4 symmetric matrix:

$$
\begin{bmatrix}
    2 & 0 & 1 & 1 \\
    0 & -1 & -2 & 3 \\
    1 & -2 & 0 & 4 \\
    1 & 3 & 4 & 2
\end{bmatrix}
$$

Symmetric matrices are often used to represent quadratic forms.
NMath provides symmetric matrix classes for single- and double-precision floating point numbers. The classnames are FloatSymmetricMatrix and DoubleSymmetricMatrix. Hermitian matrices are a generalization of symmetric matrices for complex types (Section 17.4).

For efficiency, only the upper triangle is stored. The storage scheme is the same as for an upper triangular matrix (Section 17.2).

### 17.4 Hermitian Matrices

A Hermitian matrix is a square matrix which satisfies $A = \overline{A^T}$ where $\overline{A^T}$ denotes the conjugate transpose of $A$. That is, $a_{ij} = \overline{a_{ji}}$ for all $i,j$, where $\overline{z}$ denotes the complex conjugate. (The conjugate of a complex number $a + bi$ is defined as $a - bi$.) For example, this is a $4 \times 4$ Hermitian matrix:

\[
\begin{bmatrix}
-1 & 1 - i & 1 + 2i & -i \\
1 + i & 3 & -2 & 3 - 2i \\
1 - 2i & -2 & 0 & 4 \\
i & 3 + 2i & 4 & 2
\end{bmatrix}
\]

According to the strict definition of a Hermitian matrix, the diagonal elements must be real numbers, since $a = \overline{a}$ only for real numbers, while other elements may be complex. NMath relaxes this requirement and permits complex elements on the diagonal. The provided MakeDiagonalReal() method sets the imaginary parts on the main diagonal to zero, thereby meeting the strict definition of a Hermitian matrix.

NMath provides Hermitian matrix classes for single- and double-precision complex numbers. The classnames are FloatHermitianMatrix and DoubleHermitianMatrix. A symmetric matrix is a special case of a Hermitian matrix where all the elements are real (Section 17.3).

For efficiency, only the upper triangle is stored. The storage scheme is the same as for an upper triangular matrix (Section 17.2).

### 17.5 Banded Matrices

A banded matrix is a matrix that has all its non-zero entries near the diagonal. Entries farther above the diagonal than the upper bandwidth, or farther below the diagonal than the lower bandwidth, are defined to be zero. That is, if $ub$ is the upper
bandwidth, and $lb$ is the lower bandwidth, then $a_{ij} = 0$ whenever $j - i > ub$ or $i - j > lb$.

For example, this is a 7 x 7 banded matrix with upper bandwidth 1 and lower bandwidth 3:

$$
A = \begin{bmatrix}
1 & -2 & 0 & 0 & 0 & 0 & 0 \\
1 & -1 & 3 & 0 & 0 & 0 & 0 \\
2 & 5 & 0 & 0 & 0 & 0 & 0 \\
0 & -4 & -2 & 1 & 4 & 0 & 0 \\
0 & 2 & 2 & 1 & 3 & 1 & 0 \\
0 & 0 & -1 & 2 & -3 & 0 & 2 \\
0 & 0 & 0 & 3 & 3 & -1 & 1
\end{bmatrix}
$$

**NMath** provides banded matrix classes for four datatypes: single- and double-precision floating point numbers, and single- and double-precision complex numbers. The classnames are `FloatBandMatrix`, `DoubleBandMatrix`, `FloatComplexBandMatrix`, and `DoubleComplexBandMatrix`.

For efficiency, zero elements outside the bandwidth are not stored. Instead, matrix values are stored in a vector column by column. Blank entries are inserted in the data vector so that the each column takes up the same number of elements, $ub + lb + 1$, in the vector. For example, the following 8 x 8 matrix with an upper bandwidth of 2 and a lower bandwidth of 1:

$$
A = \begin{bmatrix}
a_{00} & a_{01} & a_{02} & 0 & 0 & 0 & 0 & 0 \\
a_{10} & a_{11} & a_{12} & a_{13} & 0 & 0 & 0 & 0 \\
0 & a_{21} & a_{22} & a_{23} & a_{24} & 0 & 0 & 0 \\
0 & 0 & a_{32} & a_{33} & a_{34} & a_{35} & 0 & 0 \\
0 & 0 & 0 & a_{43} & a_{44} & a_{45} & a_{46} & 0 \\
0 & 0 & 0 & 0 & a_{54} & a_{55} & a_{56} & a_{57} \\
0 & 0 & 0 & 0 & 0 & a_{65} & a_{66} & a_{67} \\
0 & 0 & 0 & 0 & 0 & 0 & a_{76} & a_{77}
\end{bmatrix}
$$
is stored in a data vector as:

\[
v = [x \ x \ a00 \ a10 \\
x \ a01 \ a11 \ a21 \\
a02 \ a12 \ a22 \ a32 \\
a13 \ a23 \ a33 \ a43 \\
a24 \ a34 \ a44 \ a54 \\
a35 \ a45 \ a55 \ a65 \\
a46 \ a56 \ a66 \ a76 \\
a57 \ a67 \ a77 \ x ]
\]

where \( x \) denotes an unused location.

### 17.6 Tridiagonal Matrices

A tridiagonal matrix is a matrix which has all its non-zero entries on the main diagonal, the superdiagonal, and the subdiagonal. That is, \( a_{ij} = 0 \) whenever \( j - i > 1 \) or \( i - j > 1 \). For example, this is a 5 x 5 tridiagonal matrix:

\[
A = \begin{bmatrix}
1 & -2 & 0 & 0 & 0 \\
1 & -1 & 3 & 0 & 0 \\
0 & 5 & 0 & -1 & 0 \\
0 & 0 & -2 & 1 & 4 \\
0 & 0 & 0 & 1 & 3
\end{bmatrix}
\]

Tridiagonal matrices often occur in one-dimensional problems and at an intermediate stage in the process of finding eigenvalues.

**NMath** provides tridiagonal matrix classes for four datatypes: single- and double-precision floating point numbers, and single- and double-precision complex numbers. The classnames are `FloatTriDiagMatrix`, `DoubleTriDiagMatrix`, `FloatComplexTriDiagMatrix`, and `DoubleComplexTriDiagMatrix`.

For efficiency, zero elements outside the main diagonal, superdiagonal, and subdiagonal are not stored. A tridiagonal matrix is a special case of a banded matrix where the upper and lower bandwidths are one, and the storage scheme is the same as for a banded matrix (Section 17.5).
17.7 Symmetric Banded Matrices

A symmetric banded matrix is a symmetric matrix (Section 17.3) that has all its non-zero entries near the diagonal. Entries farther away from the diagonal than the half bandwidth are defined to be zero. That is, if $hb$ is the half bandwidth, then $a_{ij} = 0$ whenever $j - i > hb$ or $i - j > hb$. For example, this is a $5 \times 5$ symmetric banded matrix with a half bandwidth of 1:

$$A = \begin{bmatrix}
1 & -2 & 0 & 0 & 0 \\
-2 & -1 & 3 & 0 & 0 \\
0 & 3 & 0 & -1 & 0 \\
0 & 0 & -1 & 1 & 4 \\
0 & 0 & 0 & 4 & 3
\end{bmatrix}$$

Symmetric banded matrices often arise in one-dimensional finite element problems.

**NMath** provides symmetric banded matrix classes for single- and double-precision floating point numbers. The classnames are **FloatSymBandMatrix** and **DoubleSymBandMatrix**. Hermitian banded matrices are a generalization of symmetric banded matrices for complex types (Section 17.8).

For efficiency, the lower triangular part of the matrix and zero elements outside the bandwidth are not stored. Instead, matrix values are stored in a vector column by column. Blank entries are inserted in the data vector so that each column takes up the same number of elements, $hb + 1$, in the vector. For example, the following $8 \times 8$ matrix with a half bandwidth of 2:

$$A = \begin{bmatrix}
a_{00} & a_{01} & a_{02} & 0 & 0 & 0 & 0 & 0 \\
a_{10} & a_{11} & a_{12} & a_{13} & 0 & 0 & 0 & 0 \\
a_{20} & a_{21} & a_{22} & a_{23} & a_{24} & 0 & 0 & 0 \\
0 & a_{31} & a_{32} & a_{33} & a_{34} & a_{35} & 0 & 0 \\
0 & 0 & a_{42} & a_{43} & a_{44} & a_{45} & a_{46} & 0 \\
0 & 0 & 0 & a_{53} & a_{54} & a_{55} & a_{56} & a_{57} \\
0 & 0 & 0 & 0 & a_{64} & a_{65} & a_{66} & a_{67} \\
0 & 0 & 0 & 0 & 0 & a_{75} & a_{76} & a_{77}
\end{bmatrix}$$
is stored in a data vector as:

\[
\begin{bmatrix}
  x & x & a_{00} \\
  x & a_{01} & a_{11} \\
  a_{02} & a_{12} & a_{22} \\
  a_{13} & a_{23} & a_{33} \\
  a_{24} & a_{34} & a_{44} \\
  a_{35} & a_{45} & a_{55} \\
  a_{46} & a_{56} & a_{66} \\
  a_{57} & a_{67} & a_{77}
\end{bmatrix}
\]

where \( x \) denotes an unused location.

## 17.8 Hermitian Banded Matrices

A Hermitian banded matrix is a Hermitian matrix (Section 17.4) that has all its non-zero entries near the diagonal. Entries farther away from the diagonal than the half bandwidth are defined to be zero. That is, if \( hb \) is the half bandwidth, then \( a_{ij} = 0 \) whenever \( j - i > hb \) or \( i - j > hb \). For example, this is a 5 x 5 Hermitian banded matrix with a half bandwidth of 1:

\[
A = \begin{bmatrix}
  1 & 2i & 0 & 0 & 0 \\
  -2i & -1 & 3 - i & 0 & 0 \\
  0 & 3 + i & 0 & 1 - 5i & 0 \\
  0 & 0 & 1 + 5i & 1 & 4 \\
  0 & 0 & 0 & 4 & 3
\end{bmatrix}
\]

According to the strict definition of a Hermitian matrix, the diagonal elements must be real numbers, since \( a = \bar{a} \) only for real numbers), while other elements may be complex. NMath relaxes this requirement and permits complex elements on the diagonal. The provided MakeDiagonalReal() method sets the imaginary parts on the main diagonal to zero, thereby meeting the strict definition of a Hermitian matrix.

NMath provides Hermitian banded matrix classes for single- and double-precision complex numbers. The classnames are FloatHermitianBandMatrix and DoubleHermitianBandMatrix. A symmetric banded matrix is a special case of a Hermitian banded matrix where all the elements are real (Section 17.7).

For efficiency, the lower triangular part of the matrix and zero elements outside the bandwidth are not stored. The storage scheme is the same as for a symmetric banded matrix (Section 17.7).
NMath provides a variety of functions that take the structured sparse matrix types described in Chapter 17 as arguments. Methods are provided either as member functions on the matrix classes, or as static methods on class MatrixFunctions.

As a general rule, NMath only provides functions that preserve the shape of the structured sparse matrices. In some cases, this means that functions provided for the general matrix classes are not provided for the structured sparse matrix classes. For example, NMath does not generally provide trigonometric and transcendental functions for structured sparse matrix types. Such functions may change un贮red zero values to non-zero values, thus changing a structured sparse matrix type into a general matrix.

If you want to apply an arbitrary function to all elements of a structured sparse matrix, including un贮red zero values, you can always convert the matrix to a general matrix first. A ToGeneralMatrix() method is provided for this purpose. Alternatively, to apply an arbitrary function only to stored values, you can apply the function to the underlying data vector. Both techniques are described in more detail in Section 18.7.

This chapter describes how to create and manipulate the NMath structured sparse matrix types.

## 18.1 Creating Matrices

This section describes how to create instances of the structured sparse matrix classes.

### Creating Default Matrices

You can construct default structured sparse matrices by supplying the necessary parameters to describe the matrix shape, as shown in Table 12. All stored values are initialized to zero.
Square matrix types are characterized by their order—that is, the number of rows and columns. For example, a matrix of order 3 is a 3 x 3 matrix. Thus, this code creates a default 5 x 5 Hermitian matrix of double-precision complex numbers:

**Code Example – C# matrix**
```csharp
var A = new DoubleHermitianMatrix(5);
```

**Code Example – VB matrix**
```vbnet
Dim A As New DoubleHermitianMatrix(5)
```

Constructors for rectangular matrix types accept separate row and column shape parameters. For example:

**Code Example – C# matrix**
```csharp
var A = new DoubleTriDiagMatrix(3, 5);
```

**Code Example – VB matrix**
```vbnet
Dim A As New DoubleTriDiagMatrix(3, 5)
```

Constructors for banded matrix types also accept bandwidth parameters that describe the width of the banded region. Thus, the following code creates a 4 x 5 FloatComplexBandMatrix with a lower bandwidth of 1 and an upper bandwidth of 2:

**Code Example – C# matrix**
```csharp
var A = new FloatComplexMatrix(4, 5, 1, 2);
```
Chapter 18. Using The Structured Sparse Matrix Classes

Creating Sparse Matrices from General Matrices

You can construct all NMath structured sparse matrix types from general matrix types. Such constructors extract the appropriate values from the general matrix. Data is copied.

For example, this code constructs a FloatUpperTriMatrix instance by extracting the upper triangular region of a square general matrix:

Code Example – C# matrix

```csharp
var genMat = new FloatMatrix(5, 5, 0, 1);
var A = new FloatUpperTriMatrix(genMat);
```

Code Example – VB matrix

```vbnet
Dim GenMat As New FloatMatrix(5, 5, 0.0F, 1.0F)
Dim A As New FloatUpperTriMatrix(GenMat)
```

Constructors for square matrix types, such as upper triangular matrices, throw a MatrixNotSquareException if the given general matrix is not square. Alternatively, you can pass in a non-square general matrix and specify the order of the square submatrix to extract. Thus, this code creates a 3 x 3 DoubleSymmetricMatrix by extracting the upper triangular region of the 3 x 3 leading submatrix from the given 4 x 6 general matrix:

Code Example – C# matrix

```csharp
var genMat = new DoubleMatrix(4, 6, 0, 0.25);
var A = new DoubleSymmetricMatrix(A, 3);
```

Code Example – VB matrix

```vbnet
Dim GenMat As New DoubleMatrix(4, 6, 0.0, 0.25)
```

This creates an 8 x 8 FloatSymBandMatrix with a half bandwidth of 2:

Code Example – VB matrix

```vbnet
Dim A As New FloatComplexMatrix(4, 5, 1.0F, 2.0F)
```

Once you’ve constructed a default matrix, you can set individual values using the provided indexers (Section 18.2). In some case, methods are also provided that return vector views of the underlying data, which can also be used to set matrix values (Section 18.5).
Dim A As New DoubleSymmetricMatrix(A, 3)

An `IndexOutOfRangeException` is raised if the given order specifies a submatrix that is out of bounds.

Banded matrix types can also be constructed from general matrices by specifying the desired bandwidth. For instance, the following code extracts the values required to construct a Hermitian banded matrix with a half bandwidth of 3 from the given general matrix:

**Code Example – C# matrix**

```csharp
var incr = new DoubleComplex(1, 0.25);
var genMat = new DoubleComplexMatrix(12, 12, 0, incr);
var A = new DoubleHermitianBandMatrix(A, 3);
```

**Code Example – VB matrix**

```vbnet
Dim Incr As New DoubleComplex(1.0, 0.25)
Dim GenMat As New DoubleComplexMatrix(12, 12, 0.0, Incr)
Dim A As New DoubleHermitianBandMatrix(A, 3)
```

**Creating Sparse Matrices from Other Sparse Matrices**

Some structured sparse matrix types can be constructed from other structured sparse matrices. For example, a tridiagonal matrix is really a special case of a banded matrix with lower and upper bandwidth equal to 1. Therefore, banded matrices can be constructed from tridiagonal matrices, and **vice versa**. For example:

**Code Example – C# matrix**

```csharp
int rows = 8, cols = 8, ub = 0, lb = 2;
var data = new FloatVector((ub+lb+1)*cols, 1, 1);
var A = new FloatBandMatrix(data, rows, cols, lb, ub);
var B = new FloatTriDiagMatrix(A);
```

**Code Example – VB matrix**

```vbnet
Dim Rows As Integer = 8
Dim Cols As Integer = 8
Dim UB As Integer = 0
Dim LB As Integer = 2
Dim Data As New FloatVector((UB + LB + 1) * Cols, 1.0F, 1.0F)
Dim A As New FloatBandMatrix(Data, Rows, Cols, LB, UB)
Dim B As New FloatTriDiagMatrix(A)
```

Similarly, you can construct banded matrices from symmetric or Hermitian banded matrices, or triangular matrices from symmetric or Hermitian matrices, and **vice versa**.
Creating Sparse Matrices from a Data Vector

You can construct all NMath structured sparse matrix types from an appropriate data vector and shape parameters. The vector storage scheme used by each structured sparse matrix type is described in Chapter 17. For example, you could create this 4 x 4 symmetric matrix:

\[
\begin{bmatrix}
0 & 1 & 3 & 6 \\
0 & 2 & 4 & 7 \\
0 & 0 & 5 & 8 \\
0 & 0 & 0 & 9
\end{bmatrix}
\]

like this:

**Code Example – C# matrix**

```csharp
var data = new DoubleVector(10, 0, 1);
var A = new DoubleSymmetricMatrix(data, 4);
```

**Code Example – VB matrix**

```vbnet
Dim Data As New DoubleVector(10, 0.0, 1.0)
Dim A As New DoubleSymmetricMatrix(Data, 4)
```

Similarly, you could create this 5 x 7 banded matrix with an upper bandwidth of 1 and a lower bandwidth of 0:

\[
\begin{bmatrix}
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0
\end{bmatrix}
\]

using this code:

**Code Example – C# matrix**

```csharp
var data = new FloatVector(14, 1);
var A = new FloatBandMatrix(data, 5, 7, 0, 1);
```

**Code Example – VB matrix**

```vbnet
Dim Data As New FloatVector(14, 1.0F)
Dim A As New FloatBandMatrix(Data, 5, 7, 0, 1)
```
Implicit Conversion

NMath provides implicit conversion operators for the structured sparse matrix classes. Single-precision types are implicitly promoted to double-precision types, and real types are implicitly promoted to complex types, as shown in Figure 4. An arrow indicates implicit promotion.

Figure 4 – Implicit conversion for matrix data types

For example, Figure 5 shows the pattern for implicit conversion among the tridiagonal types.

Figure 5 – Implicit conversion for tridiagonal matrices

Copying Matrices

The NMath structured sparse matrix classes provide three copy methods:

- **Clone()** returns a deep copy of a matrix. Data is copied; each matrix references different data.
- **ShallowCopy()** returns a shallow copy of a matrix. Data is not copied; both matrices reference the same data.
- **DeepenThisCopy()** copies the data viewed by a matrix to new data block. This guarantees that there is only one reference to the underlying data, and that this data is in contiguous storage.

For instance:

Code Example – C# matrix

```csharp
var A = new FloatUpperTriMatrix(5);
```
FloatUpperTriMatrix B = A.ShallowCopy();

B[0,0] = 1; // A[0,0] == B[0,0]
B.DeepenThisCopy();
B[0,0] = 2; // A[0,0] != B[0,0]

Code Example – VB matrix

Dim A As New FloatUpperTriMatrix(5)
Dim B As FloatUpperTriMatrix = A.ShallowCopy()

B(0, 0) = 1   ' A[0,0] == B[0,0]
B.DeepenThisCopy()
B(0, 0) = 2   ' A[0,0] != B[0,0]

### 18.2 Value Operations on Matrices

The **NMath** structured sparse matrix classes have read-only properties for all shape parameters, and for the underlying data vector:

<table>
<thead>
<tr>
<th>Matrix Type</th>
<th>Read-Only Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Triangular</td>
<td>Order, Rows, Cols, DataVector</td>
</tr>
<tr>
<td>Upper Triangular</td>
<td>Order, Rows, Cols, DataVector</td>
</tr>
<tr>
<td>Symmetric</td>
<td>Order, Rows, Cols, DataVector</td>
</tr>
<tr>
<td>Hermitian</td>
<td>Order, Rows, Cols, DataVector</td>
</tr>
<tr>
<td>Banded</td>
<td>Rows, Cols, LowerBandwidth, UpperBandwidth, Bandwidth, DataVector</td>
</tr>
<tr>
<td>TriDiagonal</td>
<td>Rows, Cols, DataVector</td>
</tr>
<tr>
<td>Symmetric Banded</td>
<td>Order, Rows, Cols, HalfBandwidth, Bandwidth, DataVector</td>
</tr>
<tr>
<td>Hermitian Banded</td>
<td>Order, Rows, Cols, HalfBandwidth, Bandwidth, DataVector</td>
</tr>
</tbody>
</table>

On square matrix types, the `Rows` and `Cols` properties simply return the order. On banded types, the `Bandwidth` property returns the total bandwidth. For general banded matrices, the total bandwidth is `LowerBandwidth + UpperBandwidth +`
for symmetric and Hermitian banded types, the total bandwidth is $2 \times \text{HalfBandwidth} + 1$.

For example, if $A$ is a `FloatHermitianBandMatrix` instance:

**Code Example – C# matrix**

```csharp
int order = A.Order;
int cols = A.Cols; // cols == order
int rows = A.Rows; // rows == order
int halfband = A.HalfBandwidth
int band = A.Bandwidth // band = 2 * halfband + 1
FloatComplexVector data = A.DataVector;
```

**Code Example – VB matrix**

```vbnet
Dim Order As Integer = A.Order
Dim Cols As Integer = A.Cols ' cols == order
Dim Rows As Integer = A.Rows ' rows == order
Dim HalfBand As Integer = A.HalfBandwidth
Dim band As Integer = A.Bandwidth ' band = 2 * halfband + 1
Dim Data As FloatComplexVector = A.DataVector
```

### Accessing and Modifying Matrix Values

The matrix classes provide standard indexers for getting and setting element value at a specified row and column position in a matrix. Thus, $A[i,j]$ always returns the element in the $i$th row and $j$th column of matrix $A$’s view of the data.

**NOTE**—Indexing starts at 0.

Attempts to set zero elements outside the stored region to nonzero values raise a `NonModifiableElementException`. For instance:

**Code Example – C# matrix**

```csharp
var A = new FloatComplexTriDiagMatrix(8, 8);
try
{
 A[7,0] = new FloatComplex(1, -1);
}
catch (NonModifiableElementException)
{
 // Do something here
}
```

**Code Example – VB matrix**

```vbnet
Dim A As New FloatComplexTriDiagMatrix(8, 8)
Try
 A(7, 0) = New FloatComplex(1.0F, -1.0F)
Catch NonModifiableElementException
```
Symmetric matrices are in a different category than the other structured sparse matrix types, because unstored values are not constrained to be zero. Thus, even though only the upper triangular region is stored, you can “set” values in the lower triangular region. The corresponding value in the upper triangular region is changed. Thus:

**Code Example – C# matrix**

```csharp
var A = new DoubleSymmetricMatrix(12);
Console.WriteLine(A[7,2]); // "0"
Console.WriteLine(A[2,7]); // "0"
A[7,2] = 1;
Console.WriteLine(A[7,2]); // "1"
Console.WriteLine(A[2,7]); // "1"
```

**Code Example – VB matrix**

```vbnet
Dim A As New DoubleSymmetricMatrix(12)
Console.WriteLine(A(7, 2)) ' "0"
Console.WriteLine(A(2, 7)) ' "0"
A(7, 2) = 1
Console.WriteLine(A(7, 2)) ' "1"
Console.WriteLine(A(2, 7)) ' "1"
```

**Resizing a Matrix**

The matrix classes provide `Resize()` methods for changing the size of a matrix after it has been created. Zeros are added or values are truncated as necessary. For instance:

**Code Example – C# matrix**

```csharp
int order = 7;
var data =
 new DoubleComplexVector((order * (order + 1)) / 2,
 new RandGenMTwist());
var A = new DoubleHermitianMatrix(data);
DoubleHermitianMatrix B2 = (DoubleHermitianMatrix)B.Clone();
B2.Resize(B.Order + 2);
```

**Code Example – VB matrix**

```vbnet
Dim Order As Integer = 7
Dim Data As New DoubleComplexVector((Order * (Order + 1)) / 2,
 New RandGenMTwist())
Dim A As New DoubleHermitianMatrix(Data)
```
Dim B2 As DoubleHermitianMatrix = CType(B.Clone(), DoubleHermitianMatrix)
B.Resize(B.Order + 2)

18.3 Logical Operations on Matrices

Operator == tests for equality of two matrices, and returns true if both matrices have the same dimensions and all values are equal; otherwise, false. Following the convention of the .NET Framework, if both objects are null, they test equal.

The comparison of the values for double-precision floating point and complex numbers is done using operator == for doubles; comparison of the values for single precision numbers is done using operator == for floats. Therefore, the values of the matrices must be exactly equal for this method to return true. Operator != returns the logical negation of ==.

The Equals() member function also tests for equality.

18.4 Arithmetic Operations on Matrices

NMath provides overloaded arithmetic operators for structured sparse matrices with their conventional meanings for those .NET languages that support them, and equivalent named methods for those that do not. Table 14 lists the equivalent operators and methods.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Equivalent Named Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Add()</td>
</tr>
<tr>
<td>-</td>
<td>Subtract()</td>
</tr>
<tr>
<td>*</td>
<td>Multiply()</td>
</tr>
<tr>
<td>/</td>
<td>Divide()</td>
</tr>
<tr>
<td>Unary -</td>
<td>Negate()</td>
</tr>
</tbody>
</table>

All binary operators and equivalent named methods work either with two matrices, or with a matrix and a scalar.

NOTE—Matrices must have the same dimensions to be combined using the element-wise operators. Otherwise, a MismatchedSizeException is raised.
For example, this C# code uses the overloaded operators:

**Code Example – C# matrix**

```csharp
var genMat = new DoubleMatrix(8, 8, 0, 1);
var A = new DoubleBandMatrix(genMat, 4, 5, 1, 2);
var B = new DoubleBandMatrix(genMat, 4, 5, 1, 1);
double s = 2.25;

DoubleBandMatrix result = A + s*B;
```

Note that although the banded matrices must have the same dimensions, they do not need to have the same bandwidth.

This Visual Basic code uses the equivalent named methods:

**Code Example – VB matrix**

```vbnet
Dim genMat As new DoubleMatrix(8, 8, 0, 1)
Dim A As new DoubleBandMatrix(genMat, 4, 5, 1, 2);
Dim B As new DoubleBandMatrix(genMat, 4, 5, 1, 1);
Dim s As Double = 2.25;

Dim result As DoubleBandMatrix = _
 DoubleBandMatrix.Add(A, DoubleBandMatrix.Multiply(s, B));
```

### 18.5 Vector Views

Methods such as `Row()`, `Column()`, and `Diagonal()` return vector views of the data referenced by a general matrix. NMath does not generally provide such methods for structured sparse matrix types, because of the limitations on which elements in the matrix are modifiable.

The exception is the banded matrix types which provide a `Diagonal()` member function that returns a vector view of a diagonal of a matrix. If no diagonal is specified, a vector view of the main diagonal is returned. For example, this code increments every element along the main diagonal:

**Code Example – C# matrix**

```csharp
var A = new FloatBandMatrix(5, 5, 0, 0);
A.Diagonal()++;
```

**Code Example – VB matrix**

```vbnet
Dim A As New FloatBandMatrix(5, 5, 0, 0)
A.Diagonal().Increment()
```
18.6 Functions of Matrices

NMath provides a variety of functions that take structured sparse matrices as arguments.

Matrix Transposition

The structured sparse matrix classes provide `Transpose()` member functions for calculating the transpose of a matrix: \( B[i,j] = A[j,i] \). Class `MatrixFunctions` also provides a static `Transpose()` method that returns the transpose of a matrix. Data is copied. For instance:

Code Example – C# matrix

```csharp
var A = new FloatTriDiagMatrix(50, 50);
A.Diagonal(1)++; // increments the superdiagonal
A.Diagonal(-1)--; // decrements the subdiagonal
FloatTriDiagMatrix B = A.Transpose();
FloatTriDiagMatrix C = MatrixFunctions.Transpose(A); // B == C
```

Code Example – VB matrix

```vbnet
Dim A As New FloatTriDiagMatrix(50, 50)
A.Diagonal(1).Increment() ' increments the superdiagonal
A.Diagonal(-1).Decrement() ' decrements the subdiagonal
Dim B As FloatTriDiagMatrix = A.Transpose()
Dim C As FloatTriDiagMatrix = MatrixFunctions.Transpose(A) ' B == C
```

NOTE—By definition, a symmetric matrix is equal to its own transpose, so the `Transpose()` method has no effect for these types.

Matrix Inner Products

Class `MatrixFunctions` provides the static `Product()` method for calculating the inner product of a matrix and a vector:

Code Example – C# matrix

```csharp
var data = new DoubleVector(10, 1, 1);
var A = new DoubleSymmetricMatrix(data, 4);
var x = new DoubleVector(4, 1, 1);
DoubleVector y = MatrixFunctions.Product(A, x);
```

Code Example – VB matrix

```vbnet
Dim Data As New DoubleVector(10, 1.0, 1.0)
Dim A As New DoubleSymmetricMatrix(Data, 4)
Dim X As New DoubleVector(4, 1.0, 1.0)
Dim Y As DoubleVector = MatrixFunctions.Product(A, X)
```
For banded matrices, additional overloads of the `Product()` method calculate the product of two matrices. For example:

**Code Example – C# matrix**

```csharp
int rows = 8, cols = 6, lb = 2, ub = 1;
DoubleComplexVector data =
 new DoubleComplexVector((ub + lb + 1) * cols, 0, 1);
DoubleComplexBandMatrix A =
 new DoubleComplexBandMatrix(data, rows, cols, lb, ub);
DoubleComplexBandMatrix B =
 new DoubleComplexBandMatrix(++data, cols, cols, lb, ub);
DoubleComplexBandMatrix C =
 MatrixFunctions.Product(A, B);
```

**Code Example – VB matrix**

```vbnet
Dim Rows As Integer = 8
Dim Cols As Integer = 6
Dim LB As Integer = 2
Dim UB As Integer = 1
Dim Data As New DoubleComplexVector((UB + LB + 1) * Cols, 0, 1)
Dim A As New DoubleComplexBandMatrix(Data, Rows, Cols, LB, UB)
Dim B As New DoubleComplexBandMatrix(Data.Increment(), Cols, Cols,
 LB, UB)
Dim C As DoubleComplexBandMatrix = MatrixFunctions.Product(A, B)
```

Also for banded matrices, the static `TransposeProduct()` method on `NMathFunctions` computes the matrix inner product of the transpose of a given matrix and a second matrix. Thus, assuming `A` and `B` are `DoubleBandMatrix` instances, this code calculates the inner product of the transpose of `A` with `B`:

**Code Example – C# matrix**

```csharp
DoubleBandMatrix C = MatrixFunctions.TransposeProduct(A, B);
```

**Code Example – VB matrix**

```vbnet
Dim C As DoubleBandMatrix = MatrixFunctions.TransposeProduct(A, B)
```

### Matrix Norms

`MatrixFunctions` provides static functions `OneNorm()` to compute the 1-norm (or largest column sum) of a matrix, and `InfinityNorm()` to compute the infinity-norm (or largest row sum) of a matrix. For instance:

**Code Example – C# matrix**

```csharp
var A = new DoubleMatrix("3x3 [1 2 3 4 5 6 7 8 9]");
double d1 = A.OneNorm();
double d2 = A.InfinityNorm();
```
Code Example – VB matrix

Dim A As New DoubleMatrix("3x3 [1 2 3 4 5 6 7 8 9]")
Dim D1 As Double = A.OneNorm()
Dim D2 As Double = A.InfinityNorm()

The OneNorm() method has overloads for all structured sparse matrix types; InfinityNorm() only for banded and tridiagonal types.
Trigonometric and Transcendental Functions

In general, NMath does not provide trigonometric and transcendental functions for sparse matrix types. Such functions may change unstored zero values to non-zero values, thus changing a sparse matrix type into a general matrix. If you want to apply a trigonometric or transcendental function to all elements of a sparse matrix, including unstored zero values, convert the matrix to a general matrix first, using the ToGeneralMatrix() method. Alternatively, to apply a trigonometric or transcendental function only to stored values, apply the function to the underlying data vector. These techniques are described in more detail in Section 18.7.

Symmetric matrices are in a different category than the other sparse matrix types, because unstored values are not constrained to be zero. Therefore, NMath extends standard trigonometric functions Acos(), Asin(), Atan(), Cos(), Cosh(), Sin(), Sinh(), Tan(), and Tanh() to take symmetric matrix arguments. Class MatrixFunctions provides these functions as static methods. For instance, this code construct a symmetric matrix whose contents are the cosines of another symmetric matrix:

Code Example – C# matrix
var genMat = new FloatMatrix( 10, 10, 0, Math.Pi/4 );
var A = new FloatSymmetricMatrix( genMat );
FloatSymmetricMatrix cosA = MatrixFunctions.Cos( A );

Code Example – VB matrix
Dim GenMat As New FloatMatrix(10, 10, 0.0F, Math.PI / 4.0F)
Dim A As New FloatSymmetricMatrix(GenMat)
Dim CosA As FloatSymmetricMatrix = MatrixFunctions.Cos(A)

The static Atan2() method takes two symmetric matrices and applies the two-argument arc tangent function to corresponding pairs of elements.

MatrixFunctions also provides standard transcendental functions Log() and Log10() that take symmetric matrix arguments.

Absolute Value

The static Abs() function on class MatrixFunctions applies the absolute value function to each element of a given matrix:

Code Example – C# matrix
int order = 5, hb = 2;
var data = new DoubleComplexVector( "(0,0) (0,0) (1,-2) (0,0) (2,-4) (3,-6) (4,-8) (5,-10) (6,-12) (7,-14) (8,-16) (9,-18) (10,-20) (11,-22) (12,-24)" );
var A = new DoubleHermitianBandMatrix( data, order, hb );
DoubleSymBandMatrix B = MatrixFunctions.Abs( A );
Code Example – VB matrix

Dim Order As Integer = 5
Dim HB As Integer = 2
Dim Data As New DoubleComplexVector("(0,0) (0,0) " & _
"(1,-2) (0,0) (2,-4) (3,-6) (4,-8) (5,-10) (6,-12) (7,-14) " & _
"(8,-16) (9,-18) (10,-20) (11,-22) (12,-24)")
Dim A As New DoubleHermitianBandMatrix(Data, Order, HB)
Dim B As DoubleSymBandMatrix = MatrixFunctions.Abs(A)

Complex Matrix Functions

Static methods Real() and Imag() on class MatrixFunctions return the real and imaginary part of the elements of a matrix. If the elements of the given matrix are real, Real() simply returns the given matrix and Imag() returns a matrix of the same dimensions containing all zeros.

Static methods Arg() and Conj() on class MatrixFunctions return the arguments (or phases) and complex conjugates of the elements of a matrix. If the elements of the given matrix are real, both methods simply return the given matrix.

For instance:

Code Example – C# matrix

```csharp
var initValue = new FloatComplex(1, -1.5F);
var increment = new FloatComplex(1, 0.25F);
var getMat = new FloatComplexMatrix(7, 6, initValue, increment);
var A = new FloatComplexTriDiagMatrix(getMat);

FloatTriDiagMatrix AImag = MatrixFunctions.Imag(A);
```

Code Example – VB matrix

```vbnet
Dim InitValue As New FloatComplex(1, -1.5F)
Dim Increment As New FloatComplex(1, 0.25F)
Dim GetMat As New FloatComplexMatrix(7, 6, InitValue, Increment)
Dim A As New FloatComplexTriDiagMatrix(GetMat)

Dim AImag As FloatTriDiagMatrix = MatrixFunctions.Imag(A)
```

18.7 Generic Functions

**NMath** provides convenience methods for applying unary and binary functions to elements of a general matrix. The Apply() method returns a new matrix whose contents are the result of applying a given function delegate to each element of the
The `Transform()` method modifies a matrix object by applying the given function to each of its elements.

**NMath**, however, does not generally support applying arbitrary functions to structured sparse matrix types. As described in Section 18.6, such functions may change unstored zero values to non-zero values, thus changing a structured sparse matrix type into a general matrix. Again, the exception is the symmetric matrices which are in a different category than the other sparse matrix types, because unstored values are not constrained to be zero. Therefore, **NMath** provides `Apply()` and `Transform()` methods on these types. For example:

**Code Example – C# matrix**

```csharp
int order = 9;
DoubleVector data =
 new DoubleVector((order * (order + 1)) / 2,
 new RandGenMTwist());
data -= 0.5;
var A = new DoubleSymmetricMatrix(order, data);
DoubleSymmetricMatrix B = A.Apply(NMathFunctions.SinFunc);
A.Transform(NMathFunctions.CosFunc);
```

**Code Example – VB matrix**

```vbnet
Dim Order As Integer = 9
Dim Data As New DoubleVector((Order * (Order + 1)) / 2,
 New RandGenMTwist())
Data -= 0.5
Dim A As New DoubleSymmetricMatrix(Order, Data)
Dim B As DoubleSymmetricMatrix = A.Apply(NMathFunctions.SinFunc)
A.Transform(NMathFunctions.CosFunc)
```

The code above creates a 9 x 9 symmetric matrix filled with random values between 0 and 1, then applies the sine function to create a new symmetric matrix containing the sines of the original values. Finally, the original matrix is transformed using the cosine function.

For structured sparse matrix types other than symmetric, there are two ways to apply an arbitrary function: convert the matrix to a general matrix and apply the function, or retrieve the underlying data vector and apply the function. The difference is whether the function is applied to all elements of the matrix, including unstored zero values, or just to the stored values.

For instance, this code converts an upper triangular matrix to a general matrix, then applies the cosine function to all elements of general matrix, including the zero values in the lower triangular region:
Code Example – C# matrix

```csharp
var data = new DoubleVector(10, 0, Math.PI/4);
var A = new DoubleUpperTriMatrix(data, 4);

DoubleMatrix genMat = A.ToGeneralMatrix();
genMat.Transform(NMathFunctions.CosFunc);
```

Code Example – VB matrix

```vbnet
Dim Data As New DoubleVector(10, 0.0, Math.PI / 4.0)
Dim A As New DoubleUpperTriMatrix(Data, 4)

Dim GenMat As DoubleMatrix = A.ToGeneralMatrix()
GenMat.Transform(NMathFunctions.CosFunc)
```

**NOTE**—Data is copied when converting a structured sparse matrix to a general matrix.

In contrast, this code retrieves the underlying data vector from the upper triangular matrix, and transforms it using the cosine function, then creates a new upper triangular matrix using the new data:

Code Example – C# matrix

```csharp
var data = new DoubleVector(10, 0, Math.PI/4);
var A = new DoubleUpperTriMatrix(data, 4);

A.DataVector.Transform(NMathFunctions.CosFunc);
```

Code Example – VB matrix

```vbnet
Dim Data As New DoubleVector(10, 0.0, Math.PI / 4.0)
Dim A As New DoubleUpperTriMatrix(Data, 4)

A.DataVector.Transform(NMathFunctions.CosFunc)
```

In this case, the zeros in the lower triangular region have not been transformed, and the matrix remains an upper triangular matrix. No data was copied.
NMath provides classes for storing general sparse vector and matrix data. By storing only the non-zero values, the storage savings are significant. Unlike the structured sparse matrices described in Chapter 17, where the zero elements are distributed according to some pattern, general sparse matrices make no assumptions about the sparsity structure of the matrix.

NMath also provides classes for computing and storing factorizations of general sparse matrices. Once a factorization is constructed, it can be reused to solve for different right-hand sides.

This chapter describes the NMath general sparse vector and matrix classes.

19.1 Sparse Vectors

NMath provides four classes for storing sparse vectors:

- Class FloatSparseVector stores a sparse vector of float values.
- Class DoubleSparseVector stores a sparse vector of double values.
- Class FloatComplexSparseVector stores a sparse vector of FloatComplex values.
- Class DoubleComplexSparseVector stores a sparse vector of DoubleComplex values.

Only the non-zero elements are stored.

Storage Format

Class SparseVectorData stores sparse vector data, and is parameterized on the type, $T$, of values stored in the vector. The nonzero elements of the vector are stored in a resizable array of type $T$, and their corresponding indexes are stored in a separate, parallel array of integers.
For example, the vector

\[ v = ( 0 \ 0 \ 1.15 \ 0 \ 3.14 \ 0 \ 0 \ -2.23 \ 0 \ 0 ) \]

is stored as

\[ \text{values} = (1.15, 3.14, -2.23); \]
\[ \text{indices} = (2, 4, 7); \]

The sparse vector classes extend \texttt{SparseVectorData}.

**Creating Sparse Vectors**

Instances of sparse vectors are created in two ways: by providing the necessary storage arrays to constructors, or by gathering data from a dense vector. For example, this code uses a \texttt{FloatSparseVector} constructor:

**Code Example – C# sparse vector**

```csharp
var indices = new IndexArray(1, 12, 2, 15);
var values = new float[] {2, 3.14, -4, -.6};
var sv = new FloatSparseVector(values, indices);
```

**Code Example – VB sparse vector**

```vbnet
Dim Indices As New IndexArray(1, 12, 2, 15)
Dim Values = New Single() {2.0, 3.14, -4.0, -0.6}
Dim SV As New FloatSparseVector(Values, Indices)
```

This code uses the \texttt{MatrixFunctions.Gather()} method to create a \texttt{DoubleSparseVector} from the non-zero elements in a \texttt{DoubleVector} \(v\):

**Code Example – C# sparse vector**

```csharp
DoubleSparseVector sv = MatrixFunctions.Gather(v);
```

**Code Example – VB sparse vector**

```vbnet
Dim SV As DoubleSparseVector = MatrixFunctions.Gather(V)
```

You can also create a sparse vector by selecting specific elements from a dense vector. For instance, this code creates a sparse vector containing the specified values from \(v\):

**Code Example – C# sparse vector**

```csharp
DoubleSparseVector sv = MatrixFunctions.Gather(v, indices);
```

**Code Example – VB sparse vector**

```vbnet
Dim SV As DoubleSparseVector = MatrixFunctions.Gather(Y, Indices)
```
Accessing and Modifying Sparse Vector Values

The sparse vector classes inherit the following properties from `SparseVectorData`:

- **Entries** gets and set the array of non-zero entries.
- **Indices** gets and sets the array of indices of the non-zero elements.
- **NumberNonZero** gets and sets the number of non-zero elements.

The sparse vector classes also provide standard indexers for getting and setting individual element values.

**Code Example – C# sparse vector**

```csharp
int nnz = 3;
var sv = new DoubleSparseVector(nnz);
sv[4] = 10;
sv[100] = 3;
```

**Code Example – VB sparse vector**

```vbnet
Dim NNZ As Integer = 3
Dim SV As New DoubleSparseVector(NNZ)
SV(4) = 10
SV(100) = 3
```

Operations on Sparse Vectors

Operator `==` tests for equality of two sparse vectors, and returns `true` if both vectors have the same nonzero elements; otherwise, `false`. Following the convention of the .NET Framework, if both objects are `null`, they test equal. Operator `!=` returns the logical negation of `==`. The `Equals()` member function also tests for equality.

**NMath** provides overloaded arithmetic operators for general sparse vectors with their conventional meanings for those .NET languages that support them, and equivalent named methods for those that do not. All binary operators and equivalent named methods work either with two vectors, or with a vector and a scalar.

**Code Example – C# sparse vector**

```csharp
double a = 3.18;
var sv1 = new DoubleSparseVector(data, indices);
DoubleSparseVector sv2 = a * sv1;
```

**Code Example – VB sparse vector**

```vbnet
Dim A As Double = 3.18
Dim SV1 As New DoubleSparseVector(Data, Indices)
```
Dim SV2 As DoubleSparseVector = A * SV1

**Sparse Vector Functions**

The sparse vector classes provide the following member functions that operate on the elements of the vector:

- **TwoNorm()** computes the Euclidean norm of the elements of a sparse vector.
- **Scale()** scales each element in a sparse vector by the specified value.

**MatrixFunctions** also provides a variety of functions that take general sparse vectors as arguments:

- **AbsSum** calculates the sum of the absolute value of a given vector's elements.
- **MaxAbsIndex** calculates the index of the maximum absolute value a given the vector's elements.
- **MinAbsIndex** calculates the index of the minimum absolute value of a sparse vector's elements.
- **Dot** calculates the dot product of a sparse vector and a dense vector.

For example:

**Code Example – C# sparse vector**

double sumOfAbsValues = MatrixFunctions.AbsSum( sv );
double maxAbsValueIndex = MatrixFunctions.MaxAbsIndex( sv );

var w = new DoubleVector( 66, 1.2 );
double dot = MatrixFunctions.Dot( w, sv );

**Code Example – VB sparse vector**

Dim SumOfAbsValues As Double = MatrixFunctions.AbsSum(SV)
Dim MaxAbsValueIndex As Integer = MatrixFunctions.MaxAbsIndex(SV)

Dim W As New DoubleVector(66, 1.2)
Dim Dot As Double = MatrixFunctions.Dot(W, SV)

**Creating Dense Vectors from Sparse Vectors**

The **MatrixFunctions.Scatter()** method scatters the elements of a compressed sparse vector to a full storage vector. For example, this code constructs a dense vector:

Dim SV As DoubleSparseVector = A * SV1
vector from a sparse vector by specifying the length of the dense vector and
scattering the nonzero values from the sparse vector into the dense vector:

**Code Example – C# sparse vector**

```csharp
DoubleVector v = MatrixFunctions.Scatter(sv, 20);
```

**Code Example – VB sparse vector**

```vbnet
Dim Y As DoubleVector = MatrixFunctions.Scatter(SV, 20)
```

### 19.2 Sparse Matrices

NMath provides the classes shown in Table 15 for storing general sparse matrices.

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FloatCsrSparseMatrix</td>
<td>Store a general sparse matrix of <code>float</code> or <code>double</code> values.</td>
</tr>
<tr>
<td>DoubleCsrSparseMatrix</td>
<td></td>
</tr>
<tr>
<td>FloatSymCsrSparseMatrix</td>
<td>Extend basic CSR sparse matrix class for matrices symmetric about the diagonal.</td>
</tr>
<tr>
<td>DoubleSymCsrSparseMatrix</td>
<td></td>
</tr>
<tr>
<td>FloatComplexCsrSparseMatrix</td>
<td>Store a general sparse matrix of <code>FloatComplex</code> or <code>DoubleComplex</code> values.</td>
</tr>
<tr>
<td>DoubleComplexCsrSparseMatrix</td>
<td></td>
</tr>
<tr>
<td>FloatHermCsrSparseMatrix</td>
<td>Extend basic complex CSR sparse matrix class for matrices which satisfy $A = A^T$, where $A^T$ denotes the conjugate transpose of $A$.</td>
</tr>
<tr>
<td>DoubleHermCsrSparseMatrix</td>
<td></td>
</tr>
</tbody>
</table>

Only the non-zero elements are stored.

**Storage Format**

Class `SparseMatrixData` stores general sparse matrix data, and is parameterized on both the storage format used, and the type, $T$, of values stored in the vector. Storage formats implement the `ISparseMatrixStorage` interface. NMath currently provides only one implementation—class `CompressedSparseRow`, which stores sparse matrix data in *compressed row format*. 
The compressed row storage format (CSR) makes no assumptions about the sparsity structure of the matrix. CSR puts data into three arrays:

- an array of type $T$ values containing the non-zero values of the matrix. The values are mapped into this array in row-major format.
- an integer column index array, where element $i$ is the number of the column that contains the $i$th element of the values array.
- an integer row index array, where element $j$ gives the index of the element in the values array that is the first non-zero element in the row $j$. As the row index array gives the location of the first non-zero element within a row, and the non-zero elements are stored consecutively, the number of non-zero elements in the $i$th row is equal to the difference of $\text{rowIndex}[i]$ and $\text{rowIndex}[i+1]$. To have this relationship hold for the last row of the matrix, an additional entry is added to the end of $\text{rowIndex}$. Its value is equal to the number of non-zero elements. This makes the $\text{rowIndex}$ array one larger that the number of rows in the matrix.

**NOTE**—Indexing starts at 0. Each row in compressed sparse row format must contain at least one nonzero entry.

For example, the matrix

\[
\begin{bmatrix}
1 & -1 & 0 & -3 & 0 \\
-2 & 5 & 0 & 0 & 0 \\
0 & 0 & 4 & 6 & 4 \\
-4 & 0 & 2 & 7 & 0 \\
0 & 8 & 0 & 0 & -5
\end{bmatrix}
\]

is stored as

- $\text{values} = (1, -1, -3, -2, 5, 4, 6, 4, -4, 2, 7, 8, -5)$
- $\text{columns} = (0, 1, 3, 0, 1, 2, 3, 4, 0, 2, 3, 1, 4)$
- $\text{rowIndex} = (0, 3, 5, 8, 11, 13)$

**Creating Sparse Matrices**

Instances of sparse matrix classes are created in a variety ways. They can be constructed from `CompressedSparseRow` objects containing the sparse data, like so:

**Code Example – C# sparse matrix**

```csharp
var values = new double[4] { 1, 2, 3, 4 };
int[] columns = new int[4] { 0, 2, 1, 0 };
int[] rowIndex = new int[4] { 0, 2, 3, 4 };
int cols = 3;
```
var sparseData = new CompressedSparseRow<double>( values, columns, rowIndex, cols );

var sA = new DoubleCsrSparseMatrix( sparseData );

**Code Example – VB sparse matrix**

Dim Values = New Double() {1.0, 2.0, 3.0, 4.0}
Dim Columns = New Integer() {0, 2, 1, 0}
Dim RowIndex = New Integer() {0, 2, 3, 4}
Dim Cols As Integer = 3

Dim SparseData As New CompressedSparseRow(Of Double)(Values, Columns, RowIndex, Cols)
Dim SA As New DoubleCsrSparseMatrix(SparseData)

Or they can be constructed from values stored as an IDictionary, where row-column pair are the keys and the non-zero entries are the values:

**Code Example – C# sparse matrix**

var values = new Dictionary<IntPair, double>();
values.Add( new IntPair( 0, 0 ), 1 );
values.Add( new IntPair( 0, 2 ), 2 );
values.Add( new IntPair( 1, 2 ), 3 );
values.Add( new IntPair( 2, 1 ), 4 );

int cols = 3;
var sA = new DoubleCsrSparseMatrix( values, cols );

**Code Example – VB sparse matrix**

Dim Values As New Dictionary(Of IntPair, Double)()
Values.Add(New IntPair(0, 0), 1)
Values.Add(New IntPair(0, 2), 2)
Values.Add(New IntPair(1, 2), 3)
Values.Add(New IntPair(2, 1), 4)

Dim Cols As Integer = 3
Dim SA As New DoubleCsrSparseMatrix(Values, Cols)

As a convenience, class SparseMatrixBuilder implements the interface System.Collections.Generic.IDictionary{IntPair,T}, providing matrix-like row and column indexing for setting and retrieving values.

**Code Example – C# sparse matrix**

var smb = new SparseMatrixBuilder<double>();
smb[0,0] = 1;
smb[0,2] = 2;
smb[1,2] = 3;
smb[2,1] = 4;
int cols = 3;
var sA = new DoubleCsrSparseMatrix(smb, cols);

Code Example – VB sparse matrix

Dim SMB As New SparseMatrixBuilder(Of Double)()
SMB(0, 0) = 1
SMB(0, 2) = 2
SMB(1, 2) = 3
SMB(2, 1) = 4

Dim Cols = 3
Dim SA As New DoubleCsrSparseMatrix(SMB, Cols)

Lastly, sparse matrix can be generated from values in a dense matrix. This code uses the MatrixFunctions.ToSparseMatrix() method to create a DoubleCsrSparseMatrix from the non-zero elements in a DoubleMatrix A:

Code Example – C# sparse matrix

int maxNonzero = 500;
DoubleCsrSparseMatrix sA =
    MatrixFunctions.ToSparseMatrix(A, maxNonzero);

Code Example – VB sparse matrix

Dim MaxNonZero As Integer = 500
Dim SA As DoubleCsrSparseMatrix =
    MatrixFunctions.ToSparseMatrix(A, MaxNonZero)

Accessing and Modifying Sparse Matrix Values

Sparse matrix classes inherit the following properties from SparseMatrixData:

- **Rows** gets the number of rows in the matrix.
- **Cols** gets the number of columns in the matrix.
- **Data** gets and sets the formatted data for the matrix as an ISparseMatrixStorage object.

The sparse matrix classes also provide standard indexers for getting and setting individual element values:

Code Example – C# sparse matrix

double x = sA[4, 100];

Code Example – VB sparse matrix

Dim X As Double = SA(4, 100)

**NOTE**—Attempts to set zero elements raise a NonModifiableElementException.
**Operations on Sparse Matrices**

Operator == tests for equality of two sparse matrices, and returns true if both vectors have the same nonzero elements; otherwise, false. Following the convention of the .NET Framework, if both objects are null, they test equal. Operator != returns the logical negation of ==. The Equals() member function also tests for equality.

**NMath** provides overloaded arithmetic operators for general sparse matrices with their conventional meanings for those .NET languages that support them, and equivalent named methods for those that do not. All binary operators and equivalent named methods work either with two matrices, or with a matrix and a scalar.

**Code Example – C# sparse matrix**

```csharp
double a = 3.18;
var sA1 = new DoubleCsrSparseMatrix(data);
DoubleCsrSparseMatrix sA2 = a * sA1;
```

**Code Example – VB sparse matrix**

```vbnet
Dim A As Double = 3.18
Dim SA1 As New DoubleCsrSparseMatrix(Data)
Dim SA2 As DoubleCsrSparseMatrix = A * SA1
```

**Sparse Matrix Functions**

The sparse matrix classes provide the Scale() function to scale each element in a sparse matrix by the specified value. **MatrixFunctions** also provides a variety of functions that take general sparse matrices as arguments:

- **Product()** computes the inner product of two sparse matrices, and returns the result as a sparse matrix.
- **DenseProduct()** computes the inner product of two sparse matrices, and returns the result as a dense matrix.
- **TransposeProduct()** computes the transpose inner product of two sparse matrices, and returns the result as a sparse matrix.
- **DenseTransposeProduct()** computes the transpose inner product of two sparse matrices, and returns the result as a dense matrix.

For instance, if sA and sB are **DoubleCsrSparseMatrix** objects:

**Code Example – C# sparse matrix**

```csharp
DoubleCsrSparseMatrix sC = MatrixFunctions.Product(sA, sB)
```
Creating Dense Matrices from Sparse Matrices

The `MatrixFunctions.ToDenseMatrix()` method copies the elements of a compressed sparse matrix to a full storage matrix. For example, this code creates a new dense matrix from `DoubleCsrSparseMatrix` `sA`:

```csharp
DoubleMatrix A = MatrixFunctions.ToDenseMatrix(sA);
```

```vbnet
Dim A As DoubleMatrix = MatrixFunctions.ToDenseMatrix(SA)
```

19.3 Sparse Matrix Factorizations

`NMath` provides classes for computing and storing factorizations of general sparse matrices. Instances of the factorization classes calculate solutions to the equation $Ax = B$ where $A$ is a sparse matrix and $B$ is a single vector, or multiple vectors.

Once a factorization is constructed, it can be reused to solve for different right-hand sides.

Factorization Classes

The factorization classes associated with each general sparse matrix type are shown in Table 16.

Table 16 – NMath general sparse matrix factorization classes

<table>
<thead>
<tr>
<th>Matrix Classes</th>
<th>Factorization Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>FloatCsrSparseMatrix</td>
<td>FloatSparseFact</td>
</tr>
<tr>
<td>FloatSymCsrSparseMatrix</td>
<td>FloatSparseSymFact</td>
</tr>
<tr>
<td></td>
<td>FloatSparseSymPDFact</td>
</tr>
<tr>
<td>FloatComplexCsrSparseMatrix</td>
<td>FloatComplexSparseFact</td>
</tr>
<tr>
<td>FloatHermCsrSparseMatrix</td>
<td>FloatSparseHermFact</td>
</tr>
<tr>
<td></td>
<td>FloatSparseHermPDFact</td>
</tr>
</tbody>
</table>
Note that there are two factorization classes for symmetric and Hermitian types: one for indefinite matrices, and one for positive definite (PD) matrices.

`SparseMatrixFact` is the base class for sparse matrix factorizations, and is parameterized on the type, $T$, of values stored in the vector.

### Creating Factorizations

You can create an instance of a factorization class by supplying the constructor with a matrix to factor. The following code creates a symmetric sparse matrix from the given data, then factors the matrix:

**Code Example – C# sparse matrix factorization**

```csharp
var sA = new DoubleSymCsrSparseMatrix(sparseData);
var fact = new DoubleSparseSymFact(sA);
```

**Code Example – VB sparse matrix factorization**

```vbnet
Dim SA As New DoubleSymCsrSparseMatrix(SparseData)
Dim Fact As New DoubleSparseSymFact(SA)
```

You can also use an existing instance to factor other matrices with the provided `Factor()` method. Thus, if $sB$ is another `DoubleSymCsrSparseMatrix`:

**Code Example – C# sparse matrix factorization**

```csharp
fact.Factor(sB);
```

**Code Example – VB sparse matrix factorization**

```vbnet
Fact.Factor(SB)
```

The read-only `ErrorStatus` property gets an `Error` enumerated value. For example:
Code Example – C# sparse matrix factorization

```csharp
if (fact.ErrorStatus == DoubleSparseSymFact.Error.NoError)
{
 // Do something here...
}
```

Code Example – VB sparse matrix factorization

```vbnet
If Fact.ErrorStatus = DoubleSparseSymFact.Error.NoError Then
 ' Do something here...
End If
```

**Using Factorizations**

Once a factorization is constructed from a matrix, it can be used to solve for different right hand sides. For instance, this code solves for one right-hand side:

Code Example – C# sparse matrix factorization

```csharp
var b = new DoubleVector(8, 1);
DoubleVector x = fact.Solve(b);
```

Code Example – VB sparse matrix factorization

```vbnet
Dim B As New DoubleVector(8, 1)
Dim X As DoubleVector = Fact.Solve(B)
```

Similarly, you can use the `Solve()` method to solve for multiple right-hand sides. This code solves for 3 right-hand sides:

Code Example – C# sparse matrix factorization

```csharp
int nrhs = 3;
var B = new DoubleMatrix(8, nrhs, new RandGenBeta());
DoubleMatrix X = fact.Solve(B);
```

Code Example – VB sparse matrix factorization

```vbnet
Dim NRHS As Integer = 3
Dim B As New DoubleMatrix(8, NRHS, New RandGenBeta())
Dim X As DoubleMatrix = Fact.Solve(B)
```

The right-hand sides are the columns of matrix $B$, and the corresponding solutions are the columns of matrix $X$.

**NOTE**—Be sure to check the `ErrorStatus` property on the factorization before calling `Solve()` to confirm that the factorization is valid.
**CHAPTER 20.**

**STRUCTURED SPARSE MATRIX FACTORIZATIONS**

**NMath** provides classes for computing and storing factorizations of structured sparse matrices, including *LU factorization* for banded and tridiagonal matrices, *Bunch-Kaufman factorization* for symmetric and Hermitian matrices, and *Cholesky factorization* for symmetric and Hermitian positive definite matrices.

Once a factorization is constructed, it can be reused to solve for different right-hand sides, and to compute inverses, determinants, and condition numbers. Similar static methods are also provided on class **MatrixFunctions**.

This chapter describes the **NMath** structured sparse matrix factorization classes, and how to construct and use them.

### 20.1 Factorization Classes

The factorization classes associated with each matrix type are shown in Table 17.

<table>
<thead>
<tr>
<th>Matrix Classes</th>
<th>Factorization Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;Type&gt;SymmetricMatrix</td>
<td>&lt;Type&gt;SymFact</td>
</tr>
<tr>
<td></td>
<td>&lt;Type&gt;SymPDFact</td>
</tr>
<tr>
<td>&lt;Type&gt;HermitianMatrix</td>
<td>&lt;Type&gt;HermitianFact</td>
</tr>
<tr>
<td></td>
<td>&lt;Type&gt;HermitianPDFact</td>
</tr>
<tr>
<td>&lt;Type&gt;BandMatrix</td>
<td>&lt;Type&gt;BandFact</td>
</tr>
<tr>
<td>&lt;Type&gt;TriDiagMatrix</td>
<td>&lt;Type&gt;TriDiagFact</td>
</tr>
<tr>
<td></td>
<td>&lt;Type&gt;SymPTriDiagFact</td>
</tr>
<tr>
<td></td>
<td>&lt;Type&gt;HermPDTriDiagFact</td>
</tr>
<tr>
<td>&lt;Type&gt;SymBandMatrix</td>
<td>&lt;Type&gt;SymPDBANDFact</td>
</tr>
<tr>
<td>&lt;Type&gt;HermitianBandMatrix</td>
<td>&lt;Type&gt;HermitianPDBANDFact</td>
</tr>
</tbody>
</table>
Note that lower and upper triangular types do not have factorization classes; these types are typically the result of factoring other matrices (for example, into the product of a lower and upper triangular matrix). Static methods for solving for different right-hand sides, and computing inverses, determinants, and condition numbers, are provided on class MatrixFunctions for triangular types.

Note also that NMath provides two factorization classes for symmetric and Hermitian types: one for indefinite matrices, and one for positive definite (PD) matrices. A symmetric matrix $A$ is positive definite if there exists a nonsingular matrix $B$ such that:

$$ A = B^T B $$

where $B^T$ is the transpose of $B$. A Hermitian matrix is positive definitive if there exists a nonsingular matrix $B$ such that:

$$ A = \overline{B}^T B $$

where $\overline{B}^T$ is the conjugate transpose of $B$. Positive definite matrices arise frequently in statistical applications.

If you don’t know whether a particular symmetric or Hermitian matrix is positive definite, the easiest way to find out in NMath is to attempt to factor the matrix using the associated PD factorization class (Section 20.2). The read-only property IsPositiveDefinite returns true if the given matrix is positive definite and the factorization can be used to solve equations, compute determinants, inverses, and so on.

### 20.2 Creating Factorizations

You can create an instance of a factorization class by supplying the constructor with a matrix to factor. This code creates a $12 \times 12$ FloatBandMatrix, with upper bandwidth of 1 and lower bandwidth of 2 and values generated randomly from the interval -1 to 1, then factors the matrix using the FloatBandFact class constructor:

**Code Example – C# matrix factorization**

```csharp
int rows = 12, cols = 12, ub = 1, lb = 2;
FloatVector data = new FloatVector(cols*(ub+lb+1), new RandGenUniform(-1, 1));
FloatBandMatrix A = new FloatBandMatrix(data, rows, cols, lb, ub);

var F = new FloatBandFact(A);
```
You can also use an existing instance to factor other matrices with the provided `Factor()` method. Thus, if `B` is another `FloatBandMatrix`:

```csharp
F.Factor(B);
```

```vbnet
F.Factor(B)
```

The read-only `IsGood` property gets a boolean value that is `true` if the matrix factorization succeeded and the factorization may be used to solve equations, compute determinants, inverses, and so on. Otherwise, it returns `false`. For example:

```csharp
if (F.IsGood)
{
 // Do something here...
}
```

```vbnet
If F.IsGood Then
 ' Do something here...
End If
```

Other read-only properties provide information about the matrix used to construct an factorization:

- `Cols` gets the number of columns of the factored matrix.
- `Rows` gets the number of rows of the factored matrix.
- On indefinite factorization classes, `IsSingular` returns `true` if the matrix was singular; otherwise, `false`.
- On positive definite factorization classes, `IsPositiveDefinite` returns `true` if the matrix was positive definite; otherwise, `false`.
20.3 Using Factorizations

Once a factorization is constructed from a matrix (see Section 20.2), it can be reused to solve for different right hand sides, and to compute inverses, determinants, and condition numbers. Static methods are also provided on MatrixFunctions to perform these functions without having to explicitly construct a factorization object.

Solving for Right-Hand Sides

You can use a factorization to solve for right-hand sides using the Solve() method. For instance, this code solves for one right-hand side:

**Code Example – C# matrix factorization**

```csharp
var genMat = new DoubleMatrix(
 "5x5 [1.0000 0.5000 0.2500 0.1250 0.0625
 0.5000 1.0000 0.5000 0.2500 0.1250
 0.2500 0.5000 1.0000 0.5000 0.2500
 0.1250 0.2500 0.5000 1.0000 0.5000
 0.0625 0.1250 0.2500 0.5000 1.0000]"
);
var A = new DoubleSymmetricMatrix(genMat);
var F = new DoubleSymPDFact(A);
var v = new DoubleVector(A.Order, new RandGenUniform(-1,1));
DoubleVector x = F.Solve(v);
```

**Code Example – VB matrix factorization**

```vbnet
Dim GenMat As New DoubleMatrix(
 "5x5 [1.0000 0.5000 0.2500 0.1250 0.0625" &

 "0.5000 1.0000 0.5000 0.2500 0.1250" &
 "0.2500 0.5000 1.0000 0.5000 0.2500" &
 "0.1250 0.2500 0.5000 1.0000 0.5000" &
 "0.0625 0.1250 0.2500 0.5000 1.0000]")
Dim A As New DoubleSymmetricMatrix(GenMat)
Dim F As New DoubleSymPDFact(A)
Dim V As New DoubleVector(A.Order, New RandGenUniform(-1.0, 1.0))
Dim X As DoubleVector = F.Solve(V)
```

The returned vector `x` is the solution to the linear system `Ax = v`. Note that the length of vector `v` must be equal to the number of columns in the factored matrix `A` or a MismatchedSizeException is thrown.

To do the same thing without explicitly constructing a factorization object, you could do this:

**Code Example – C# matrix factorization**

```csharp
DoubleVector x = MatrixFunctions.Solve(A, v, true);
```
Code Example – VB matrix factorization

Dim X As DoubleVector = MatrixFunctions.Solve(A, V, True)

The optional third, boolean parameter indicates that \( A \) is positive definite.

Similarly, you can use the \texttt{Solve()} method to solve for multiple right-hand sides. This code solves for 10 right-hand sides:

Code Example – C# matrix factorization

```csharp
int rows = 8, cols = 8;
DoubleComplexVector data =
 new DoubleComplexVector(cols*3, new RandGenUniform(-1, 1));
DoubleComplexTriDiagMatrix A =
 new DoubleComplexTriDiagMatrix(data, rows, cols);
var F = new DoubleComplexTriDiagFact(A);

var B =
 new DoubleComplexMatrix(A.Cols, 10, new RandGenUniform(-1,1));

DoubleComplexMatrix X = F.Solve(B);
```

The returned matrix \( X \) is the solution to the linear system \( AX = B \). That is, the right-hand sides are the columns of \( B \), and the solutions are the columns of \( X \). Matrix \( B \) must have the same number of columns as the factored matrix \( A \).

To do the same thing without explicitly constructing a factorization object, you could do this:

Code Example – C# matrix factorization

```csharp
DoubleComplexMatrix X = MatrixFunctions.Solve(A, B);
```

Code Example – VB matrix factorization

```vbnet
Dim X As DoubleComplexMatrix = MatrixFunctions.Solve(A, B)
```
Computing Inverses, Determinants, and Condition Numbers

You can use a factorization to compute inverses using the Inverse() method, and determinants using the Determinant() method. For example:

Code Example – C# matrix factorization

```csharp
int rows = 8, cols = 8;
var Lehmer = new FloatComplexMatrix(rows, cols);
for (int i = 0; i < rows; ++i)
{
 for (int j = 0; j < cols; ++j)
 {
 if (j >= i)
 {
 Lehmer[i,j] = (float)(i+1)/(float)(j+1);
 }
 }
}
var A = new FloatHermitianMatrix(Lehmer);

var F = new FloatHermitianPDFact(A);
FloatHermitianMatrix AInv = F.Inverse();
FloatComplex det = F.Determinant();
```

Code Example – VB matrix factorization

```vbnet
Dim Rows As Integer = 8
Dim Cols As Integer = 8
Dim Lehmer As New FloatComplexMatrix(Rows, Cols)
For I As Integer = 0 To Rows - 1
 For J As Integer = 0 To Cols - 1
 If J >= I Then
 Lehmer(I, J) = CType(I + 1, Single) / CType(J + 1, Single)
 End If
 Next
Next

Dim A As New FloatHermitianMatrix(Lehmer)

Dim F As New FloatHermitianPDFact(A)
Dim AInv As FloatHermitianMatrix = F.Inverse()
Dim Det As FloatComplex = F.Determinant()
```

The ConditionNumber() method computes an estimate of the condition number in the one-norm. The condition number of a matrix $A$ is:

$$\kappa = \|A\| \cdot \|A^{-1}\|$$

where $A^{-1}$ is the inverse of the matrix $A$. For instance:
Code Example – C# matrix factorization

```csharp
DoubleMatrix genMat =
 new DoubleMatrix(25, 25, new RandGenUniform(0, 100));
var A = new DoubleSymmetricMatrix(genMat);

var F = new DoubleSymFact(A);
double cond = F.ConditionNumber();
```

Code Example – VB matrix factorization

```vbnet
Dim GenMat As New DoubleMatrix(25, 25,
 New RandGenUniform(0.0, 100.0))
Dim A As New DoubleSymmetricMatrix(GenMat)

Dim F As New DoubleSymFact(A)
Dim Cond As Double = F.ConditionNumber()
```

NOTE—The `ConditionNumber()` method returns the reciprocal of the condition number, \( \rho \), where \( \rho = 1/\kappa \).

Banded and tridiagonal factorization classes also provide an overload of the `ConditionNumber()` method that accepts a value from the `NormType` enumeration for specifying the matrix norm.

Thus, this code estimates the condition number in the infinity-norm:

Code Example – C# matrix factorization

```csharp
int rows = 4, cols = 4;
FloatVector data =
 new FloatVector(cols*3, new RandGenUniform(-1, 1));
var A = new FloatTriDiagMatrix(data, rows, cols);

var F = new FloatTriDiagFact(A);
float cond = F.ConditionNumber(NormType.InfinityNorm);
```

Code Example – VB matrix factorization

```vbnet
Dim Rows As Integer = 4
Dim Cols As Integer = 4
Dim Data As New FloatVector(Cols * 3,
 New RandGenUniform(-1.0, 1.0))
Dim A As New FloatTriDiagMatrix(Data, Rows, Cols)

Dim F As New FloatTriDiagFact(A)
Dim Cond As Single = F.ConditionNumber(NormType.InfinityNorm)
```

Inverses, determinants, and condition numbers can also be computed without explicitly constructing a factorization object by using static methods on `MatrixFunctions`. For instance:
Code Example – C# matrix factorization

```csharp
DoubleMatrix genMat =
 new DoubleMatrix(12, 12, new RandGenUniform(-1, 1));
var A = new DoubleSymmetricMatrix(genMat);

DoubleSymmetricMatrix AInv = MatrixFunctions.Inverse(A);
double det = MatrixFunctions.Determinant(A);
double cond = MatrixFunctions.ConditionNumber(A);
```

Code Example – VB matrix factorization

```vbnet
Dim GenMat As New DoubleMatrix(12, 12,
 New RandGenUniform(-1.0, 1.0))
Dim A As New DoubleSymmetricMatrix(GenMat)

Dim AInv As DoubleSymmetricMatrix = MatrixFunctions.Inverse(A)
Dim Det As Double = MatrixFunctions.Determinant(A)
Dim Cond As Double = MatrixFunctions.ConditionNumber(A)
```
**Chapter 21.**
**Least Squares Solutions**

NMATH includes least squares classes for solving the overdetermined linear system:

\[ Ax = y \]

In a linear model, a quantity \( y \) depends on one or more independent variables \( a_1, a_2, \ldots, a_n \) such that \( y = x_0 + x_1a_1 + \ldots + x_na_n \). The goal of a least squares problem is to solve for the best values of \( x_0, x_1, \ldots, x_n \). The least squares solution is the value of \( x \) that minimizes the residual vector \( |Ax - y| \).

NMATH provides classes for:
- ordinary least squares (OLS)
- weighted least squares (WLS)
- iteratively reweighted least squares (IRLS)

This chapter describes the NMATH least square classes, and how to construct and use them.

### 21.1 Ordinary Least Squares Methods

NMATH includes least squares classes that compute solutions using various methods: Cholesky factorization, QR decomposition, and singular value decomposition. The interface is virtually identical for all least squares classes.

**Least Squares Using Cholesky Factorization**

The Cholesky least squares classes solve least square problems by using the Cholesky factorization to solve the normal equations. The normal equations for the least squares problem \( Ax = y \) are:

\[ A^*Ax = A^*y \]

where \( A^* \) denotes the transpose of a real matrix \( A \) or the conjugate transpose of a complex matrix \( A \). If \( A \) has full rank, then \( A^*A \) is symmetric positive definite—the converse is also true—and the Cholesky factorization may be used to solve the normal equations. This method will fail if the matrix \( A \) is rank deficient.
Finding least squares solutions using the normal equations is often the best method when speed is the only consideration.

**Least Squares Using QR Decomposition**

The QR decomposition least squares classes solve least squares problems by using a QR decomposition to find the minimal norm solution to the linear system \( Ax = y \). That is, they find the vector \( x \) that minimizes the 2-norm of the residual vector \( Ax - y \). Matrix \( A \) must have more rows than columns, and be of full rank.

Finding least squares solutions via QR decomposition is the “standard” method for least squares problems, and is recommended for general use.

**Least Squares Using SVD**

If the matrix \( A \) is close to rank-deficient, the QR decomposition method described above has less than ideal stability properties. In such cases, a method based on singular value decomposition is a better choice.

### 21.2 Creating Ordinary Least Squares Objects

**NMath** provides ordinary least squares classes for four datatypes: single- and double-precision floating point numbers, and single- and double-precision complex numbers. The classnames are shown in Table 18.

<table>
<thead>
<tr>
<th>Least Squares Method</th>
<th>Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesky</td>
<td>FloatCholeskyLeastSq</td>
</tr>
<tr>
<td></td>
<td>DoubleCholeskyLeastSq</td>
</tr>
<tr>
<td></td>
<td>FloatComplexCholeskyLeastSq</td>
</tr>
<tr>
<td></td>
<td>DoubleComplexCholeskyLeastSq</td>
</tr>
</tbody>
</table>
Instances of the least squares classes are constructed from general matrices of the appropriate datatype. For example, this code creates a `FloatCholeskyLeastSq` from a `FloatMatrix`:

**Code Example – C# least squares**

```csharp
FloatMatrix A = new FloatMatrix("4x2[1 0 0 1 0 0 0 0]");
FloatCholeskyLeastSq lsq = new FloatCholeskyLeastSq(A);
```

**Code Example – VB least squares**

```vbnet
Dim A As New FloatMatrix("4x2[1 0 0 1 0 0 0 0]")
Dim LSQ As New FloatCholeskyLeastSq(A)
```

QR and SVD least squares classes also provide constructor overloads that accept a *tolerance* value. The specified tolerance is used in computing the numerical rank of the matrix. For example, if $A = QR$ is the QR factorization of a matrix $A$, then elements on the main diagonal of $R$ are considered to be zero if their absolute value is less than or equal to the tolerance. Similarly, in singular value decomposition, all singular values of the matrix $A$ less than the tolerance are set to zero. Thus, this code sets all singular values less than $10^{-13}$ to zero:

**Code Example – C# least squares**

```csharp
DoubleMatrix A = new DoubleMatrix("4x2[1 0 0 1 0 0 0 0]");
DoubleSVDLeastSq lsq = new DoubleSVDLeastSq(A, 1e-13);
```

**Code Example – VB least squares**

```vbnet
Dim A As New DoubleMatrix("4x2[1 0 0 1 0 0 0 0]")
Dim LSQ As New DoubleSVDLeastSq(A, "1e-13")
```
21.3 Using Ordinary Least Squares Objects

Once a least squares object has been constructed from a matrix (Section 21.2), it may be used to solve least squares problems, if the factorization or decomposition was successful.

Testing for Goodness

Read-only properties are provided for determining whether the decomposition method was successful. The SVD least squares classes provide a Fail property that returns true if the SVD algorithm failed to converge.

Other methods are guaranteed to complete, but the resultant object may still be unusable for solving least squares problems, if for example the original matrix $A$ was not of full rank. All least squares classes therefore provide an IsGood property that returns true if the method succeeded and the decomposition can be used to solve least squares problems.

Solving Least Squares Problems

All least squares classes provide a Solve() method that accepts a vector $y$, and computes the solution to the least squares problem $Ax = y$. For example:

Code Example – C# least squares

```csharp
int rows = 6, cols = 3;
var rng = new RandGenUniform(-2, 2);

DoubleMatrix A = GenerateData(rows, cols, rng);
var lsq = new DoubleCholeskyLeastSq(A);

var y = new DoubleVector(rows, rng);
if (lsq.IsGood)
{
 DoubleVector x = lsq.Solve(y);
}
```

Code Example – VB least squares

```vbnet
Dim Rows As Integer = 6
Dim Cols As Integer = 3
Dim RNG As New RandGenUniform(-2, 2)

Dim A As DoubleMatrix = GenerateData(Rows, Cols, RNG)
Dim LSQ As New DoubleCholeskyLeastSq(A)

Dim Y As New DoubleVector(Rows, RNG)
```
If LSQ.IsGood Then
    Dim X As DoubleVector = LSQ.Solve(Y)
End If

Method ResidualVector() returns the residual vector \(Ax - y\);
ResidualNormSqr() computes the 2-norm squared of the residual vector. Finally,
an existing least squares object can factor other matrices using the Factor() method.

## Retrieving Information About the Original Matrix

Read-only properties are also provided for retrieving information about the original matrix \(A\):

- **Rows** gets the number of rows.
- **Cols** gets the number of columns.
- **Rank** (QR and SVD only) gets the numerical rank.

For example:

**Code Example – C# least squares**

```csharp
var A = new DoubleComplexMatrix(
 "4x2[(1,0) (0,0) (0,0) (1,0) (0,0) (0,0) (0,0) (0,0)] ");
var lsq = new DoubleComplexQRLeastSq(A);
int rank = lsq.Rank;
```

**Code Example – VB least squares**

```vbnet
Dim A As New DoubleComplexMatrix(
 "4x2[(1,0) (0,0) (0,0) (1,0) (0,0) (0,0) (0,0) (0,0)]")
Dim LSQ As New DoubleComplexQRLeastSq(A)
Dim Rank As Integer = LSQ.Rank
```

### 21.4 Weighted Least Squares

**NMath** provides class **DoubleCOWeightedLeastSq** for solving weighted least squares (WLS) problems. WLS can modulate the importance of each observation in the final solution to correct for violations of the homoscedasticity assumption in ordinary least squares, to give less weight to outliers, or to give less weight to observations thought to be less reliable.
The DoubleCOWeightedLeastSq class uses a complete orthogonal decomposition technique.\(^2\) The computed solution minimizes the 2-norm of the weighted residual vector

\[
\| \frac{1}{\sqrt{D}} (Ax - y) \|
\]

where \(D\) is a diagonal weight matrix whose diagonal consists of the weights.

Prerequisites on the matrix \(A\) are that it has more rows than columns, and is of full rank. Note that the algorithm satisfies an accuracy bound that is not affected by ill conditioning in the weight matrix \(D\).

Instances of DoubleCOWeightedLeastSq are constructed from a matrix of observations and a vector of weights. For example:

**Code Example – C# weighted least squares**

```csharp
var A = new DoubleMatrix(@"5x2[1 2 1 3 1 6 1 10 1 7]");
var weights = new DoubleVector(A.Rows, .2, .2);
var wls = new DoubleCOWeightedLeastSq(A, weights);
```

**Code Example – VB weighted least squares**

```vbnet
Dim A As New DoubleMatrix("5x2[1 2 1 3 1 6 1 10 1 7]")
Dim Weights As New DoubleVector(A.Rows, 0.2, 0.2)
Dim WLS As New DoubleCOWeightedLeastSq(A, Weights)
```

In this case, the weights are arbitrary—observations are simply given increasingly higher weights.

DoubleCOWeightedLeastSq provides a `Solve()` method that accepts a vector \(y\), and computes the solution:

**Code Example – C# weighted least squares**

```csharp
var y = new DoubleVector("[3 6 8 10 11]");
var solution = wls.Solve(y);
```

**Code Example – VB weighted least squares**

```vbnet
Dim Y As New DoubleVector("[3 6 8 10 11]")
Dim Solution As DoubleVector = WLS.Solve(Y)
```

Other properties and methods on DoubleCOWeightedLeastSq include:

- Property `A` gets the original matrix of observations.

- **ResidualVector()** returns the residual vector \(Ax - y\).
- **ResidualNormSqr()** computes the 2-norm squared of the residual vector.
- **Factor()** factors other matrices.
- **Reweight()** updates the weights.

**NMath** provides a selection of weighting functions for use in iteratively reweighted least squares (IRLS; Section 21.5). These functions can also be used to create weights for WLS. Typical weighting functions used in IRLS are a function of the adjusted residuals from the previous iteration. For example, this code computes an ordinary least squares solution, then uses the resulting residuals to solve the same problem using WLS, downweighting the outliers:

**Code Example – C# weighted least squares**

```csharp
// compute ordinary least squares solution
var ols = new DoubleQRLeastSq(A);
DoubleVector olsSolution = ols.Solve(y);
DoubleVector olsResiduals = ols.ResidualVector(y);

// compute weights from residuals using bisquare function
var weights = new DoubleVector(olsResiduals.Length);
IDoubleLeastSqWeightingFunction weightingFunction =
 new DoubleBisquareWeightingFunction(A);
weightingFunction.GetWeights(olsResiduals, ref weights);

// compute weighted least squares solution
var wls = new DoubleCOWeightedLeastSq(A, weights);
DoubleVector wlsSolution = wls.Solve(y);
```

**Code Example – VB weighted least squares**

```vbnet
' compute ordinary least squares solution
Dim OLS As New DoubleQRLeastSq(A)
Dim OLSSolution As DoubleVector = OLS.Solve(Y)
Dim OLSResiduals As DoubleVector = OLS.ResidualVector(Y)

' compute weights from residuals using bisquare function
Dim Weights As New DoubleVector(Residuals.Length)
Dim WeightingFunction As IDoubleLeastSqWeightingFunction =
 New DoubleBisquareWeightingFunction(A)
WeightingFunction.GetWeights(OLSResiduals, Weights)

' compute weighted least squares solution
Dim WLS As New DoubleCOWeightedLeastSq(A, Weights)
Dim WLSSolution As DoubleVector = WLS.Solve(Y)
```
21.5 Iteratively Reweighted Least Squares

Iteratively reweighted least squares (IRLS) is an iterative minimization technique in which each step involves solving a standard weighted least squares (Section 21.4). New weights are computed at each iteration by applying a weighting function to the current residuals. The process terminates when either a specified convergence function returns true—typically when either the residuals or the solution are unchanged on successive iterations—or when a specified maximum number of iterations is reached.

NMath provides class DoubleIterativelyReweightedLeastSq for solving IRLS problems. The default weighting function is a bisquare weighting function, and the default convergence function returns true when the solutions do not change, within tolerance, on successive iterations. For instance:

Code Example – C# iteratively reweighted least squares

```csharp
var irls = new DoubleIterativelyReweightedLeastSq();
```

Code Example – VB iteratively reweighted least squares

```vb
Dim IRLS As New DoubleIterativelyReweightedLeastSq()
```

Additional constructors enable you to specify the tolerance, the maximum number of iterations, and a weighting function (see below). Properties Tolerance, MaxIterations, and WeightsFunction are also provided for modifying these values post-construction.

The Solve() method solves the least squares problem $Ax = y$ for $x$ using the IRLS method:

Code Example – C# iteratively reweighted least squares

```csharp
DoubleVector x = irls.Solve(A, y);
```

Code Example – VB iteratively reweighted least squares

```vb
Dim X As DoubleVector = IRLS.Solve(A, Y)
```

Property Residuals gets the residual vector from the most recent computation. Iterations gets the number of iterations performed. For instance:

Code Example – C# iteratively reweighted least squares

```csharp
if (irls.MaxIterationsMet) {
 Console.WriteLine(
 "The algorithm failed to converge in {0} iterations."
 + Environment.NewLine +
 " irls.MaxIterations",
 irls.MaxIterations
);
} else {
```
Console.WriteLine("Algorithm converged in {0} iterations.", irls.Iterations);
}

**Code Example – VB iteratively reweighted least squares**

If IRLS.MaxIterationsMet Then
    Console.WriteLine("The algorithm failed to converge in {0} iterations.",
    IRLS.MaxIterations)
Else
    Console.WriteLine("Algorithm converged in {0} iterations.", IRLS.Iterations)
End If

**Convergence Functions**

The convergence function is called at the end of each iteration. If the function returns `true`, the algorithm is terminated; otherwise, iteration continues.

Convergence functions are specified as instances of delegate

\[
\text{DoubleIteratively ReweightedLeastSq.ToleranceMetFunction}
\]

**Code Example – C# iteratively reweighted least squares**

```csharp
public delegate bool ToleranceMetFunction(
 double tolerance,
 DoubleVector lastSolution,
 DoubleVector currentSolution,
 DoubleVector lastResiduals,
 DoubleVector currentResiduals);
```

**Code Example – VB iteratively reweighted least squares**

```vbnet
Delegate Function ToleranceMetFunction(
 Tolerance As Double,
 LastSolution As DoubleVector,
 CurrentSolution As DoubleVector,
 LastResiduals As DoubleVector,
 CurrentResiduals As DoubleVector) As Boolean
```
For example, this code encapsulates the user-defined function `MyFunction` as a `DoubleIterativelyReweightedLeastSq.ToleranceMetFunction` delegate:

**Code Example – C# iteratively reweighted least squares**

```csharp
public static bool MyFunction(
 double tolerance,
 DoubleVector lastSolution,
 DoubleVector currentSolution,
 DoubleVector lastResiduals,
 DoubleVector currentResiduals)
{
 double a =
 NMathFunctions.MaxAbsValue(currentResiduals - lastResiduals);
 double b = NMathFunctions.MaxAbsValue(currentResiduals);
 return (a/b) < tolerance;
}

public static
 DoubleIterativelyReweightedLeastSq.ToleranceMetFunction
residualsUnchanged =
 new DoubleIterativelyReweightedLeastSq.ToleranceMetFunction(
 MyFunction);
```

**Code Example – VB iteratively reweighted least squares**

```vbnet
Public Shared Function MyFunction(Tolerance As Double,
 LastSolution As DoubleVector, CurrentSolution As DoubleVector,
 LastResiduals As DoubleVector, CurrentResiduals As DoubleVector)
As Boolean
 Dim A As Double =
 NMathFunctions.MaxAbsValue(CurrentResiduals - LastResiduals)
 Dim B As Double = NMathFunctions.MaxAbsValue(CurrentResiduals)
 Return (A / B) < Tolerance
End Function
```

Property `ConvergenceFunction` can be used to get and set the convergence function on a `DoubleIterativelyReweightedLeastSq` instance:

**Code Example – C# iteratively reweighted least squares**

```csharp
irls.ConvergenceFunction = residualsUnchanged;
```

**Code Example – VB iteratively reweighted least squares**

```vbnet
IRLS.ConvergenceFunction = ResidualsUnchanged
```
Weighting Functions

**NMath** provides a selection of least squares weighting functions. Typical weighting functions used in IRLS are a function of the adjusted residuals from the previous iteration. Abstract base class **DoubleLeastSqWeightingFunction** provides method **AdjustedResiduals()** for calculating the adjusted residuals according to the following formula:

\[
r' = \frac{r}{(ts\sqrt{1 - h})}
\]

where

- \( r' \) is the adjusted residuals.
- \( r \) is the actual residuals.
- \( t \) is a tuning constant by which the residuals are divided before computing weights. Decreasing the tuning constant increases the downweight assigned to large residuals, and increasing the tuning constant decreases the downweight assigned to large residuals.
- \( h \) is the vector of leverage values that adjust the residuals by downweighting high-leverage data points, which have a large effect on the least squares fit. The leverage values are the main diagonal of the hat matrix

\[
H = A(A'A)^{-1}A'
\]

- \( s \) is an estimate of the standard deviation of the error term given by

\[
s = \frac{MAD}{0.6745}
\]

where \( MAD \) is the median absolute deviation of the residuals from their median. The constant 0.6745 makes the estimate unbiased for the normal distribution.

**DoubleLeastSqWeightingFunction** also implements the **IDoubleLeastSqWeightingFunction** interface, which provides methods **Initialize()** for performing any needed initialization given the matrix \( A \), and **GetWeights()** for computing weights from a given vector of residuals.

Two concrete implementations of **DoubleLeastSqWeightingFunction** are provided:

- **DoubleBisquareWeightingFunction** applies the bisquare weighting formula to a set of adjusted residuals:

\[
w_i = \begin{cases} 
(1 - (|r_i|)^2)^2 & |r_i| < 1 \\
0 & |r_i| \geq 1 
\end{cases}
\]
where \( r \) is the adjusted residuals computed by the \texttt{AdjustedResidual()} function on the base class \texttt{DoubleLeastSqWeightingFunction}.

- \texttt{DoubleFairWeightingFunction} applies the \textit{fair weighting} formula to a set of adjusted residuals:

\[
    w_i = \frac{1}{(1 + |r_i|)}
\]

where \( r \) is the adjusted residuals computed by the \texttt{AdjustedResidual()} function on the base class \texttt{DoubleLeastSqWeightingFunction}.

The default weighting function used is the bisquare weighting function. This code constructs a \texttt{DoubleIterativelyReweightedLeastSq} instance using the fair weighting function:

**Code Example – C# iteratively reweighted least squares**

```csharp
var weightingFunction = DoubleFairWeightingFunction();
var irls = new DoubleIterativelyReweightedLeastSq(weightingFunction);
```

**Code Example – VB iteratively reweighted least squares**

```vbnet
Dim WeightingFunction As IDoubleLeastSqWeightingFunction = New DoubleFairWeightingFunction()
Dim IRLS As New DoubleIterativelyReweightedLeastSq(WeightingFunction)
```

The weighting function can also be changed on an existing \texttt{DoubleIterativelyReweightedLeastSq} object using the \texttt{WeightsFunction} property:

**Code Example – C# iteratively reweighted least squares**

```csharp
irls.WeightsFunction = new DoubleFairWeightingFunction();
```

**Code Example – C# iteratively reweighted least squares**

```vbnet
IRLS.WeightsFunction = New DoubleFairWeightingFunction()
```
CHAPTER 22.
DECOMPOSITIONS

NMath includes decomposition classes for constructing and manipulating QR and singular value decompositions of the general matrix types. NMath also provides decomposition server classes that construct instances of the decomposition classes, allowing you greater control over how decomposition is performed.

For example, class DoubleQRDecomp computes the QR decomposition of a DoubleMatrix. By default, this decomposition class performs pivoting—that is, it may move columns in the input matrix to increase the robustness of the calculation. For control over how pivoting is performed, or to turn off pivoting altogether, the associated decomposition server class, DoubleQRDecompServer, may be used to create instances of DoubleQRDecomp with non-default decomposition parameters.

This chapter describes the NMath decomposition and decomposition server classes, and how to construct and use them.

22.1 QR Decompositions

A QR decomposition is a representation of a matrix $A$ of the form:

$$AP = QR$$

where $P$ is a permutation matrix, $Q$ is orthogonal, and $R$ is upper trapezoidal (or upper triangular if $A$ has more rows than columns and full rank).

Creating QR Decompositions

NMath provides QR decomposition classes for four datatypes: single- and double-precision floating point numbers, and single- and double-precision complex numbers. The classnames are FloatQRDecomp, DoubleQRDecomp, FloatComplexQRDecomp, and DoubleComplexQRDecomp.

Instances of the QR decomposition classes are constructed from general matrices of the appropriate datatype. For example, this code creates a FloatQRDecomp from a FloatMatrix:

Code Example – C# QR decomposition

```csharp
var A =
```
new FloatMatrix( "5x3 [ 1 2 3  4 5 6  7 8 9  0 1 2  3 4 5 ]" );
var qr = new FloatQRDecomp( A );

Code Example – VB QR decomposition

Dim A As New FloatMatrix(
    "5x3 [ 1 2 3  4 5 6  7 8 9  0 1 2  3 4 5 ]")
Dim QR As New FloatQRDecomp(A)

By default, pivoting is done so that the entries along the diagonal of \( R \) are non-increasing. For greater control, NMath provides QR decomposition server classes that create QR decomposition objects with non-default decomposition parameters. The classnames are FloatQRDecompServer, DoubleQRDecompServer, FloatComplexQRDecompServer, and DoubleComplexQRDecompServer.

The QR decomposition server classes all have the same interface:

- The Pivoting property sets whether or not pivoting is performed. By default, pivoting is true.
- The SetInitialColumn() method moves a given column to the beginning of \( AP \) before the computation, and fixes it in place during the computation.
- The SetFreeColumn() method allows a given column to be interchanged during the computation with any other free column. By default, all columns are free.
- The GetDecomp() method takes a matrix and returns a decomposition object using the current pivoting parameters.

For example, this code uses a DoubleComplexQRDecompServer to turn off pivoting:

Code Example – C# QR decomposition

```csharp
var qrs = new DoubleComplexQRDecompServer();
qrs.Pivoting = false;

int rows = 10, cols = 3;
var A = new DoubleComplexMatrix(rows, cols,
 new RandGenUniform(-1, 1));
DoubleComplexQRDecomp qr = qrs.GetDecomp(A);
```

Code Example – VB QR decomposition

```vbnet
Dim QRS As New DoubleComplexQRDecompServer()
QRS.Pivoting = False

Dim Rows As Integer = 10
Dim Cols As Integer = 3
Dim A As New DoubleComplexMatrix(Rows, Cols,
 New RandGenUniform(-1.0, 1.0))
Dim QR As DoubleComplexQRDecomp = QRS.GetDecomp(A)
```
This code moves column 7 to the beginning of AP before the computation, and fixes it in place during the computation:

**Code Example – C# QR decomposition**

```csharp
var qrs = new DoubleQRDecompServer();
qrs.SetIntialColumn(7);

int rows = 20, cols = 12;
var A = new DoubleMatrix(rows, cols,
 new RandGenUniform(-1,1));
DoubleQRDecomp qr = qrs.GetDecomp(A);
```

**Code Example – VB QR decomposition**

```vbnet
Dim QRS As New DoubleQRDecompServer()
QRS.SetIntialColumn(7)

Dim Rows As Integer = 20
Dim Cols As Integer = 12
Dim A As New DoubleMatrix(Rows, Cols,
 New RandGenUniform(-1.0, 1.0))
Dim QR As DoubleQRDecomp = QRS.GetDecomp(A)
```

**Using QR Decompositions**

Once a QR decomposition object has been constructed from a matrix, various read-only properties are provided for retrieving the elements of the decomposition, and for retrieving information about the original matrix:

- **P** gets the permutation matrix.
- **Q** gets the orthogonal matrix.
- **R** gets the upper trapezoidal matrix.
- **Rows** gets the number of rows in the original matrix A.
- **Cols** gets the number of columns in the original matrix A.

For example:

**Code Example – C# QR decomposition**

```csharp
int rows = 10, cols = 3;
DoubleMatrix A =
 new DoubleMatrix(rows, cols, new RanGenUniform(1, -1));

var qr = new DoubleQRDecomp(A);
DoubleMatrix Q = qr.Q;
DoubleMatrix R = qr.R;
DoubleMatrix P = qr.P;
```
Code Example – VB QR decomposition

Dim Rows As Integer = 10
Dim Cols As Integer = 3
Dim A As New DoubleMatrix(Rows, Cols,
    New RandGenUniform(-1.0, 1.0))

Dim QR As New DoubleQRDecomp(A)
Dim Q As DoubleMatrix = QR.Q
Dim R As DoubleMatrix = QR.R
Dim P As DoubleMatrix = QR.P

Methods are also provided for manipulating the component matrices P, Q, or R:

- **Px(), Qx(), and Rx()** compute the inner product of a component matrix and a given vector.
- **PTx(), QTx(), and RTx()** compute the inner product of the transpose of a component matrix and a given vector, or conjugate transpose for complex types.
- **QM()** computes the inner product of the orthogonal matrix Q and a given matrix. **QTM()** uses the transpose of Q, or conjugate transpose for complex types.
- **RInvx()** computes the inner product of the inverse of the the upper trapezoidal matrix R and a given vector. **RTInvx()** uses the transpose of R, or conjugate transpose for complex types.
- **RDiagonal()** returns the main diagonal of the upper trapezoidal matrix R.

These methods are more efficient than retrieving a component matrix using the P, Q, and R properties and manipulating it yourself.

For example:

Code Example – C# QR decomposition

```c#
int rows = 12, cols = 20;
var A = new FloatComplexMatrix(rows, cols, rng);
var qr = new FloatComplexQRDecomp(A);

var x = new FloatComplexVector(qr.P.Cols, 1, 1);
FloatComplexVector y = qr.Px(x);
```

Code Example – VB QR decomposition

```vbnet
Dim Rows As Integer = 12
Dim Cols As Integer = 20
Dim A As New FloatComplexMatrix(Rows, Cols, rng)
Dim QR As New FloatComplexQRDecomp(A)

Dim X As New FloatComplexVector(QR.P.Cols, 1, 1)
```
Dim Y As FloatComplexVector = QR.Px(X)

**Reusing QR Decompositions**

An existing decomposition object can be reused with another matrix using the `Factor()` method:

**Code Example – C# QR decomposition**

```csharp
int rows = 10, cols = 3;
var rng = new RandGenUniform(-1, 1);
var A = new FloatMatrix(rows, cols, rng);

var qr = new FloatQRDecomp(A);
FloatMatrix Q1 = qr.Q;
FloatMatrix R1 = qr.R;
FloatMatrix P1 = qr.P;

rows = 7;
cols = 7;
var B = new FloatMatrix(rows, cols, rng);

qr.Factor(B);
FloatMatrix Q2 = qr.Q;
FloatMatrix R2 = qr.R;
FloatMatrix P2 = qr.P;
```

**Code Example – VB QR decomposition**

```vbnet
Dim Rows As Integer = 10
Dim Cols As Integer = 3
Dim RNG As New RandGenUniform(-1.0, 1.0)
Dim A As New FloatMatrix(Rows, Cols, RNG)

Dim QR As New FloatQRDecomp(A)
Dim Q1 As FloatMatrix = QR.Q
Dim R1 As FloatMatrix = QR.R
Dim P1 As FloatMatrix = QR.P

Rows = 7
Cols = 7
Dim B As New FloatMatrix(Rows, Cols, RNG)

QR.Factor(B)
Dim Q2 As FloatMatrix = QR.Q
Dim R2 As FloatMatrix = QR.R
Dim P2 As FloatMatrix = QR.P
```
22.2 Singular Value Decompositions

A singular value decomposition (SVD) is a representation of a matrix \( A \) of the form:

\[
A = U S V^*
\]

where \( U \) and \( V \) are orthogonal, \( S \) is diagonal, and \( V^* \) denotes the transpose of a real matrix \( V \) or the conjugate transpose of a complex matrix \( V \). The entries along the diagonal of \( S \) are the singular values. The columns of \( U \) are the left singular vectors, and the columns of \( V \) are the right singular vectors.

Creating Singular Value Decompositions

**NMath** provides singular value decomposition classes for four datatypes: single- and double-precision floating point numbers, and single- and double-precision complex numbers. The classnames are `FloatSVDecomp`, `DoubleSVDecomp`, `FloatComplexSVDecomp`, and `DoubleComplexSVDecomp`.

Instances of the singular value decomposition classes are constructed from general matrices of the appropriate datatype. For example, this code creates a `DoubleSVDecomp` from a `DoubleMatrix`:

**Code Example – C# SVD**

```csharp
DoubleMatrix A =
 new DoubleMatrix("4 x 3 [1 2 3 12 -2 6 -8 9 11 5 7 -1]");
var svd = new DoubleSVDecomp(A);
```

**Code Example – VB SVD**

```vbnet
Dim A As New DoubleMatrix("
 "4 x 3 [1 2 3 12 -2 6 -8 9 11 5 7 -1]")
Dim SVD As New DoubleSVDecomp(A)
```

By default, the reduced singular value decomposition and all singular vectors are computed. For greater control, **NMath** provides singular value decomposition server classes that create singular value decomposition objects with non-default decomposition parameters. The classnames are `FloatSVDecompServer`, `DoubleSVDecompServer`, `FloatComplexSVDecompServer`, and `DoubleComplexSVDecompServer`.

The singular value decomposition server classes all have the same interface:

- The `ComputeFull` property gets and sets whether the full or reduced singular value decomposition is computed. (If matrix \( A \) is square, the full and reduced singular value decompositions are the same.)
• The **ComputeLeftVectors** property gets and sets whether or not the left singular vectors are computed.

• The **ComputeRightVectors** property gets and sets whether or not the right singular vectors are computed.

• The **Tolerance** property gets and sets the tolerance for truncating all singular values. Values less than the tolerance are set to zero.

• The **GetDecomp()** method takes a matrix and returns a singular value decomposition object using the current decomposition parameters.

For example, this code uses a **FloatComplexSVDecompServer** to turn off the computation of the singular vectors:

**Code Example – C# SVD**

```csharp
var svds = new FloatComplexSVDecompServer();
svds.ComputeLeftVectors = false;
svds.ComputeRightVectors = false;

int rows = 10, cols = 10;
var A = new FloatComplexMatrix(rows, cols,
 new RandGenUniform(-1, 1));
FloatComplexSVDecomp svd = svds.GetDecomp(A);
```

**Code Example – VB SVD**

```vbnet
Dim SVDS As New FloatComplexSVDecompServer()
SVDS.ComputeLeftVectors = False
SVDS.ComputeRightVectors = False

Dim Rows As Integer = 10
Dim Cols As Integer = 10
Dim A As New FloatComplexMatrix(Rows, Cols,
 New RandGenUniform(-1.0, 1.0))
Dim SVD As FloatComplexSVDecomp = SVDS.GetDecomp(A)
```

### Using Singular Value Decompositions

Once a singular value decomposition object has been constructed from a matrix, various read-only properties are provided for retrieving the elements of the decomposition, and for retrieving information about the original matrix:

• **LeftVectors** gets the matrix whose columns are the left singular vectors.

• **RightVectors** gets the matrix whose columns are the right singular vectors.

• **NumberLeftVectors** gets the number of left singular vectors.
NumberRigthVectors gets the number of right singular vectors.

SingularValues gets the singular values of this decomposition. The values are non-negative and arranged in decreasing order.

Rank gets the rank of the original matrix A.

Rows gets the number of rows in the original matrix A.

Cols gets the number of columns in the original matrix A.

Fail gets the status of the decomposition. The property returns true if the decomposition algorithm failed to converge; otherwise, false.

For instance:

Code Example – C# SVD

```csharp
int rows = 5, cols = 5;
var A =
 new FloatMatrix(rows, cols, new RandGenUniform(1, -1));

var svd = new FloatSVDecomp(A);
FloatMatrix U = svd.LeftVectors;
FloatMatrix V = svd.RightVectors;
FloatVector s = svd.SingularValues;
```

Code Example – VB SVD

```vbnet
Dim Rows As Integer = 5
Dim Cols As Integer = 5
Dim A As New FloatMatrix(rows, cols, New RandGenUniform(-1.0, 1.0))

Dim SVD As New FloatSVDecomp(A)
Dim U As FloatMatrix = svd.LeftVectors
Dim Y As FloatMatrix = svd.RightVectors
Dim S As FloatVector = svd.SingularValues
```

Methods are also provided for retrieving individual singular vectors and singular values:

- LeftVector() returns a specified left singular vector.
- RightVector() returns a specified right singular vector.
- SingularValue() returns a specified singular value.

For example, this code returns the first singular value, which is equal to the Euclidean (L2) norm of the matrix A:

Code Example – C# SVD

```csharp
int rows = 12, cols = 6;
```
```csharp
var A = new DoubleComplexMatrix(rows, cols, new RandGenUniform(-1, 1));

var svd = new DoubleComplexSVDecomp(A);
double l2 = svd.SingularValue(0);
```

**Code Example – VB SVD**

```vb
Dim Rows As Integer = 12
Dim Cols As Integer = 6
Dim A As New DoubleComplexMatrix(Rows, Cols,
 New RandGenUniform(-1.0, 1.0))

Dim SVD As New DoubleComplexSVDecomp(A)
Dim L2 As Double = SVD.SingularValue(0)
```

Lastly, a `Truncate()` method is provided that sets all singular values less than a given tolerance to zero. Corresponding singular vectors are also removed.

**NOTE**—This method can change the numerical rank of the matrix A, which is equal to the number of non-zero singular values.

```csharp
var A = new DoubleMatrix("5x5
 1 2 3 4 5
 6 7 8 9 0
 1 2 3 4 5
 6 7 8 9 0
 1 2 3 4 5"");

var svd = new DoubleSVDecomp(A);
int fullRank = svd.Rank; // == 5

svd.Truncate(1e-14);
int deficientRank = svd.Rank; // == 2
```

**Code Example – VB SVD**

```vb
Dim A As New DoubleMatrix("5x5
 1 2 3 4 5
 6 7 8 9 0
 1 2 3 4 5
 6 7 8 9 0
 1 2 3 4 5")

Dim SVD As New DoubleSVDecomp(A)
Dim FullRank As Integer = SVD.Rank ' == 5

SVD.Truncate("1e-14")
Dim DeficientRanks As Integer = svd.Rank ' == 2
```

## Reusing Singular Value Decompositions

An existing decomposition object can be reused with another matrix using the `Factor()` method:

**Code Example – C# SVD**

```csharp
int rows = 12, cols = 6;
```
FloatMatrix A =
    new FloatMatrix( rows, cols, new RandGenUniform( -1, 1 ) );

var svd = new DoubleSVDecomp( A );
FloatVector svA = svd.SingularValues;

var B = new DoubleMatrix(
    "5x5[1 2 3 4 5  6 7 8 9 0  1 2 3 4 5  6 7 8 9 0  1 2 3 4 5]" );

svd.Factor( B );
FloatVector svB = svd.SingularValues;

**Code Example – VB SVD**

Dim Rows As Integer = 12
Dim Cols As Integer = 6
Dim A As New FloatMatrix(Rows, Cols, New RandGenUniform(-1.0, 1.0))

Dim SVD As New DoubleSVDecomp(A)
Dim SVA As FloatVector = SVD.SingularValues

Dim B As New DoubleMatrix(
    "5x5[1 2 3 4 5  6 7 8 9 0  1 2 3 4 5  6 7 8 9 0  1 2 3 4 5]"
)

SVD.Factor(B)
Dim SVB As FloatVector = svd.SingularValues
NMath includes classes for solving symmetric, Hermitian, and nonsymmetric eigenvalue problems. The classical eigenvalue problem is defined as the solution to:

\[ AV = V \Omega \]

for a matrix \( A \), eigenvectors \( V \), and the diagonal matrix of eigenvalues \( \Omega \). NMath also provides eigenvalue server classes that construct instances of the eigenvalue classes, allowing you greater control over how the eigenvalue decomposition is performed.

For example, class \texttt{DoubleSymEigDecomp} computes the eigenvalues and eigenvectors of a \texttt{DoubleSymmetricMatrix}. By default, this class computes both eigenvalues and eigenvectors. For more control, the associated decomposition server class, \texttt{DoubleSymEigDecompServer}, can be configured to compute eigenvalues only, or both eigenvalues and eigenvectors. In addition, the server can be configured to compute only the eigenvalues in a given range. A tolerance for the convergence of the algorithm may also be specified.

This chapter describes the NMath eigenvalue and eigenvalue server classes, and how to construct and use them.

### 23.1 Eigenvalue Classnames

NMath provides eigenvalue and eigenvalue server classes for the usual four datatypes (single- and double-precision floating point numbers, and single- and double-precision complex numbers), in both nonsymmetric and symmetric forms. The classnames are shown in Table 19.
23.2 Using the Eigenvalue Classes

The NMath eigenvalue classes solve symmetric, Hermitian, and nonsymmetric eigenvalue problems.

Constructing Eigenvalue Objects

Instances of the eigenvalue classes are constructed from matrices of the appropriate type. For example, this code creates a `FloatSymEigDecomp` from a `FloatSymmetricMatrix`:

**Code Example – C# eigenvalue decomposition**

```csharp
var A = new FloatMatrix("4x4 [0 1.73205080756888 0 0
1.73205080756888 0 2 0
0 2 0 1.73205080756888
0 0 1.73205080756888 0]");
var Asym = new FloatSymmetricMatrix(A);
var eig = new FloatSymEigDecomp(Asym);
```

**Code Example – VB eigenvalue decomposition**

```vbnet
Dim A As New FloatMatrix("4x4 [0 1.73205080756888 0 0
1.73205080756888 0 2 0
0 2 0 1.73205080756888
0 0 1.73205080756888 0]");
Dim Asym As New FloatSymmetricMatrix(A)
Dim Eig As New FloatSymEigDecomp(Asym)
```

### Table 19 – Eigenvalue classes

<table>
<thead>
<tr>
<th>Nonsymmetric</th>
<th>Symmetric/Hermitian</th>
</tr>
</thead>
<tbody>
<tr>
<td>FloatEigDecomp</td>
<td>FloatSymEigDecomp</td>
</tr>
<tr>
<td>FloatEigDecompServer</td>
<td>FloatSymEigDecompServer</td>
</tr>
<tr>
<td>DoubleEigDecomp</td>
<td>DoubleSymEigDecomp</td>
</tr>
<tr>
<td>DoubleEigDecompServer</td>
<td>DoubleSymEigDecompServer</td>
</tr>
<tr>
<td>FloatComplexEigDecomp</td>
<td>FloatHermitianEigDecomp</td>
</tr>
<tr>
<td>FloatComplexEigDecompServer</td>
<td>FloatHermitianEigDecompServer</td>
</tr>
<tr>
<td>DoubleComplexEigDecomp</td>
<td>DoubleHermitianEigDecomp</td>
</tr>
<tr>
<td>DoubleComplexEigDecompServer</td>
<td>DoubleHermitianEigDecompServer</td>
</tr>
</tbody>
</table>
Similarly, if \( A \) is a \textbf{DoubleHermitianMatrix}, this code creates a \textbf{DoubleHermitianEigDecomp} object from \( A \):

\textbf{Code Example – C# eigenvalue decomposition}

```csharp
var eig = new DoubleHermitianEigDecomp(A);
```

\textbf{Code Example – VB eigenvalue decomposition}

```vbnet
Dim Eig As New DoubleHermitianEigDecomp(A)
```

**Testing for Goodness**

All eigenvalue classes provide an \texttt{IsGood} property that returns \texttt{true} if all the eigenvalues and eigenvectors were successfully computed:

\textbf{Code Example – C# eigenvalue decomposition}

```csharp
if (eig.IsGood)
{
 // Do something here...
}
```

\textbf{Code Example – VB eigenvalue decomposition}

```vbnet
If Eig.IsGood Then
 ' Do something here...
End If
```

**Retrieving Eigenvalues and Eigenvectors**

All eigenvalue classes provide read-only properties and member functions for retrieving eigenvalues and eigenvectors.

- \texttt{NumberOfEigenValues} gets the number of eigenvalues computed.
- \texttt{EigenValues} gets the vector of computed eigenvalues.
- \texttt{EigenValue()} returns the specified eigenvalue.
- \texttt{NumberOfLeftEigenVectors} gets the number of left eigenvectors.
- \texttt{LeftEigenVectors} gets the matrix of left eigenvectors.
- \texttt{LeftEigenVector()} returns the specified left eigenvector.
- **NumberOfRightEigenVectors** gets the number of right eigenvectors.
- **RightEigenVectors** gets the matrix of right eigenvectors.
- **RightEigenVector()** returns the specified right eigenvector.

For example:

**Code Example – C# eigenvalue decomposition**

```csharp
var decomp = new FloatEigDecomp(A);
Console.WriteLine("Eigenvalues = " + decomp.EigenValues);
Console.WriteLine("Left eigenvectors = " +
 decomp.LeftEigenVectors);
Console.WriteLine("Right eigenvectors = " +
 decomp.RightEigenVectors);
```

**Code Example – VB eigenvalue decomposition**

```vbnet
Dim Decomp As New FloatEigDecomp(A)
Console.WriteLine("Eigenvalues = {0}", Decomp.EigenValues)
Console.WriteLine("Left eigenvectors = {0}",
 Decomp.LeftEigenVectors)
Console.WriteLine("Right eigenvectors = {0}",
 Decomp.RightEigenVectors)
```

**Retrieving Information About the Original Matrix**

Read-only properties are also provided for retrieving information about the original matrix A:

- **Rows** gets the number of rows.
- **Cols** gets the number of columns.

**Reusing Eigenvalue Decompositions**

An existing eigenvalue object can be reused with another matrix using the **Factor()** method:

**Code Example – C# eigenvalue decomposition**

```csharp
var eig = new FloatSymEigDecomp(A);
if (eig.IsGood)
{
 // Do something here...
}
```
23.3 Using the Eigenvalue Server Classes

The NMath eigenvalue server classes construct instances of the eigenvalue classes (Section 23.2), allowing you greater control over how the eigenvalue decomposition is performed. Servers can be configured to compute eigenvalues only, or both eigenvalues and eigenvectors. In addition, servers can be configured to compute only the eigenvalues in a given range. A tolerance for the convergence of the algorithm may also be specified.

Constructing Eigenvalue Servers

Instances of the eigenvalue server classes are constructed using a default constructor, then configured as desired. For example, this code creates a default DoubleSymEigDecompServer:

Code Example – C# eigenvalue decomposition

```csharp
var server = new DoubleSymEigDecompServer();
```

Code Example – VB eigenvalue decomposition

```vbnet
Dim Server As New DoubleSymEigDecompServer()
```

Configuring Eigenvalue Servers

All eigenvalue server classes provide properties and member functions for configuring the server after construction:
- **ComputeRightVectors** gets and sets a boolean value indicating whether or not right eigenvectors should be computed (true by default).

- **ComputeLeftVectors** gets and sets a boolean value indicating whether or not left eigenvectors should be computed (true by default).

- **ComputeAllEigenValues()** configures a server to compute all eigenvalues.

- **ComputeEigenValueRange()** configures a server to compute only the eigenvalues in a specified range. Only eigenvalues that are greater than the given lower bound and less than or equal to the given upper bound are computed.

- **Balance** gets and sets the balance option, using a value from the **BalanceOption** enumeration: None, Permute, Scale, Both. Balancing a matrix means permuting the rows and columns to make the matrix more nearly upper triangular, and applying a diagonal similarity transformation to make the rows and columns closer in norm and the condition numbers of the eigenvalues and eigenvectors smaller.

- **AbsTolerance** gets and sets the absolute tolerance for each eigenvalue. An approximate eigenvalue is accepted as converged when it lies in an interval \([a,b]\) of width less than or equal to \(\text{AbsTolerance} + \epsilon \times \max(\text{abs}(a),\text{abs}(b))\), where \(\epsilon\) is machine precision. If \(\text{AbsTolerance}\) is set less than or equal to zero then \(\epsilon \times ||T||\) is used, where \(T\) is the tridiagonal matrix obtained by reducing the decomposed matrix to tridiagonal form, and \(||T||\) is the one-norm of \(T\).

**NOTE**—Eigenvalue ranges and tolerance are only provided for symmetric and Hermitian eigenvalue server classes. For general matrices, eigenvalues may be complex, and hence non-orderable.

For example, this code creates a default **DoubleSymEigDecompServer**, then configures the object not to compute eigenvectors, and only to compute eigenvalues within a specified range:

**Code Example – C# eigenvalue decomposition**

```csharp
var server = new FloatSymEigDecompServer();
server.ComputeLeftVectors = false;
server.ComputeRightVectors = false;
server.ComputeEigenValueRange(0, 3);
```

**Code Example – VB eigenvalue decomposition**

```vbnet
Dim Server As New FloatSymEigDecompServer()
Server.ComputeLeftVectors = False
Server.ComputeRightVectors = False
Server.ComputeEigenValueRange(0, 3)
```
Creating Eigenvalue Objects from a Server

Eigenvalue server objects are used to create instances of the associated eigenvalue class, using the `Factor()` method. For instance, this code creates a `FloatEigDecomp` object from a configured `FloatEigDecompServer`:

**Code Example – C# eigenvalue decomposition**

```csharp
var eigServer = new FloatEigDecompServer();
eigServer.ComputeLeftVectors = false;
eigServer.ComputeRightVectors = false;
eigServer.Balance = BalanceOption.Permute;
FloatEigDecomp decomp = eigServer.Factor(A);
```

**Code Example – VB eigenvalue decomposition**

```vbnet
Dim EigServer As New FloatEigDecompServer()
eigServer.ComputeLeftVectors = False
eigServer.ComputeRightVectors = False
eigServer.Balance = BalanceOption.Permute
Dim Decomp = EigServer.Factor(A)
```
PART IV - ANALYSIS
The CenterSpace.NMath.Core namespace provides the following analytical classes:

- Classes for minimizing univariate functions using golden section search and Brent’s method.
- Classes for minimizing multivariate functions using the downhill simplex method, Powell’s direction set method, the conjugate gradient method, and the variable metric (or quasi-Newton) method.
- Simulated annealing.
- Classes for linear programming (LP), non-linear programming (NLP), and quadratic programming (QP) using the Microsoft Solver Foundation.
- Least squares polynomial fitting.
- Nonlinear least squares minimization, curve fitting, and surface fitting.
- Classes for finding roots of univariate functions using the secant method, Ridders’ method, fzero method, and the Newton-Raphson method.
- Numerical methods for double integration of functions of two variables.
- Nonlinear least squares minimization using the Trust-Region method, a variant of the Levenberg-Marquardt method.
- Curve and surface fitting by nonlinear least squares.
- Solutions to first order initial value differential equations by the Runge-Kutta method.

To avoid using fully qualified names, preface your code with an appropriate namespace statement:

```csharp
using CenterSpace.NMath.Core;
```

```vbnet
Imports CenterSpace.NMath.Core
```
Chapter 25.

Encapsulating Multivariate Functions

The CenterSpace.NMath.Core namespace includes classes for encapsulating univariate functions, including base class OneVariableFunction, and derived types Polynomial and TabulatedFunction (Chapter 13). In addition, the MultiVariableFunction class encapsulates an arbitrary function of one or more variables, and works with other NMath classes to approximate integrals and minima.

This chapter describes how to create and manipulate MultiVariableFunction function objects.

25.1 Creating Multivariate Functions

A MultiVariableFunction is constructed from a Func<DoubleVector, double>, a delegate that takes a single DoubleVector parameter and returns a double. For example, suppose you wish to encapsulate this function:

Code Example – C# multivariate functions

```csharp
public double MyFunction(DoubleVector v)
{
 return (NMathFunctions.Sum(v * v));
}
```

Code Example – VB multivariate functions

```vbnet
Function MyFunction(V As DoubleVector) As Double
Return (NMathFunctions.Sum(V * V))
End Function
```

First, create a delegate for the MyFunction() method:

Code Example – C# multivariate functions

```csharp
var d = new Func<DoubleVector, double>(MyFunction);
```

Code Example – VB multivariate functions

```vbnet
Dim D As New Func(Of DoubleVector, Double)(AddressOf MyFunction)
```
Then construct a **MultiVariableFunction** encapsulating the delegate:

**Code Example – C# multivariate functions**

```csharp
var f = new MultiVariableFunction(d);
```

**Code Example – VB multivariate functions**

```vbnet
Dim F As New MultiVariableFunction(D)
```

A **Func<DoubleVector, double>** is also implicitly converted to a **MultiVariableFunction**. Thus:

**Code Example – C# multivariate functions**

```csharp
MultiVariableFunction f = d;
```

**Code Example – VB multivariate functions**

```vbnet
Dim F = D
```

Class **MultiVariableFunction** provides a **Function** property that gets the encapsulated function delegate after construction.

### 25.2 Evaluating Multivariate Functions

The **Evaluate()** method on **MultiVariableFunction** evaluates a function at a given point. For instance, if **f** is a **MultiVariableFunction** of four variables:

**Code Example – C# multivariate functions**

```csharp
var point = new DoubleVector(0.0, 1.0, 0.0, -1.0);
double z = f.Evaluate(point);
```

**Code Example – VB multivariate functions**

```vbnet
Dim Point As New DoubleVector(0.0, 1.0, 0.0, -1.0)
Dim Z As Double = F.Evaluate(Point)
```

### 25.3 Algebraic Manipulation of Multivariate Functions

**NMath** provides overloaded arithmetic operators for multivariate functions with their conventional meanings for those .NET languages that support them, and equivalent named methods for those that do not. Table 20 lists the equivalent operators and methods.
All binary operators and equivalent named methods work either with two functions, or with a function and a scalar. For example, this C# code uses the overloaded operators:

**Code Example – C# multivariate functions**

```csharp
MultiVariableFunction g = f / 2;
MultiVariableFunction sum = f + g;
MultiVariableFunction neg = -f;
```

This Visual Basic code uses the equivalent named methods:

**Code Example – VB multivariate functions**

```vbnet
Dim G = MultiVariableFunction.Divide(F, 2)
Dim Sum = MultiVariableFunction.Add(F, G)
Dim Neg = MultiVariableFunction.Negate(F)
```

---

**Table 20 – Arithmetic operators**

<table>
<thead>
<tr>
<th>Operator</th>
<th>Equivalent Named Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Add()</td>
</tr>
<tr>
<td>-</td>
<td>Subtract()</td>
</tr>
<tr>
<td>*</td>
<td>Multiply()</td>
</tr>
<tr>
<td>/</td>
<td>Divide()</td>
</tr>
<tr>
<td>Unary -</td>
<td>Negate()</td>
</tr>
</tbody>
</table>

---
Chapter 26.
MINIMIZING UNIVARIATE FUNCTIONS

NMath provides classes for minimizing univariate functions using golden section search and Brent’s method. Minimization is the process of finding the value of the variable \( x \) within some interval where \( f(x) \) takes on a minimum value. (To maximize a function \( f \), simply minimize \(-f\).)

All NMath minimization classes derive from the abstract base class MinimizerBase, which provides Tolerance and MaxIterations properties. In general, minimization stops when either the decrease in function value is less than the tolerance, or the maximum number of iterations is reached. Setting the error tolerance to less than zero ensures that the maximum number of iterations is always reached. After minimization, the following properties on MinimizerBase can be useful for gathering more information about the minimum just computed:

- **Error** gets the error associated with the minimum just computed.
- **ToleranceMet** returns a boolean value indicating whether the minimum just computed stopped because the error tolerance was reached.
- **MaxIterationsMet** returns a boolean value indicating whether the minimum just computed stopped because the maximum number of iterations was reached.

The univariate minimization classes also implement one of the following interfaces:

- Classes that implement the IOneVariableMinimizer interface require only function evaluations to minimize a function.
- Classes that implement the IOneVariableDMinimizer interface also require evaluations of the derivative of a function.

This chapter describes how to use the univariate minimizer classes.

### 26.1 Bracketing a Minimum

Minima of univariate functions must be *bracketed* before they can be isolated. A bracket is a triplet of points, \( x_{\text{lower}} < x_{\text{interior}} < x_{\text{upper}} \) such that \( f(x_{\text{interior}}) < f(x_{\text{lower}}) \) and \( f(x_{\text{interior}}) < f(x_{\text{upper}}) \). These conditions ensure that there is some local minimum in the interval \((x_{\text{lower}}, x_{\text{upper}})\).
If you know in advance that a local minimum falls within a given interval, you can simply call the NMath minimization routines using that interval. Before beginning minimization, the routine will search for an interior point that satisfies the bracketing condition.

Otherwise, construct a Bracket object. Beginning with a pair of points, Bracket searches in the downhill direction for a new pair of points that bracket a minimum of a function. For example, if function is a OneVariableFunction:

Code Example – C# minimization

```csharp
var bracket = new Bracket(function, 0, 1);
```

Code Example – VB minimization

```vbnet
Dim Bracket As New Bracket(MyFunction, 0, 1)
```

Once constructed, a Bracket object provides the following properties:

- **Function** gets the function whose minimum is bracketed.
- **Lower** gets a lower bound on a minimum of the function.
- **Upper** gets an upper bound on a minimum of the function.
- **Interior** gets a point between the lower and upper bound such that 
  \[ x_{lower} < x_{interior} < x_{upper}, f(x_{interior}) < f(x_{lower}), \text{ and } f(x_{interior}) < f(x_{upper}) \]
- **FLower** gets the function evaluated at the lower bound.
- **FUpper** gets the function evaluated at the upper bound.
- **FInterior** gets the function evaluated at the interior point.

## 26.2 Minimizing Functions Without Calculating the Derivative

NMath provides two classes that implement the IOneVariableMinimizer interface, and minimize a OneVariableFunction using only function evaluations:

- **Class GoldenMinimizer** performs a golden section search for a minimum of a function, by successively narrowing an interval known to contain a local minimum. The golden section search method is linearly convergent.

- **Class BrentMinimizer** uses Brent’s Method to minimize a function. Brent’s Method combines golden section search with parabolic interpolation. Parabolic interpolation fits a parabola through the current set of points, then uses the parabola to estimate the function’s minimum. The faster
parabolic interpolation is used wherever possible, but in steps where the projected minimum falls outside the interval, or when successive steps are becoming larger, Brent’s Method resorts back to the slower golden section search. Brent’s Method is quadratically convergent.

Instances of *GoldenMinimizer* and *BrentMinimizer* are constructed by specifying an error tolerance and a maximum number of iterations, or by accepting the defaults for these values. For example, this code constructs a *GoldenMinimizer* using the default tolerance and a maximum of 50 iterations:

**Code Example – C# minimization**

```csharp
int maxIter = 50;
var minimizer = new GoldenMinimizer(maxIter);
```

**Code Example – VB minimization**

```vbnet
Dim MaxIter As Integer = 50
Dim Minimizer As New GoldenMinimizer(MaxIter)
```

Instances of *GoldenMinimizer* and *BrentMinimizer* provide *Minimize()* methods for minimizing a given function within a given interval. Overloads of *Minimize()* accept a bounding *Interval*, a *Bracket*, or a triplet of points satisfying the bracketing conditions (Section 26.1). For example, the function

\[ y = (x - 1)^4 \]

has a minimum at 1.0. To compute the minimum, first encapsulate the function:

**Code Example – C# minimization**

```csharp
public static double MyFunction(double x)
{
 return Math.Pow(x - 1, 4);
}
```

```vbnet
Public Shared Function MyFunction(X As Double) As Double
 Return Math.Pow(X - 1, 4)
End Function
```

This code finds a minimum of \( f \) in the interval \((0,2)\) using golden section search:

**Code Example – C# minimization**

```csharp
var minimizer = new GoldenMinimizer();
```
int lower = 0;
int upper = 2;
double min = minimizer.Minimize( f, lower, upper );

**Code Example – VB minimization**

Dim Minimizer As New GoldenMinimizer()
Dim Lower As Integer = 0
Dim Upper As Integer = 2
Dim Min As Double = Minimizer.Minimize(F, Lower, Upper)

This code first constructs a Bracket starting from \((0,10)\), then finds a minimum of \(f\) using Brent’s Method:

**Code Example – C# minimization**

double tol = 1e-9;
int maxIter = 25;
var minimizer = new BrentMinimizer( tol, maxIter );
var bracket = new Bracket( f, 0, 10 );
double min = minimizer.Minimize( bracket );

**Code Example – VB minimization**

Dim Tol As Double = "1e-9"
Dim MaxIter As Integer = 25
Dim Minimizer As New BrentMinimizer(Tol, MaxIter)
Dim Bracket As New Bracket(F, 0, 10)
Dim Min As Double = Minimizer.Minimize( Bracket )

### 26.3 Minimizing Derivable Functions

Class **DBrentMinimizer** implements the **IOneVariableDMinimizer** interface and minimizes a univariate function using Brent’s Method in combination with evaluations of the first derivative. As described in Section 26.2, Brent’s Method uses parabolic interpolation to fit a parabola through the current bracketing triplet, then uses the parabola to estimate the function’s minimum. Class **DBrentMinimizer** uses the sign of the derivative at the central point of the bracketing triplet to decide which region should be used for the next test point.

Like **GoldenMinimizer** and **BrentMinimizer** (Section 26.2), instances of **DBrentMinimizer** are constructed by specifying an error tolerance and a maximum number of iterations, or by accepting the defaults for these values. This code constructs a **DBrentMinimizer** using the default error tolerance and maximum number of iterations:

**Code Example – C# minimization**

var minimizer = new DBrentMinimizer();
Code Example – VB minimization

Dim Minimizer As New DBrentMinimizer()

This code uses an error tolerance of $10^{-4}$ and a maximum of 50 iterations:

Code Example – C# minimization

double tol = 1e-4
int maxIter = 50;
var minimizer = new DBrentMinimizer( tol, maxIter );

Code Example – VB minimization

Dim Tol As Double = 0.0001
Dim MaxIter As Integer = 50
Dim Minimizer As New DBrentMinimizer(Tol, MaxIter)

Once you have constructed a DBrentMinimizer instance, you can use the Minimize() method to minimize a given function within a given interval. Overloads of Minimize() accept a bounding Interval, a Bracket, or a triplet of points satisfying the bracketing conditions (Section 26.1). Because DBrentMinimizer uses evaluations of the first derivative of the function, you must also supply a OneVariableFunction encapsulating the derivative. For example, the function:

$$ y = (x - 5)^2 $$

has a minimum at 5.0. To compute the minimum, first encapsulate the function and its derivative:

Code Example – C# minimization

public static double MyFunction( double x )
{
    return ( ( x - 5 ) * ( x - 5 ) );
}

public static double MyFunctionPrime( double x )
{
    return ( 2 * x ) - 10;
}

var f = new OneVariableFunction( 
    new Func<double, double>( MyFunction ) );
var df = new OneVariableFunction( 
    new Func<double, double>( MyFunctionPrime ) );

Code Example – VB minimization

Public Shared Function MyFunction(X As Double) As Double
    Return ((x - 5) * (x - 5))
End Function
Public Shared Function MyFunctionPrime(X As Double) As Double
    Return (2 * X) - 10
End Function

Dim F As New OneVariableFunction(
    New Func(Of Double, Double)(AddressOf MyFunction))
Dim DF As New OneVariableFunction(
    New Func(Of Double, Double)(AddressOf MyFunctionPrime))

This code then constructs a Bracket starting from (1,2), and computes the minimum:

**Code Example – C# minimization**

```csharp
var minimizer = new DBrentMinimizer();
var bracket = new Bracket(f, 1, 2);
double min = minimizer.Minimize(bracket, df);
```

**Code Example – VB minimization**

```vbnet
Dim Minimizer As New DBrentMinimizer()
Dim Bracket As New Bracket(F, 1, 2)
Dim Min As Double = Minimizer.Minimize(Bracket, DF)
```
NMath provides classes for minimizing multivariate functions using the downhill simplex method, Powell’s direction set method, the conjugate gradient method, and the variable metric (or quasi-Newton) method.

Like the univariate minimization classes described in Chapter 26, the multivariate minimization classes derive from the abstract base class MinimizerBase, which provides Tolerance and MaxIterations properties. In general, minimization stops when either the decrease in function value is less than the tolerance, or the maximum number of iterations is reached.

The multivariate minimization classes also implement one of the following interfaces:

- Classes that implement the IMultiVariableMinimizer interface require only function evaluations to minimize a function.
- Classes that implement the IMultiVariableDMinimizer interface also require evaluations of the derivative of a function.

This chapter describes how to use the multivariate minimizer classes.

### 27.1 Minimizing Functions Without Calculating the Derivative

NMath provides two classes that implement the IMultiVariableMinimizer interface, and minimize a MultiVariableFunction using only function evaluations (derivative calculations are not required):

- Class DownhillSimplexMinimizer minimizes a multivariate function using the downhill simplex method of Nelder and Mead. A simplex in n-dimensions consists of n+1 distinct vertices. The method involves moving the simplex downhill, or if that is not possible, shrinking its size. The method is not highly efficient, and is appropriate only for small numbers of variables (usually fewer than 6), but is very robust. Powell’s Method is faster in most applications (see below).

---

• Class **PowellMinimizer** minimizes a multivariate function using **Powell’s Method**. **Powell’s Method** is a member of the family of **direction set** optimization methods, each of which is based on a series of one-dimensional line minimizations. The methods differ in how they choose the next dimension at each stage from among a current set of candidates. **Powell’s Method** begins with a set of \( N \) linearly independent, mutually conjugate directions, and at each stage discards the direction in which the function made its largest decrease, to avoid a buildup of linear dependence. **Brent’s Method** (Section 26.2) is used for the successive line minimizations.

Instances of **DownhillSimplexMinimizer** and **PowellMinimizer** are constructed by specifying an error tolerance and a maximum number of iterations, or by accepting the defaults for these values. For example, this code constructs a **PowellMinimizer** using the default tolerance and a maximum of 20 iterations:

**Code Example – C# minimization**

```csharp
int maxIter = 20;
var minimizer = new PowellMinimizer(maxIter);
```

**Code Example – VB minimization**

```vbnet
Dim MaxIter As Integer = 20
Dim Minimizer As New PowellMinimizer(MaxIter)
```

Class **DownhillSimplexMinimizer** and **PowellMinimizer** implement the **IMultiVariableMinimizer** interface, which provides a single **Minimize()** method that takes a **MultiVariableFunction** to minimize, and a starting point. For instance, if \( f \) is an encapsulated multivariate function (Chapter 25) of three variables, this code minimizes the function using the downhill simplex method, starting at the origin:

**Code Example – C# minimization**

```csharp
var minimizer = new DownhillSimplexMinimizer();
var start = new DoubleVector(0.0, 0.0, 0.0);
DoubleVector min = minimizer.Minimize(f, start);
```

**Code Example – VB minimization**

```vbnet
Dim Minimizer As New DownhillSimplexMinimizer()
Dim Start As New DoubleVector(0.0, 0.0, 0.0)
Dim Min As DoubleVector = Minimizer.Minimize(F, Start)
```

Both **DownhillSimplexMinimizer** and **PowellMinimizer** provide additional overloads of **Minimize()** that allow you more control over the initial conditions. The downhill simplex method, for example, begins with an initial simplex consisting of \( n+1 \) distinct vertices. If you provide only a starting point, as illustrated above, a starting simplex is constructed by adding 1.0 in each dimension. For example, in two dimensions the simplex is a triangle. If the starting point is \((x_0, x_1)\), the remaining vertices of the starting simplex will be \((x_0+1, x_1)\) and
Overloads of the \texttt{Minimize()} method allow you to specify the amount added in each dimension from the starting point when constructing the initial simplex, or simply to specify the initial simplex itself.

Similarly, \textit{Powell's Method} begins with an initial direction set, a set of \( N \) linearly independent, mutually conjugate directions. An overload of \texttt{Minimize()} enables you to specify the initial direction set. If you provide only a starting point to the \texttt{Minimize()} method, as illustrated above, the starting direction set is simply the unit vectors.

\section{Minimizing Derivable Functions}

\texttt{NMath} provides two classes that implement the \texttt{IMultiVariableDMinimizer} interface, and minimize a \texttt{MultiVariableFunction} using function evaluations and derivative calculations:

- Class \texttt{ConjugateGradientMinimizer} minimizes a multivariate function using the Polak-Ribiere variant of the Fletcher-Reeves conjugate gradient method. Gradients are calculated using the partial derivatives, then chosen based on a direction that is conjugate to the old gradient and, insofar as possible, to all previous directions traversed.

- Class \texttt{VariableMetricMinimizer} minimizes a multivariate function using the Broyden-Fletcher-Goldfarb-Shanno variable metric (or \textit{quasi-Newton}) method. Variable metric methods are very similar to conjugate gradient methods—both calculate gradients using the partial derivatives. Storage is less efficient (order \( N^2 \) storage, versus order a few times \( N \)), but since variable metric methods predate conjugate gradient methods, they are still widely used.

Like all \texttt{NMath} minimizers, instances of \texttt{ConjugateGradientMinimizer} and \texttt{VariableMetricMinimizer} are constructed by specifying an error tolerance and a maximum number of iterations, or by accepting the defaults for these values. For example, this code constructs a \texttt{VariableMetricMinimizer} using a tolerance of \( 10^{-5} \) and a maximum of 20 iterations:

\textbf{Code Example} – C# minimization

\begin{verbatim}
    double tol = 1e-5;
    int maxIter = 20;
    VariableMetricMinimizer minimizer =
        new VariableMetricMinimizer( tol, maxIter );
\end{verbatim}

\textbf{Code Example} – VB minimization

\begin{verbatim}
    Dim Tol As Double = "1e-5"
    Dim MaxIter As Integer = 20
\end{verbatim}
Dim Minimizer As New VariableMetricMinimizer(Tol, MaxIter)

Class **ConjugateGradientMinimizer** and **VariableMetricMinimizer** implement the **IMultiVariableDMinimizer** interface, which provides a single **Minimize()** method with the following signature:

**Code Example – C# minimization**

```csharp
DoubleVector Minimize(MultiVariableFunction f,
 MultiVariableFunction[] df,
 DoubleVector x);
```

**Code Example – VB minimization**

```vbnet
Minimize(F As MultiVariableFunction,
 DF As MultiVariableFunction(),
 X as DoubleVector) As DoubleVector
```

where `f` is the function to minimize, `df` is an array of partial derivatives, and `x` is the start point.

For instance, given the following function and partial derivatives:

**Code Example – C# minimization**

```csharp
protected static double MyFunction(DoubleVector v)
{
 return ((v[0] - 5.0) * (v[0] - 5.0)) +
 ((v[1] + 3.0) * (v[1] + 3.0));
}

protected static double MyFunctionDx(DoubleVector v)
{
 return (2 * v[0]) - 10;
}

protected static double MyFunctionDy(DoubleVector v)
{
 return (2 * v[1]) + 6;
}
```

**Code Example – VB minimization**

```vbnet
Protected Shared Function MyFunction(V As DoubleVector) As Double
 Return ((V(0) - 5.0) * (V(0) - 5.0)) +
 ((V(1) + 3.0) * (V(1) + 3.0))
End Function

Protected Shared Function Dx(V As DoubleVector) As Double
 Return (2 * V(0)) - 10
End Function

Protected Shared Function Dy(V As DoubleVector) As Double
```

258  NMath User’s Guide
Return (2 * V(1)) + 6
End Function

This code computes the minimum using a **ConjugateGradientMinimizer**, starting at the origin:

**Code Example – C# minimization**

```csharp
var function = new MultiVariableFunction(
 new Func<DoubleVector, double>(MyFunction));

var partialx = new MultiVariableFunction(
 new Func<DoubleVector, double>(MyFunctionDx));
var partialy = new MultiVariableFunction(
 new Func<DoubleVector, double>(MyFunctionDy));
var df = new MultiVariableFunction[] { partialx, partialy };

var minimizer = new ConjugateGradientMinimizer();
var start = new DoubleVector(2, 0);
DoubleVector min = minimizer.Minimize(f, df, start);
```

**Code Example – VB minimization**

```vbnet
Dim MultiFunction As New MultiVariableFunction(
 New Func(Of DoubleVector, Double)(AddressOf MyFunction))
Dim PartialX As New MultiVariableFunction(
 New Func(Of DoubleVector, Double)(AddressOf Dx))
Dim PartialY As New MultiVariableFunction(
 New Func(Of DoubleVector, Double)(AddressOf Dy))

Dim Minimizer As New ConjugateGradientMinimizer()
Dim Start As New DoubleVector(2, 0)
Dim Min As DoubleVector = Minimizer.Minimize(F, DF, Start)
```
In NMath, class `AnnealingMinimizer` minimizes a multivariable function using the simulated annealing method.

Simulated annealing is based on an analogy from materials science. To produce a solid in a low energy state, such as a perfect crystal, a material is often first heated to a high temperature, then gradually cooled.

In the computational analogy of this method, a function is iteratively minimized with an added random temperature term. The temperature is gradually decreased according to an annealing schedule, as more optimizations are applied, increasing the likelihood of avoiding entrapment in local minima, and of finding the global minimum of the function.

This chapter describes how to use class `AnnealingMinimizer`.

### 28.1 Temperature

Temperature values are simply scalars used at each iteration of the minimization to introduce noise into the process. Each search movement is jittered $\pm T \ln(r)$, where $r$ is a random deviate between 0 and 1.

Temperatures that are too low, or that drop too quickly, increase the likelihood of getting caught in a local minimum. Temperatures that are too high simply cause minimization to jump randomly around the search space without settling into a solution. Annealing schedules must therefore be chosen carefully. Unfortunately, this is something of a trial-and-error process. What is an appropriate regime will be entirely dependent on the characteristics of the function being minimized, which may not be well understood in advance.

### 28.2 Annealing Schedules

In simulated annealing, the annealing schedule governs the choice of initial temperature, how many iterations are performed at each temperature, and how much the temperature is decremented at each step as cooling proceeds.
For example, the annealing schedule shown in Table 21 has four steps.

**Table 21 – A sample annealing schedule**

<table>
<thead>
<tr>
<th>Step</th>
<th>Temperature</th>
<th>Iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>75</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

In this case, the temperature decays linearly from 100 to 0, and the same number of iterations are performed at each step.

**NOTE**—Annealing schedules must end with a temperature of zero. Otherwise, they never converge on a minimum.

In NMath, `AnnealingScheduleBase` is the abstract base class for classes that define annealing schedules. Two concrete implementations are provided.

**Linear Annealing Schedules**

Class `LinearAnnealingSchedule` encapsulates the linear decay of a starting temperature to zero. Each step has a specified number of iterations. For example, this code creates the annealing schedule shown in Table 21:

**Code Example – C# simulated annealing**

```csharp
int steps = 4;
int iterationsPerStep = 20
double startTemp = 100.0;

LinearAnnealingSchedule schedule = new LinearAnnealingSchedule(steps, iterationsPerStep, startTemp);
```

**Code Example – VB simulated annealing**

```vbnet
Dim Steps = 4
Dim IterationsPerStep = 20
Dim StartTime As Double = 100.0

Dim Schedule As New LinearAnnealingSchedule(Steps,
 IterationsPerStep, StartTime)
```

You may optionally also provide a non-default error tolerance. At each annealing step, iteration stops if the estimated error is less than the tolerance, but typically this only occurs during the final step, when the temperature is zero.
Once constructed, a `LinearAnnealingSchedule` instance provides the following properties:

- **Steps** gets the number of steps in the schedule.
- **Iterations** gets and sets the number of iterations per step.
- **TotalIterations** gets and sets the total number of iterations in this schedule. When set, the number of iterations per step is scaled appropriately.
- **StartingTemperature** gets and sets the starting temperature.
- **Tolerance** gets and sets the error tolerance used in computing minima estimates.

### Custom Annealing Schedules

For more control over the temperature decay, you can use class `CustomAnnealingSchedule`. Instances of `CustomAnnealingSchedule` are constructed from an array containing the number of iterations for each step, and the temperature for each step.

For example:

**Code Example – C# simulated annealing**

```csharp
var iterations = new int[] { 50, 30, 20, 20 };
var temps = new double[] { 75.3, 20.0, 10.5, 0.0 };

var schedule =
 new CustomAnnealingSchedule(iterations, temps);
```

**Code Example – VB simulated annealing**

```vbnet
Dim Iterations() As Integer = {50, 30, 20, 20}
Dim Temps() As Double = {75.3, 20.0, 10.5, 0.0}

Dim Schedule As New CustomAnnealingSchedule(Iterations, Temps)
```

**NOTE**—An `InvalidOperationException` is raised if the final temperature in a custom annealing schedule is not zero. Without a final temperature of zero, the system never settles into a minimum.

You may optionally also provide a non-default error tolerance. At each annealing step, iteration stops if the estimated error is less than the tolerance, but typically this only occurs during the final step, when the temperature is zero.
Once constructed, a `CustomAnnealingSchedule` instance provides the following properties:

- **Steps** gets the number of steps in the schedule.
- **Iterations** gets and sets the array of iterations for each step.
- **TotalIterations** gets and sets the total number of iterations in this schedule. When set, the number of iterations per step is scaled appropriately.
- **Temperatures** gets and sets the vector of temperatures for each step.
- **Tolerance** gets and sets the error tolerance used in computing minima estimates.

### 28.3 Minimizing Functions by Simulated Annealing

Instances of `AnnealingMinimizer` are constructed from an annealing schedule (Section 28.2). For instance:

**Code Example – C# simulated annealing**

```csharp
var schedule = new LinearAnnealingSchedule(5, 25, 100.0);
var minimizer = new AnnealingMinimizer(schedule);
```

**Code Example – VB simulated annealing**

```vbnet
Dim Schedule As New LinearAnnealingSchedule(5, 25, 100.0)
Dim Minimizer As New AnnealingMinimizer(Schedule)
```

After construction, you can use the `Schedule` property to get and set the annealing schedule associated with an `AnnealingMinimizer`.

The `RandomNumberGenerator` property gets and sets the random number generator associated with this minimizer. The random number generator is used for making temperature-dependent, random steps in the search space as part of the annealing process. The random number generator is initially set at construction time to the value of static property `DefaultRandomNumberGenerator`, which defaults to an instance of `RandGenUniform`.

Class `AnnealingMinimizer` implements the `IMultiVariableMinimizer` interface, which provides a single `Minimize()` method that takes a `MultiVariableFunction` to minimize, and a starting point. For instance, if \( f \) is an encapsulated multivariable function (Chapter 25) of five variables, this code minimizes the function using the downhill simplex method, starting at \((0.2, 0.2, -0.2, 0.0, 0.0)\):

```csharp
// Example: Minimize an encapsulated multivariable function using
// the downhill simplex method.

double[] start = new double[]{ 0.2, 0.2, -.2, 0.0, 0.0 };
int n = 5;

var function = new EncapsulatedMultivariableFunction(n, start, new Func<double, double[]>
 (x => f(x)));

double[] result = minimizer.Minimize(function);
```
Chapter 28. Simulated Annealing

28.4 Annealing History

For annealing to successfully locate the global minimum of a function, an appropriate annealing schedule must be chosen, but unfortunately this is something of a trial-and-error process. An appropriate regime is entirely dependent on the characteristics of the function being minimized, which may not be well understood in advance.

To help you in this process, class `AnnealingMinimizer` can be configured to keep a history of the annealing process. There is a cost in memory and execution to record this information, so it is not enabled by default. To record the annealing history, set the `KeepHistory` property to `true`. Thus:

**Code Example – C# simulated annealing**

```csharp
var minimizer = new AnnealingMinimizer(schedule);
minimizer.KeepHistory = true;
```

**Code Example – VB simulated annealing**

```vbnet
Dim Minimizer As New AnnealingMinimizer(Schedule)
Minimizer.KeepHistory = True
```

After minimization, the following properties on `AnnealingMinimizer` can be useful for gathering more information about the minimum just computed:

- `Error` gets the error associated with the minimum just computed.
- `ToleranceMet` returns a boolean value indicating whether the minimum just computed stopped because the error tolerance was reached. (At each annealing step, iteration stops if the estimated error is less than the tolerance, but typically this only occurs during the final step, when the temperature is zero.)

For more information on the annealing process just completed, access the annealing history (Section 28.4).
**AnnealingMinimizer** performs a minimization at each step in an annealing schedule. When history is turned on, the results of each step are recorded in an **AnnealingHistory** object. This data may be useful when adjusting the schedule for optimal performance. For example, this code prints out the complete history after a minimization:

**Code Example – C# simulated annealing**

```csharp
DoubleVector min = minimizer.Minimize(f, startingPoint);
AnnealingHistory history = minimizer.AnnealingHistory;
Console.WriteLine(history);
```

**Code Example – VB simulated annealing**

```vbnet
Dim Min As DoubleVector = Minimizer.Minimize(F, StartingPoint)
Dim History As AnnealingHistory = Minimizer.AnnealingHistory
Console.WriteLine(History)
```

**AnnealingHistory** also provides a variety of properties for accessing specific information:

- **Function** gets the function that was minimized.
- **MaximumIterations** gets the number of maximum iterations at each step in the annealing history.
- **Iterations** gets the number of iterations actually performed at each step in the annealing history.
- **Temperatures** gets the temperatures at each step in the annealing history.
- **Simplexes** gets the starting simplexes at each step in the annealing history.
- **MinimumPoints** gets the minima computed at each step in the annealing history.
- **MinimumValues** gets the function evaluated at the minima computed at each step in the annealing history.
- **Errors** gets the errors at each step in the annealing history.

The inner class **AnnealingHistory.Step** encapsulates all of the data associated with a particular step in an **AnnealingHistory**. The **AnnealingHistory.Steps** property returns a **IList** of the steps in the annealing history:

**Code Example – C# simulated annealing**

```csharp
AnnealingHistory history = minimizer.AnnealingHistory;
foreach(AnnealingHistory.Step step in history)
{
 Console.WriteLine(step);
}
```
Code Example – VB simulated annealing

Dim History As AnnealingHistory = Minimizer.AnnealingHistory

For Each AnnealingStep As AnnealingHistory.Step In History
    Console.WriteLine(AnnealingStep)
Next

The provided indexer can also be used to retrieve information about a particular step. For example, this code prints out a summary of the third step:

Code Example – C# simulated annealing

Console.WriteLine( history[3] );

Code Example – VB simulated annealing

Console.WriteLine(History(3))
A linear programming (LP) problem optimizes a linear objective function subject to a set of linear constraints, and optionally subject to a set of variable bounds. For example:

Maximize
\[
Z = X_1 + 4\,X_2 + 9\,X_3
\]

Subject To
\[
\begin{align*}
X_1 + X_2 &\leq 5 \\
X_1 + X_3 &\geq 10 \\
-X_2 + X_3 &= 7
\end{align*}
\]

Bounds
\[
0 \leq X_1 \leq 4 \\
0 \leq X_2 \leq 1
\]

In NMath, class `LinearProgrammingProblem` encapsulates an LP problem. `MixedIntegerLinearProgrammingProblem` encapsulates an LP problem which may contain integral or binary constraints.

Class `PrimalSimplexSolver` solves linear programming problems using the primal simplex method. `DualSimplexSolver` uses the dual simplex method. The simplex method solves LP problems by constructing an initial solution at a vertex of a simplex, then walking along edges of the simplex to vertices with successively higher values of the objective function until the optimum is reached.

This chapter describes how to solve LP problems using NMath.

### 29.1 Encapsulating LP Problems

Class `LinearProgrammingProblem` encapsulates an LP problem. Instances are constructed from a vector of coefficients representing the objective function.

Code Example – C# linear programming

```csharp
// z = x1 + 4*x2 + 9*x3
var coeff = new DoubleVector("[1 4 9]");
var problem = new LinearProgrammingProblem(coeff);
```
MixedIntegerLinearProgrammingProblem encapsulates an LP problem which may contain integral or binary constraints.

Adding Bounds and Constraints

LinearProgrammingProblem instances maintain a list of LinearConstraint objects, accessible via the Constraints property. A linear constraint on a set of variables is a constraint upon a linear combination of those variables. LinearConstraint supports two such constraints: equality constraints and lower bound constraints. That is, given variables \(x_0, x_1, \ldots, x_n\) and constants \(b, a_0, a_1, \ldots, a_n\), two types of constraints may be formed

\[a_0 \cdot x_0 + a_1 \cdot x_1 + \ldots + a_n \cdot x_n = b\]

and

\[a_0 \cdot x_0 + a_1 \cdot x_1 + \ldots + a_n \cdot x_n \geq b\]

**NOTE**—Upper bound constraints are represented as negations of lower bound constraints.

Constraints may be added to a LinearProgrammingProblem by working directly with the Constraints list, or by using the AddConstraint() method.

LinearConstraint instances are constructed from a vector of coefficients, a right-hand side, and a constraint type from the ConstraintType enumeration.

**Code Example – C# linear programming**

```csharp
// 0 \leq x_0 + 2 \cdot x_1 + 2 \cdot x_2
var coeff = new DoubleVector(1.0, 2.0, 2.0);
var constraint = new LinearConstraint(coeff, 0, ConstraintType.GreaterThanOrEqualTo);
problem.AddConstraint(constraint);
```

A variety of convenience methods are also provided on LinearProgrammingProblem for adding constraints and variable bounds to an existing LP problem. These methods create the required LinearConstraint objects for you and add them to the Constraints list.

**Code Example – C# linear programming**

```csharp
// 0 \leq x_0 + 2 \cdot x_1 + 2 \cdot x_2 \leq 72
var coeff = new DoubleVector(1.0, 2.0, 2.0);
problem.AddConstraint(coeff, 0, 72);
```

MixedIntegerLinearProgrammingProblem encapsulates an LP problem which may contain integral or binary constraints. For example, in this code the first variable is constrained to be integer valued.
Here, the $i$th variable in the solution must be binary.

A binary constraint restricts the variable to a value of zero or one.

Method `GetIntegrality()` gets the integral constraint state of the variable at the given index. `IntegralVariableIndices` returns the indices of variables with integral constraints.

### 29.2 Solving LP Problems

Class `PrimalSimplexSolver` solves linear programming problems using the primal simplex method. `DualSimplexSolver` uses the dual simplex method. The simplex method solves LP problems by constructing an initial solution at a vertex of a simplex, then walking along edges of the simplex to vertices with successively higher values of the objective function until the optimum is reached.

The `Solve()` method takes a `LinearProgrammingProblem` or `MixedIntegerLinearProgrammingProblem` and, optionally, a solver parameter object.

```csharp
var solver = new PrimalSimplexSolver();
solver.Solve(problem);
```

This code demonstrates using a solver parameter object.

```csharp
var solverParams = new DualSimplexSolverParams
{
 // Use steepest edge pivoting
 Costing = DualSimplexCosting.SteepestEdge,

 // Do not perform more than 1000 pivots
 MaxPivotCount = 1000,

 // Minimize, rather than maximize, the objective function
 Minimize = true
};
```
var solver = new DualSimplexSolver();
solver.Solve( problem, solverParams );

It is important to check whether a finite solution was found, since your problem may be unbounded or infeasible. If a finite solution was found, you can access the solution using the OptimalX property. The OptimalObjectiveFunctionValue property gets the value of the objective function evaluated at the solution.

Code Example – C# linear programming

if ( solver.Result == PrimalSimplexSolver.SolveResult.Optimal )
{
    Console.WriteLine( solver.OptimalX );
    Console.WriteLine( solver.OptimalObjectiveFunctionValue );
}

If the solver result is SolverResult.UnexpectedException, you can use the ExceptionMessage property to get the exception message.
NMATH provides classes for solving both Nonlinear Programming (NLP) and Quadratic Programming (QP) problems.

This chapter describes how to use QP and NLP classes.

30.1 Objective and Constraint Function Classes

Nonlinear and quadratic programming problems seek to minimize an objective function, subject to a set of constraint functions. NMATH provides classes for encapsulating these functions, used by both QP and NLP solvers.

Objective Function Classes

Two classes support objective functions:

- Class **DoubleFunctional** is an abstract class which derives from **DoubleMultiVariableFunction**. It is a particular type of multivariable function, where the dimension of the range space is one. Deriving classes must implement the `Evaluate()` method, and may optionally provide a `Gradient()` method.

- Since it is sometimes convenient to specify the objective function and its corresponding gradient using delegates (including anonymous delegates and lambda expressions), class **DoubleFunctionalDelegate** derives from **DoubleFunctional** and provides an easy way to wrap delegates in a **DoubleFunctional** interface. Thus, all functions which take a **DoubleFunctional** argument are overloaded to take a delegate argument.

For example, this code sub-classes **DoubleFunctional** to encapsulate an objective function:

**Code Example – C#**

```csharp
// f(x) = exp(x0)*(4*x0^2 + 2*x1^2 + 4*x0*x1 + 2*x1 + 1)

class MyObjectiveFunction : DoubleFunctional
{
```
// Constructor. Must initialize the base class with the
// dimension of the domain--2 in this case.
public ObjectiveFunction()
    : base( 2 )
{}

public override double Evaluate( DoubleVector x )
{
    double x0 = x[0];
    double x1 = x[1];
    return Math.Exp( x0 ) * ( 4 * x0 * x0 + 2 * x1 * x1 + 4 * x0 * x1 + 2 * x1 + 1 );
}

public override void Gradient( DoubleVector x, DoubleVector grad )
{
    double x0 = x[0];
    double x1 = x[1];
    double ex0 = Math.Exp( x0 );
    grad[0] = ex0 * ( 4 * x0 * x0 + 2 * x1 * x1 + 4 * x0 * x1 + 2 * x1 + 1 ) + ex0 * ( 8 * x0 + 4 * x1 );
    grad[1] = ex0 * ( 4 * x0 + 4 * x1 + 2 );
}

Code Example – VB

' f(x) = exp(x0)*(4*x0^2 + 2*x1^2 + 4*x0*x1 + 2*x1 + 1)
Public Class MyObjectiveFunction
    Inherits DoubleFunctional

    ' Constructor. Must initialize the base class with the
    ' dimension of the domain--2 in this case.
    Public Sub New()
        MyBase.New(2)
    End Sub

    Public Overrides Function Evaluate(X As DoubleVector) As Double
        Dim X0 As Double = X(0)
        Dim X1 As Double = X(1)
        Return Math.Exp(X0) * ( 4 * X0 * X0 + 2 * X1 * X1 + 4 * X0 * X1 + 2 * X1 + 1 )
    End Function

    Public Overrides Sub Gradient(X As DoubleVector, Grad As DoubleVector)
        Dim X0 = X(0)
        Dim X1 = X(1)
        Dim EX0 = Math.Exp(X0)

Grad(0) = EX0 * (4 * X0 * X0 + 2 * X1 * X1 + 4 * X0 * X1 + 2 * 
    X1 + 1) + EX0 * (8 * X0 + 4 * X1)
Grad(1) = EX0 * (4 * X0 + 4 * X1 + 2)

End Sub

End Class

This code uses a **DoubleFunctionalDelegate**: 

**Code Example – C#**

```csharp
public double MyFunction(DoubleVector x)
{
 // f(x) = -x0 * x1 *x2
 return -x[0] * x[1] * x[2];
}

int xDim = 3;
Func<DoubleVector, double> functional = MyFunction;

var objective = new DoubleFunctionalDelegate(xDim, functional)
```

**Code Example – VB**

```vb
Public Function MyFunction(X As DoubleVector) As Double
 ' f(x) = -x0 * x1 *x2
 Return -X(0) * X(1) * X(2)
End Function

Dim XDim As Integer = 3
Dim Functional As New Func(Of DoubleVector, Double
 (AddressOf MyFunction)

Dim Objective As New DoubleFunctionalDelegate(XDim, Functional)
```

**Constraint Function Classes**

**NMath** provides two concrete constraint classes: **LinearConstraint** and **NonlinearConstraint**, which both derive from the abstract base class **Constraint**. Constraint objects contain a constraint function \( c(x) \) and a constraint type, either equality or inequality, specified using the **ConstraintType** enumeration.

**NOTE**—It is assumed that equality type constraints have their constraint function \( c(x) \) equal to zero, and inequality type constraints have their constraint function \( c(x) \) greater than or equal to zero.

A **linear constraint** on a set of variables is a constraint upon a linear combination of those variables. **LinearConstraint** supports two such constraints: equality constraints and lower bound constraints. That is, given variables \( x_0, x_1, \ldots, x_n \) and constants \( b, a_0, a_1, \ldots, a_n \), two types of constraints may be formed.
\[ a_0 x_0 + a_1 x_1 + \ldots + a_n x_n = b \]

and

\[ a_0 x_0 + a_1 x_1 + \ldots + a_n x_n \geq b \]

Upper bound constraints are represented as negations of lower bound constraints.

Nonlinear constraints are of the form \( c(x) \geq 0 \) (inequality constraint), or \( c(x) = 0 \) (equality constraint), where \( c(x) \) is a real-valued, smooth function of the vector variable. Constraints can also be constructed with a tolerance. Equality constraints are satisfied when \( |c(x)| \leq \text{tol} \); inequality constraints are satisfied when \( c(x) \geq -\text{tol} \).

In most cases, you will not need to create constraint objects directly. QP and NLP problem classes provide methods for adding constraints which construct the necessary constraint objects for you.

### 30.2 Nonlinear Programming

A general formulation of a nonlinear programming (NLP) problem is:

\[
\begin{align*}
\min f(x) \\
x \in \mathbb{R}^n
\end{align*}
\]

subject to

\[
\begin{align*}
c_i(x) &= 0, \ i \in E \\
c_i(x) &\geq 0, \ i \in I
\end{align*}
\]

where the functions \( f \) and \( c_i \) are all smooth (continuous derivative), real-valued functions on a subset of \( \mathbb{R}^n \), and \( E \) and \( I \) are finite sets of indices. Function \( f \) is called the objective function, and functions \( c_i \) are called the constraint functions.

### Encapsulating the Problem

In **NMath**, class **NonlinearProgrammingProblem** encapsulates an NLP problem. **MixedIntegerNonlinearProgrammingProblem** encapsulates an NLP which may contain integral or binary constraints.

Instances are constructed from an objective function to minimize, and optionally an **IEnumerable** of **Constraint** objects. Alternatively, constraints can be added post-construction using convenience methods.
For example, if MyObjectiveFunction extends DoubleFunctional (see Section 30.1):

**Code Example – C# nonlinear programming**

```csharp
DoubleFunctional objective = new MyObjectiveFunction();
var problem = new NonlinearProgrammingProblem(objective);
```

**Code Example – VB nonlinear programming**

```vbnet
Dim Objective As DoubleFunctional = New MyObjectiveFunction()
Dim Problem As New NonlinearProgrammingProblem(Objective)
```

Rather than sub-classing, you can also use a delegate to express the objective function, in which case you must also specify the dimension of the domain of the objective function. For instance:

**Code Example – C# nonlinear programming**

```csharp
public double MyFunction(DoubleVector x)
{
 // min f(x) = -x0 * x1 * x2
 return -x[0] * x[1] * x[2];
}
```

```csharp
int xDim = 3;
Func<DoubleVector, double> objective = MyFunction;
var problem = new NonlinearProgrammingProblem(xDim, objective);
```

**Code Example – VB nonlinear programming**

```vbnet
Public Function MyFunction(X As DoubleVector)
 ' min f(x) = -x0 * x1 * x2
 Return -X(0) * X(1) * X(2)
End Function
```

```vbnet
Dim XDim As Integer = 3
Dim Objective As New Func(Of DoubleVector, Double)(MyFunction)
Dim Problem As New NonlinearProgrammingProblem(XDim, Objective)
```

This code specifies two constraints in the constructor:

**Code Example – C# nonlinear programming**

```csharp
var constraints = new List<Constraint>();
var c1 =
 new DoubleFunctionalDelegate(2, new Func<DoubleVector,
 double>(delegate(DoubleVector v) { return v[0]; }));
var constraint1 = new NonlinearConstraint(
 c1, ConstraintType.GreaterThanOrEqualTo)
constraints.Add(constraint1);
```

```csharp
var c2 =
```
new DoubleFunctionalDelegate(2, new Func<DoubleVector, double>(delegate(DoubleVector v) { return v[1]; }));

var constraint2 = new NonlinearConstraint(c2, ConstraintType.GreaterThanOrEqualTo);
constraints.Add(constraint2);

var problem =
new NonlinearProgrammingProblem(objective, constraints);

Code Example – VB nonlinear programming

Dim Constraints As New List(Of Constraint)
Dim C1 As New DoubleFunctionalDelegate(2,
    New Func(Of DoubleVector, Double)(MyConstraintFunction1))
Dim Constraint1 As New NonlinearConstraint(C1,
    ConstraintType.GreaterThanOrEqualTo)
Constraints.Add(Constraint1)

Dim C2 As New DoubleFunctionalDelegate(2,
    New Func(Of DoubleVector, Double)(MyConstraintFunction2))
Dim Constraint2 As New NonlinearConstraint(C2,
    ConstraintType.GreaterThanOrEqualTo)
Constraints.Add(Constraint2)

Dim Problem As New NonlinearProgrammingProblem(Objective,
    Constraints)

Adding Bounds and Constraints

Class NonlinearProgrammingProblem provides several convenience methods for adding constraints and variable bound to an existing problem object.

For example, this code adds lower and upper variable bounds:

Code Example – C# nonlinear programming

// 0 <= x0, x1, x2 <= 42
for ( int i = 0; i < xDim; i++ ) {
    problem.AddBounds( i, 0.0, 42.0 );
}

Code Example – VB nonlinear programming

' 0 <= x0, x1, x2 <= 42
For I As Integer = 0 To XDim - 1
    Problem.AddBounds(I, 0.0, 42.0)
Next

This code adds a linear constraint:
Code Example – C# nonlinear programming

```csharp
// 0 <= x0 + 2*x1 + 2*x2 <= 72,
problem.AddLinearConstraint(new DoubleVector(1.0, 2.0, 2.0),
 0.0, 72);
```

Code Example – VB nonlinear programming

```vbnet
' 0 <= x0 + 2*x1 + 2*x2 <= 72,
Problem.AddLinearConstraint(New DoubleVector(1.0, 2.0, 2.0),0.0,
 72)
```

This code adds constraint functions:

Code Example – C# nonlinear programming

```csharp
int xDim = 2;

// x0*x1 >= -10
problem.AddLowerBoundConstraint(xDim,
 (DoubleVector x) => x[0] * x[1], -10.0);

// x0*x1 - x0 -x1 <= -1.5
problem.AddUpperBoundConstraint(xDim,
 (DoubleVector x) => x[0] * x[1] - x[0] - x[1], -1.5);
```

Code Example – VB nonlinear programming

```vbnet
Dim XDim As Integer = 2

Public Function LowerConstraint(X As DoubleVector) As Double
 Return X(0) * X(1)
End Function

Public Function UpperConstraint(X As DoubleVector) As Double
 Return X(0) * X(1) - X(0) - X(1)
End Function

' x0*x1 >= -10
Problem.AddLowerBoundConstraint(xDim, New Func(Of DoubleVector,
 Double)(AddressOf LowerConstraint), -10.0)

' x0*x1 - x0 -x1 <= -1.5
Problem.AddUpperBoundConstraint(xDim, New Func(Of DoubleVector,
 Double)(AddressOf UpperConstraint), -1.5)
```

**MixedIntegerNonlinearProgrammingProblem** encapsulates an NLP which may contain integral or binary constraints. For example, in this code variable index 2 is constrained to be integer valued.

Code Example – C# integer programming

```csharp
problem.AddIntegralConstraint(2);
```
Here, variable indices 0 and 1 must be binary.

**Code Example – C# binary programming**

```csharp
problem.AddBinaryConstraint(0, 1);
```

A binary constraint restricts the variable to a value of zero or one.

Method `GetIntegrality()` gets the integral constraint state of the variable at the given index. `IntegralVariableIndices` returns the indices of variables with integral constraints.

**Solving the Problem**

*NMath* provides two types of NLP solvers: Stochastic Hill Climbing and Sequential Quadratic Programming (SQP).

**Stochastic Hill Climbing**

The strategy of the Stochastic Hill Climbing algorithm is to iteratively make small random changes to the decision values. A candidate solution is accepted if it results in an improvement, and rejected if it makes it worse. The strategy addresses the limitations of deterministic hill climbing techniques, which are prone to getting stuck in local optima due to their greedy acceptance of neighboring moves.

The algorithm is stochastic. Setting a random seed ensures consistent results between runs.

**Code Example – C# nonlinear programming**

```csharp
solver.RandomSeed = 0x248;
```

**Code Example – VB nonlinear programming**

```vbnet
Solver.RandomSeed = &H248
```

Additional parameters are specified using an instance of `StochasticHillClimbingParameters`.
Code Example – C# nonlinear programming

```csharp
var solverParams = new StochasticHillClimbingParameters
{
 TimeLimitMilliSeconds = 10000,
 Presolve = true
};
```

Code Example – VB nonlinear programming

```vbnet
Dim SolverParams As New StochasticHillClimbingParameters()
SolverParams.TimeLimitMilliSeconds = 10000
SolverParams.Presolve = True
```

Note that this example sets a time limit of 10 seconds for the solver. By default, the solver runs until a solution is found. Since this may take forever, it is a good idea to set a reasonable time limit on the solve. If an optimal solution is not found within the specified time limit, the solver exits and the solver's `Result` property will be equal to `SolverResult.SolverInterrupted`.

This example also sets `Presolve = true`. By default there is no pre-solve step. For some problems pre-solve can reduce the size and complexity and result in fewer steps to reach a solution.

This code performs the actual solve and prints out the results:

Code Example – C# nonlinear programming

```csharp
solver.Solve(problem, solverParams);
Console.WriteLine("Solver Result = " + solver.Result);
Console.WriteLine("Number of steps = " + solver.Steps);
Console.WriteLine("Optimal x = " + solver.OptimalX);
Console.WriteLine("Optimal function value = " + solver.OptimalObjectiveFunctionValue);
```

Code Example – VB nonlinear programming

```vbnet
Solver.Solve(Problem, SolverParams)
Console.WriteLine("Solver Result = {0}", Solver.Result)
Console.WriteLine("Number of steps = {0}", Solver.Steps)
Console.WriteLine("Optimal x = {0}", Solver.OptimalX)
Console.WriteLine("Optimal function value = {0}",
 Solver.OptimalObjectiveFunctionValue)
```

Sequential Quadratic Programming (SQP)

SQP algorithms solve NLP problems iteratively. At each step, a quadratic sub-problem is formed from the Hessian of the Lagrangian, $H_k$, the constraints, and the current iterate value $x_k$. The solution of this sub-problem yields a step direction $p_k$. Next a step size $a_k$ is determined, and the new iterate value is obtained as $x_{k+1} = x_k + a_k p_k$. 
SequentialQuadraticProgrammingSolver is the abstract base class for SQP solvers. NMath currently provides one concrete implementation: ActiveSetLineSearchSQP solves NLP problems using an active set algorithm.

Code Example – C# nonlinear programming

```csharp
var solver = new ActiveSetLineSearchSQP();
```

Code Example – VB nonlinear programming

```vbnet
Dim Solver As New ActiveSetLineSearchSQP()
```

A convergence tolerance and maximum number of iterations can also be specified in the constructor, as well as other advanced options (see below):

Code Example – C# nonlinear programming

```csharp
double tolerance = 1e-4;
var solver = new ActiveSetLineSearchSQP(tolerance);
```

Code Example – VB nonlinear programming

```vbnet
Dim Tolerance As Double = "1e-4"
Dim Solver As New ActiveSetLineSearchSQP(Tolerance)
```

The `Solve()` method solves the problem given an initial starting position, and returns `true` if the algorithm terminated successfully:

Code Example – C# nonlinear programming

```csharp
var x0 = new DoubleVector(3, 1.0);
bool success = solver.Solve(problem, x0);
Console.WriteLine("Termination status = " + solver.SolverTerminationStatus);
```

Code Example – VB nonlinear programming

```vbnet
Dim X0 As New DoubleVector(3, 1.0)
Dim Success = Solver.Solve(Problem, X0)
Console.WriteLine("Termination status = {0}", Solver.SolverTerminationStatus)
```

Properties on the solver get the minimum x-value found, and the objective function evaluated at that point:

Code Example – C# nonlinear programming

```csharp
Console.WriteLine("X = " + solver.OptimalX);
Console.WriteLine("f(x) = " + solver.OptimalObjectiveFunctionValue);
```

Code Example – VB nonlinear programming

```vbnet
Console.WriteLine("X = ", Solver.OptimalX)
Console.WriteLine("f(x) = ", Solver.OptimalObjectiveFunctionValue)
```
Code Example – VB nonlinear programming

```vbnet
Console.WriteLine("X = {0}", Solver.OptimalX)
Console.WriteLine("f(x) = {0}",
 Solver.OptimalObjectiveFunctionValue)
```

ActiveSetLineSearchSQP.Options provides advanced options for controlling the ActiveSetLineSearchSQP algorithm, such as the step size and finer grain convergence tolerances:

Code Example – C# nonlinear programming

```csharp
var solverOptions = new ActiveSetLineSearchSQP.Options();
solverOptions.StepSizeCalculator = new ConstantSQPStepSize(1);
solverOptions.StepDirectionTolerance = 1e-8;
solverOptions.FunctionChangeTolerance = 1e-6;
```

This code sets the step size calculator to use an instance of ConstantSQPStepSize, which simply returns a constant step size regardless of iteration values. By default, the ActiveSetLineSearchSQP algorithm uses an instance of L1MeritStepSize, which computes the step size based on sufficient decrease in the L1 merit function.

### 30.3 Quadratic Programming

A quadratic programming (QP) problem is a NLP problem with a specific form for the objective and constraint functions. A QP problem has the following form:

\[
\min q(x) = \frac{1}{2}x^T H x + x^T c \\
x \in \mathbb{R}^n
\]

subject to

\[
\begin{align*}
a_i^T x &= b_i, \quad i \in E \\
a_i^T x &\geq b_i, \quad i \in I
\end{align*}
\]
where $H$ is a symmetric $nxn$ matrix, $E$ and $I$ are finite sets of indices, and $c$, $x$, and $a_i$ are vectors in $R^n$. The matrix $H$ is the Hessian of the objective function $q(x)$.

**NOTE**—Only convex QP problems are supported. A QP problem is convex if the matrix $H$ in the objective function is positive definite.

**Encapsulating the Problem**

In NMath, class `QuadraticProgrammingProblem` class encapsulates a QP problem. The objective function is specified by providing the matrix $H$ and the vector $c$. The matrix $H$, usually referred to as the Hessian, is the quadratic coefficient matrix. The vector $c$, sometimes referred to as the gradient, contains the coefficients for the linear terms.

For example, to minimize

$$q(x) = (x_0 - 1)^2 + (x_1 - 2.5)^2$$

Translate the objective function into the form $0.5x'Hx + x'c$. In this case:

$$H = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

$$c = \begin{bmatrix} -2 \\ -5 \end{bmatrix}$$

This code sets up the QP problem:

**Code Example – C# quadratic programming problem**

```csharp
var H = new DoubleMatrix("2x2[2 0 0 2]");
var c = new DoubleVector(-2.0, -5.0);
var problem = new QuadraticProgrammingProblem(H, c);
```

**Code Example – VB quadratic programming problem**

```vbnet
Dim H As New DoubleMatrix("2x2[2 0 0 2]")
Dim C As New DoubleVector(-2.0, -5.0)
Dim Problem As New QuadraticProgrammingProblem(H, C)
```

**Adding Bounds and Constraints**

The constraints in a QP problem must be linear. There are several convenience methods provided for adding constraints and variable bounds.
For instance, given constraints:

\[-x_0 + 2x_1 \leq 2\]
\[x_0 - 2x_1 \geq -6\]
\[-x_0 + 2x_1 \geq -2\]
\[x_0 \geq 0\]
\[x_1 \geq 0\]

The following code adds these constraints to an existing `QuadraticProgrammingProblem` object:

**Code Example – C# quadratic programming problem**

```csharp
problem.AddUpperBoundConstraint(
 new DoubleVector(-1.0, 2.0), 2.0);
problem.AddLowerBoundConstraint(
 new DoubleVector(1.0, -2.0), -6.0);
problem.AddLowerBoundConstraint(
 new DoubleVector(-1.0, 2.0), -2.0);
problem.AddLowerBound(0, 0);
problem.AddLowerBound(1, 0);
```

**Code Example – VB quadratic programming problem**

```vbnet
Problem.AddUpperBoundConstraint(New DoubleVector(-1.0, 2.0), 2.0)
Problem.AddLowerBoundConstraint(New DoubleVector(1.0, -2.0), -6.0)
Problem.AddLowerBoundConstraint(New DoubleVector(-1.0, 2.0), -2.0)
Problem.AddLowerBound(0, 0)
Problem.AddLowerBound(1, 0)
```

**Solving the Problem**

NMath provides two classes for solving quadratic programming problems:

- Class `ActiveSetQPSolver` solves QP problems using an active set algorithm.
- Class `InteriorPointQPSolver` solves QP problems using an interior point algorithm.

**Active Set**

Class `ActiveSetQPSolver` solves QP problems using an active set algorithm. The active set contains a subset of inequalities to watch while searching for a solution, which reduces the complexity of the search.
Code Example – C# active set quadratic programming

```csharp
var solver = new ActiveSetQPSolver();
```

Code Example – VB active set quadratic programming

```vbnet
Dim Solver As New ActiveSetQPSolver()
```

The `Solve()` method solves the problem, and returns `true` if the algorithm terminated successfully:

Code Example – C# active set quadratic programming

```csharp
if (!solver.Solve(problem)) {
 Console.WriteLine("Solver failed: {0}", solver.Status);
} else {
 Console.WriteLine("Solver found solution (x0, x1) = (\{0\}, \{1\})", solver.OptimalX[0], solver.OptimalX[1]);
 Console.WriteLine("After {0} iterations", solver.Iterations);
 Console.WriteLine("Optimal objective function value = \{0\}", solver.OptimalObjectiveFunctionValue);
}
```

Code Example – VB active set quadratic programming

```vbnet
If Not Solver.Solve(Problem) Then
 Console.WriteLine("Solver failed: \{0\}", Solver.Status)
Else
 Console.WriteLine("Solver found solution (x0, x1) = (\{0\}, \{1\})", Solver.OptimalX(0), Solver.OptimalX(1))
 Console.WriteLine("After \{0\} iterations", Solver.Iterations)
 Console.WriteLine("Optimal objective function value = \{0\}", Solver.OptimalObjectiveFunctionValue)
End If
```

The `Solve()` method also optionally accepts a starting point for the solution search. The starting point need not be a feasible point.

**Interior Point**

Class `InteriorPointQPSolver` solvesQP problems using an interior point algorithm.

Code Example – C# interior point quadratic programming

```csharp
var solver = new InteriorPointQPSolver();
```

Code Example – VB interior point quadratic programming

```vbnet
Dim Solver As New InteriorPointQPSolver()
```

Parameters are specified using an instance of `InteriorPointQPSolverParams`. 
Code Example – C# interior point quadratic programming

```csharp
var solverParams = new InteriorPointQPSolverParams
{
 KktForm = InteriorPointQPSolverParams.KktFormOption.Blended,
 Tolerance = 1e-6,
 MaxDenseColumnRatio = 0.9,
 PresolveLevel =
 InteriorPointQPSolverParams.PresolveLevelOption.Full,
 SymbolicOrdering = InteriorPointQPSolverParams.
 SymbolicOrderingOption.ApproximateMinDegree
};
```

Code Example – VB interior point quadratic programming

```vbnet
Dim SolverParams As New InteriorPointQPSolverParams
SolverParams.KktForm = InteriorPointQPSolverParams.KktFormOption.Blended
SolverParams.Tolerance = "1e-6"
SolverParams.MaxDenseColumnRatio = 0.9
SolverParams.PresolveLevel = InteriorPointQPSolverParams.PresolveLevelOption.Full
 SymbolicOrderingOption.ApproximateMinDegree
```

This code performs the actual solve and prints out the results:

Code Example – C# interior point quadratic programming

```csharp
solver.Solve(problem, solverParams);

Console.WriteLine("Solver Parameters:");
Console.WriteLine(solverParams.ToString());
Console.WriteLine("Result = {0}", solver.Result);
Console.WriteLine("Optimal x = {0}", solver.OptimalX);
Console.WriteLine("Optimal Function value = {0}", solver.OptimalObjectiveFunctionValue);
Console.WriteLine("iterations = {0}", solver.IterationCount);
```

Code Example – VB interior point quadratic programming

```vbnet
Console.WriteLine("Solver Parameters:")
Console.WriteLine(SolverParams.ToString())
Console.WriteLine("Result = {0}", Solver.Result)
Console.WriteLine("Optimal x = {0}", Solver.OptimalX)
Console.WriteLine("Optimal Function value = {0}", Solver.OptimalObjectiveFunctionValue)
Console.WriteLine("iterations = {0}", Solver.IterationCount)
```
30.4 Constrained Least Squares

When least squares problems are unconstrained, they can be solved by geometric means, such as orthogonal projection. When constraints are introduced, however, nonlinear optimization techniques are required. In NMath, class ConstrainedLeastSquaresProblem encapsulates a constrained least squares problem, which can be solved using class ConstrainedLeastSquares. The problem is solved by reformulating as a quadratic programming problem (Section 30.3).

Encapsulating the Problem

A least squares problem solves $Cx = d$ by minimizing $\|Cx - d\|^2$. Class ConstrainedLeastSquaresProblem encapsulates a constrained least squares problem. First construct the problem object from the matrix $C$ and the vector $d$.

Code Example – C# constrained least squares

```csharp
var C = new DoubleMatrix(
 "5x4 0.9501 0.7620 0.6153 0.4057
 0.2311 0.4564 0.7919 0.9354
 0.6068 0.0185 0.9218 0.9169
 0.4859 0.8214 0.7382 0.4102
 0.8912 0.4447 0.1762 0.8936"
);
var d = new DoubleVector(0.0578, 0.3528, 0.8131, 0.0098, 0.1388);
var problem = new ConstrainedLeastSquaresProblem(C, d);
```

Code Example – VB constrained least squares

```vbnet
Dim C As New DoubleMatrix("5x4 0.9501 0.7620 0.6153 0.4057
 0.2311 0.4564 0.7919 0.9354
 0.6068 0.0185 0.9218 0.9169
 0.4859 0.8214 0.7382 0.4102
 0.8912 0.4447 0.1762 0.8936")
Dim D As New DoubleVector(0.0578, 0.3528, 0.8131, 0.0098, 0.1388)
Dim Problem As New ConstrainedLeastSquaresProblem(C, D)
```

Adding Bounds and Constraints

Next, add the bounds and constraints. Constraints are specified using a constraint matrix, a vector of right-hand sides, and a tolerance. For example, this code adds the inequality constraints $Ax \leq b$ using a constraint tolerance of 0.00001. This
allows for small violations of the constraints. Specifically the constraints will be considered satisfied for a vector \( x \) if \( Ax \leq b + 0.00001 \).

**Code Example – C# constrained least squares**

```csharp
var A = new DoubleMatrix(
 "3x4[0.2027 0.2721 0.7467 0.4659] +
 "0.1987 0.1988 0.4450 0.4186] +
 "0.6037 0.0152 0.9318 0.8462]"
);
var b = new DoubleVector(0.5251, 0.2026, 0.6721);
double constraintTolerance = 0.00001;

for (int i = 0; i < A.Rows; i++)
{
 problem.AddUpperBoundConstraint(A.Row(i), b[i], constraintTolerance);
}
```

**Code Example – VB constrained least squares**

```vbnet
Dim A As New DoubleMatrix(
 "3x4[0.2027 0.2721 0.7467 0.4659] &
 "0.1987 0.1988 0.4450 0.4186] &
 "0.6037 0.0152 0.9318 0.8462]")
Dim B As New DoubleVector(0.5251, 0.2026, 0.6721)
Dim ConstraintTolerance As Double = 0.00001

Dim I As Integer
For I = 0 To A.Rows - 1
 Problem.AddUpperBoundConstraint(A.Row(I), B(I), ConstraintTolerance)
Next
```

This code add variable bounds \(-0.1 \leq x[i] \leq 2.0\).

**Code Example – C# constrained least squares**

```csharp
for (int i = 0; i < problem.NumVariables; i++)
{
 problem.AddBounds(i, -0.10, 2.0, .00001);
}
```

**Code Example – VB constrained least squares**

```vbnet
For I = 0 To Problem.NumVariables - 1
 Problem.AddBounds(I, -0.1, 2.0, 0.00001)
Next
```

**Solving the Problem**

ConstrainedLeastSquares uses a Quadratic Programming (QP) solver to solve the constrained least squares problem.
Code Example – C# constrained least squares

```csharp
var solver = new ConstrainedLeastSquares();
bool success = solver.Solve(problem);
Console.WriteLine("Success = {0}", success);
Console.WriteLine("Solution x = {0}", solver.X);
Console.WriteLine("Residual norm = {0}", solver.ResidualNorm);
Console.WriteLine("Performed {0} iterations", solver.Iterations);
```

Code Example – VB constrained least squares

```vbnet
Dim Solver As New ConstrainedLeastSquares()
Dim Success As Boolean = Solver.Solve(Problem)
Console.WriteLine("Success = {0}", Success)
Console.WriteLine("Solution x = {0}", Solver.X)
Console.WriteLine("Residual norm = {0}", Solver.ResidualNorm)
Console.WriteLine("Performed {0} iterations", Solver.Iterations)
```

By default, the QP solver used is the active set solver with default options (Section 30.3). You can also pass in an instance of a QP solver for the constrained least squares class to use. This allows you to set options on the QP solver and inspect results.

Code Example – C# constrained least squares

```csharp
var interiorPointQp = new InteriorPointQPSolver();
var solverParams = new InteriorPointQPSolverParams
{ MaxIterations = 10000,
 PresolveLevel =
 InteriorPointQPSolverParams.PresolveLevelOption.None
};

solver.Solve(problem, interiorPointQp,
 solverParams);
Console.WriteLine("Interior point QP result = {0}",
 interiorPointQp.Result);
```

Code Example – VB constrained least squares

```vbnet
Dim InteriorPointQp As New InteriorPointQPSolver()
Dim SolverParams = New InteriorPointQPSolverParams()
SolverParams.MaxIterations = 10000
SolverParams.PresolveLevel =
 InteriorPointQPSolverParams.PresolveLevelOption.None

Solver.Solve(Problem, InteriorPointQp, SolverParams)
Console.WriteLine("Interior point QP result = {0}",
 InteriorPointQp.Result)
```
If you use the active set QP solver you can determine which constraints are active in the solution by accessing the Lagrange multiplier property. A constraint is active if its corresponding Lagrange multiplier is nonzero.

**Code Example – C# constrained least squares**

```csharp
var activeSetQP = new ActiveSetQPSolver();
solver.Solve(problem, activeSetQP);

// Print out the active constraints.
for (int i = 0; i < activeSetQP.LagrangeMultiplier.Length; i++)
{
 if (activeSetQP.LagrangeMultiplier[i] != 0.0)
 {
 Console.WriteLine("Constraint {0} = {1} is active", i, problem.Constraints[i].ToString());
 }
}
```

**Code Example – VB constrained least squares**

```vbnet
Dim ActiveSetQP As New ActiveSetQPSolver()
Solver.Solve(Problem, ActiveSetQP)

' Print out the active constraints.
For i = 0 To ActiveSetQP.LagrangeMultiplier.Length - 1
 If (ActiveSetQP.LagrangeMultiplier(i) <> 0.0) Then
 Console.WriteLine("Constraint {0} = {1} is active", i, Problem.Constraints(i).ToString())
 End If
Next
```
As described in Chapter 8, the CenterSpace.NMath.Core namespace includes classes for calculating least squares fits of linear functions to a set of points. In addition, the class PolynomialLeastSquares, performs a least squares fit of a Polynomial to a set of points.

This chapter describes how to use class PolynomialLeastSquares.

NOTE—For testing the goodness of fit of PolynomialLeastSquares fits, see class GoodnessOfFit. Available statistics include the residual standard error, the coefficient of determination (R2 and "adjusted" R2), the F-statistic for the overall model with its numerator and denominator degrees of freedom, and standard errors, t-statistics, and finally corresponding (two-sided) p-values for the model parameters.

### 31.1 Creating PolynomialLeastSquares

A PolynomialLeastSquares is constructed from paired vectors of known x- and y-values, and the desired degree of the fitted polynomial. For example, this code fits a cubic:

**Code Example – C# polynomial fit**

```csharp
int degree = 4;
var fit = new PolynomialLeastSquares(degree, x, y);
```

**Code Example – VB polynomial fit**

```vbnet
Dim Degree = 4
Dim Fit As New PolynomialLeastSquares(Degree, X, Y)
```
31.2 Properties of PolynomialLeastSquares

Once constructed, a `PolynomialLeastSquares` object provides the following properties:

- `FittedPolynomial` gets the fitted `Polynomial` object.
- `Coefficients` gets the coefficients of the fitted polynomial. The constant is at index 0, and the leading coefficient is at index `Coefficients.Length - 1`.
- `Degree` gets the degree of the fitted polynomial.
- `LeastSquaresSolution` gets the `DoubleLeastSquares` object used to compute the coefficients.
- `DesignMatrix` gets the design matrix for the fit.

Finally, the `CoeffErrorEstimate()` method returns a vector of error estimates for the coefficients based on a given estimated error in the $y$-values. For example:

Code Example – C# polynomial fit

```csharp
Console.WriteLine(fit.CoeffErrorEstimate(0.01));
```

Code Example – VB polynomial fit

```vbnet
Console.WriteLine(Fit.CoeffErrorEstimate(0.01))
```
Chapter 32.
NONLINEAR LEAST SQUARES

NMath provides classes for solving nonlinear least squares problems.

Solving a nonlinear least squares problem means finding the best approximation to vector $y$ with the model function that has nonlinear dependence on variables $x$, by minimizing the sum, $S$, of the squared residuals:

$$S = \sum_{i=1}^{n} r_i^2$$

where

$$r_i = y - f(x_i)$$

Unlike the linear least squares problem, non-linear least squares does not have a closed form solution, and is therefore solved by iterative refinement.

NMath provides nonlinear least squares classes for:

- solving nonlinear least squares problems, with or without linear boundary constraints, using the Trust-Region or Levenberg-Marquardt methods
- curve fitting, by finding a minimum in the curve parameter space in the sum of the squared residuals with respect to a set of data points
- surface fitting, by finding a minimum in the surface parameter space in the sum of the squared residuals with respect to a set of data points

This chapter describes how to use the nonlinear least squares classes.

32.1 Nonlinear Least Squares Interfaces

In NMath, classes which solve nonlinear least squares problems implement either the INonlinearLeastSqMinimizer interface or the IBoundedNonlinearLeastSqMinimizer interface.
Minimization

The INonlinearLeastSqMinimizer interface provides the Minimize() method for minimizing a given function encapsulated as a DoubleMultiVariableFunction, an abstract class for representing a multivariable function. Instances override the Evaluate() method and, optionally, the Jacobian() method. If the Jacobian() method is not overridden, a central differences approximation is used to calculate the Jacobian.

For example, this code encapsulates a function that has four input variables and twenty output variables:

Code Example – C# nonlinear least squares

```csharp
public class MyFunction : DoubleMultiVariableFunction
{
 DoubleVector yi = new DoubleVector(20);
 DoubleVector ti = new DoubleVector(20);
 DoubleVector p = new DoubleVector(4);

 public MyFunction() : base(4, 20)
 {
 p[0] = -4;
 p[1] = -5;
 p[2] = 4;
 p[3] = -4;

 for (int i = 0; i < yi.Length; i++)
 {
 ti[i] = i;
 yi[i] = p[2]*Math.Exp(p[0]*i) + p[3]*Math.Exp(p[1]*i);
 }
 }

 public override void Evaluate(DoubleVector x, ref DoubleVector y)
 {
 if (x.Length != 4 || y.Length != 20) throw new ArgumentException("bad length");

 for (int i = 0; i < ti.Length; i++)
 {
 }
 }
}
```
Code Example – VB nonlinear least squares

Public Class MyFunction
    Inherits DoubleMultiVariableFunction

    Private YI As New DoubleVector(20)
    Private TI As New DoubleVector(20)
    Private P As New DoubleVector(4)

    Public Sub New()
        MyBase.New(4, 20)

        P(0) = -4
        P(1) = -5
        P(2) = 4
        P(3) = -4

        For I As Integer = 0 To YI.Length - 1
            TI(I) = I
        Next
    End Sub

    Public Overrides Sub Evaluate(X As DoubleVector, ByRef Y As DoubleVector)
        If X.Length <> 4 Or Y.Length <> 20 Then
            Throw New InvalidOperationException("bad length")
        End If

        For I As Integer = 0 To TI.Length - 1
            Y(I) = yi(I) - X(2) * Math.Exp(X(0) * TI(I)) - X(3) * Math.Exp(X(1) * TI(I))
        Next
    End Sub
End Class

The Minimize() method takes:

- the function to minimize, encapsulated as a DoubleMultiVariableFunction
- the starting point

The IBoundedNonlinearLeastSqMinimizer interface extends INonlinearLeastSqMinimizer to provide an overload of the Minimize() method which also accepts lower and upper linear bounds on the solution.
**Minimization Results**

The `Minimize()` method returns the solution found by the minimization:

**Code Example – C# nonlinear least squares**

```csharp
DoubleVector solution = minimizer.Minimize(f, start);
```

**Code Example – VB nonlinear least squares**

```vbnet
Dim Solution As DoubleVectorn = Minimizer.Minimize(F, Start)
```

Additional information about the last performed fit is available from properties in the `INonlinearLeastSqMinimizer` interface:

- `InitialResidual` gets the residual associated with the starting point.
- `FinalResidual` gets the residual associated with the last computed solution.
- `Iterations` gets the number of iterations used in the last computed solution.
- `MaxIterations` gets and sets the maximum number of iterations used in computing minima estimates.
- `MaxIterationsMet` returns `true` if the minimum just computed stopped because the maximum number of iterations was reached; otherwise, `false`.

For example:

**Code Example – C# nonlinear least squares**

```csharp
double initialResidual = minimizer.InitialResidual;
double finalResidual = minimizer.FinalResidual;
int iterations = minimizer.Iterations;
```

**Code Example – VB nonlinear least squares**

```vbnet
Dim InitialResidual As Double = Minimizer.InitialResidual
Dim FinalResidual As Double = Minimizer.FinalResidual
Dim Iterations As Integer = Minimizer.Iterations
```

**Implementations**

`NMath` provides two implementations of the nonlinear least squares interfaces:

- Class `TrustRegionMinimizer` (Section 32.2) solves both constrained and unconstrained nonlinear least squares problems using the Trust-Region method, and implements the `IBoundedNonlinearLeastSqMinimizer` interface.
• Class LevenbergMarquardtMinimizer (Section 32.3) solves nonlinear least squares problems using the Levenberg-Marquardt method, and implements the INonlinearLeastSqMinimizer interface.

## 32.2 Trust-Region Minimization

NMath provides class TrustRegionMinimizer for solving both constrained and unconstrained nonlinear least squares problems using the Trust-Region method. TrustRegionMinimizer implements the IBoundedNonlinearLeastSqMinimizer interface.

The Trust-Region method maintains a region around the current search point where a quadratic model is “trusted” to be correct. If an adequate model of the objective function is found within the trust region, the region is expanded. Otherwise, the region is contracted.

The Trust-Region algorithm requires the partial derivatives of the function, but a numerical approximation may be used if the closed form is not available.

### Constructing a TrustRegionMinimizer

Instances of TrustRegionMinimizer are constructed by specifying an error tolerance and a maximum number of iterations, or by accepting the defaults for these values. For example, this code constructs a TrustRegionMinimizer using the default tolerance and a maximum of 1000 iterations:

**Code Example – C# trust region minimization**

```csharp
int iter = 1000;
var minimizer = new TrustRegionMinimizer(iter);
```

**Code Example – VB nonlinear least squares**

```vbnet
Dim Iter As Integer = 1000
Dim Minimizer As New TrustRegionMinimizer(Iter)
```

### Minimization

Class TrustRegionMinimizer provides the Minimize() method for minimizing a given multivariable function. Functions may be multidimensional in both their domain, $x$, and range, $y$. 
The `Minimize()` method takes:

- the function, \( f \), to minimize, encapsulated as a `DoubleMultiVariableFunction`, as described in Section 32.1
- the starting point
- (optionally) lower and upper bounds on the solution

**NOTE**—The dimensionality of \( y \) must be greater than or equal to the dimensionality of \( x \), or the least squares problem is under constrained.

Thus, this code minimizes the function \( \text{MyFunction} \), starting at the specified point:

**Code Example – C# trust region minimization**

```csharp
public class MyFunction : DoubleMultiVariableFunction
{
 public MyFunction() : base(4, 4) { }

 public override void Evaluate(DoubleVector x, ref DoubleVector y)
 {
 for (int i = 0; i < (x.Length) / 4; i++)
 {
 y[4 * i] = x[4 * i] + 10.0 * x[4 * i + 1];
 y[4 * i + 1] = 2.236067977499789696409173687313 *
 (x[4 * i + 2] - x[4 * i + 3]);
 y[4 * i + 2] = (x[4 * i + 1] - 2.0 * x[4 * i + 2]) *
 (x[4 * i + 1] - 2.0 * x[4 * i + 2]);
 y[4 * i + 3] = 3.1622776601683793319988935444327 *
 (x[4 * i] - x[4 * i + 3]) * (x[4 * i] - x[4 * i + 3]);
 }
 }
}

var f = new MyFunction();
var start = new DoubleVector("3.0 -1.0 0.0 1.0");

var minimizer = new TrustRegionMinimizer();
DoubleVector solution = minimizer.Minimize(f, start);
Code Example – VB trust region minimization

Public Class MyFunction
 Inherits DoubleMultiVariableFunction

 Public Sub New()
 MyBase.New(4, 4)
 End Sub

 Public Overrides Sub Evaluate(X As DoubleVector, ByRef Y As DoubleVector)
 For I As Integer = 0 To (X.Length / 4) - 1
 Y(4 * I) = X(4 * I) + 10.0 * X(4 * I + 1)
 Y(4 * I + 1) = 2.23606797749979 * (X(4 * I + 2) - X(4 * I + 3))
 Y(4 * I + 2) = (X(4 * I + 1) - 2.0 * X(4 * I + 2)) * (X(4 * I + 1) - 2.0 * X(4 * I + 2))
 Y(4 * I + 3) = 3.1622776601683795 * (X(4 * I) - X(4 * I + 3)) * (X(4 * I) - X(4 * I + 3))
 Next
 End Sub

End Class

Dim F As New MyFunction()
Dim Start As New DoubleVector("3.0 -1.0 0.0 1.0")
Dim Minimizer As New TrustRegionMinimizer()
Dim Solution As DoubleVector = Minimizer.Minimize(F, Start)

Since problems can have multiple local minima, trying different starting points is recommended for better solutions.

NOTE—The Trust-Region algorithm requires the partial derivatives of the function being minimized. A numerical approximation is used by default, but you can also implement the Jacobian() method on your DoubleMultiVariableFunction.

Linear Bound Constraints

The Minimize() method also accepts linear bound constraints on the solution, such that:

\[
\text{lower}_i \leq x_i \leq \text{upper}_i, \quad i = 1, \ldots, n
\]
For instance, this code specifies lower and upper bounds:

Code Example – C# trust region minimization

```csharp
var f = new MyFunction();

var start = new DoubleVector("3.0 -1.0 0.0 1.0");
var lowerBounds = new DoubleVector("0.1 -20.0 -1.0 -1.0");
var upperBounds = new DoubleVector("100.0 20.0 1.0 50.0");

var minimizer = new TrustRegionMinimizer();
DoubleVector solution = minimizer.Minimize( f, start, lowerBounds, upperBounds );
```

Code Example – VB trust region minimization

```vbnet
Dim F As New MyFunction()

Dim Start As New DoubleVector("3.0 -1.0 0.0 1.0")
Dim LowerBounds As New DoubleVector("0.1 -20.0 -1.0 -1.0")
Dim UpperBounds As New DoubleVector("100.0 20.0 1.0 50.0")

Dim Minimizer As New TrustRegionMinimizer()
Dim Solution As DoubleVector = Minimizer.Minimize(F, Start, LowerBounds, UpperBounds)
```

Minimization Results

The **Minimize()** method returns the solution found by the minimization:

Code Example – C# trust region minimization

```csharp
DoubleVector solution = minimizer.Minimize( f, start );
```

Code Example – VB trust region minimization

```vbnet
Dim Solution As DoubleVector = Minimizer.Minimize(F, Start)
```

Additional information about the last performed fit is available from properties implemented as part of the **INonlinearLeastSqMinimizer** interface (Section 32.1). Class **TrustRegionMinimizer** also provides property **StopCriterion** which return the reason for stopping. The stopping criterion is returned as a value from the **TrustRegionMinimizer.Criterion** enumeration, shown in Table 22.
Note that by default, the general tolerance supplied when your construct a `TrustRegionMinimizer` instance is used for all tolerance-related stopping criteria. However, tolerances can also be specified individually for each criterion. For example, this code sets the trial step tolerance to 1×10^{-12}:

Code Example – C# trust region minimization

```csharp
minimizer.ToleranceTrialStep = 1e-12;
```

Code Example – VB trust region minimization

```vb
Minimizer.ToleranceTrialStep = "1e-12"
```

The `SetAllTolerances()` method can be used after construction to set all tolerances to the same value.

32.3 Levenberg-Marquardt Minimization

`NMath` provides class `LevenbergMarquardtMinimizer` for solving nonlinear least squares problems using the Levenberg-Marquardt method.
LevenbergMarquardtMinimizer implements the INonlinearLeastSqMinimizer interface.

Constructing a LevenbergMarquardtMinimizer

Instances of LevenbergMarquardtMinimizer are constructed by specifying a maximum number of iterations, gradient tolerance, and a solution tolerance, or by accepting the defaults for these values. Iteration stops when the infinity norm of the gradient used in calculating the next step falls below the gradient tolerance, or then the L2 norm of the step size falls below the solution tolerance. For example:

Code Example – C# Levenberg-Marquardt minimization

```csharp
int maxIterations = 1000;
double gradientTolerance = 1e-14;
double solutionTolerance = 1e-14;
var lm = new LevenbergMarquardtMinimizer(
    maxIterations, gradientTolerance, solutionTolerance );
```

Code Example – VB Levenberg-Marquardt minimization

```vbnet
Dim MaxIterations As Integer = 1000
Dim GradientTolerance As Double = "1e-14"
Dim SolutionTolerance As Double = "1e-14"
Dim LM As New LevenbergMarquardtMinimizer(MaxIterations,
    GradientTolerance, SolutionTolerance)
```

Minimization

Class LevenbergMarquardtMinimizer provides the Minimize() method for minimizing a given multivariable function, encapsulated as a DoubleMultiVariableFunction, as described in Section 32.1.
Minimization Results

The `Minimize()` method returns the solution found by the minimization:

Code Example – C# Levenberg-Marquardt minimization

```csharp
DoubleVector solution = minimizer.Minimize( f, start );
```

Code Example – VB Levenberg-Marquardt minimization

```vb
Dim Solution As DoubleVector = Minimizer.Minimize(F, Start)
```

Additional information about the last performed fit is available from properties implemented as part of the `INonlinearLeastSqMinimizer` interface (Section 32.1).

32.4 Nonlinear Least Squares Curve Fitting

NMath provides classes `OneVariableFunctionFitter` and `BoundedOneVariableFunctionFitter` for fitting *generalized* one variable functions to a set of points. In the space of the function parameters, beginning at a specified starting point, these classes finds a minimum (possibly local) in the sum of the squared residuals with respect to a set of data points. Minimization is performed by an implementation of the `INonlinearLeastSqMinimizer` or `IBoundedNonlinearLeastSqMinimizer` interface (Section 32.1), respectively. You must supply at least as many data points to fit as your function has parameters.

`BoundedOneVariableFunctionFitter` derives from `OneVariableFunctionFitter`, and accepts linear bounds on the solution.

Generalized One Variable Functions

A one variable function takes a single double x, and returns a double y:

$$ y = f(x) $$

A *generalized* one variable function additionally takes a set of parameters, p, which may appear in the function expression in arbitrary ways:

$$ y = f(p_1, p_2, \ldots, p_n; x) $$
For example, this code computes \(y = a \sin(bx + c) \):

Code Example – C# nonlinear least squares fit

```csharp
public double MyFunction(DoubleVector p, double x )
{
}
```

Code Example – VB nonlinear least squares fit

```vbnet
Function MyFunction(P As DoubleVector, X As Double) As Double
    Return P(0) * Math.Sin(P(1) * X + P(2))
End Function
```

Encapsulating One Variable Functions

In NMath, generalized one variable functions can be encapsulated in two ways:

- By extending the abstract class `DoubleParameterizedFunction`, and implementing the `Evaluate()` method. The `GradientWith RespectToParams()` can also be implemented to compute the gradient with respect to the parameters; otherwise, a numerical approximation is used.

- By wrapping a `Func<DoubleVector, double, double>` delegate in a `DoubleParameterizedDelegate`. An `Action<DoubleVector, double, DoubleVector>` delegate can also be provided for computing the gradient with respect to the parameters; otherwise a numerical approximation is used.

For example, this code encapsulates \(y = a \sin(bx + c) \) using a `DoubleParameterizedFunction`:

Code Example – C# nonlinear least squares fit

```csharp
public class MyFunction : DoubleParameterizedFunction
{
    public MyFunction()
    {
    }

    public override double Evaluate(DoubleVector p, double x )
    {
    }
}
```

`DoubleParameterizedFunction f = new MyFunction();`
Code Example – VB nonlinear least squares fit

Public Class MyFunction
 Inherits DoubleParameterizedFunction

 Public Sub New()
 End Sub

 Public Overrides Function Evaluate(P As DoubleVector, X As Double) As Double
 Return P(0) * Math.Sin(P(1) * X + P(2))
 End Function

End Class

Dim F As DoubleParameterizedFunction = New MyFunction()

This code encapsulates the same function using a DoubleParameterizedDelegate:

Code Example – C# nonlinear least squares fit

 public double MyFunction(DoubleVector p, double x)
 {
 }

 var f = new DoubleParameterizedDelegate(MyFunction);

Code Example – VB nonlinear least squares fit

 Public Function MyFunction(P As DoubleVector, X As Double) As Double
 Return P(0) * Math.Sin(P(1) * X + P(2))
 End Function

 Dim F As New DoubleParameterizedDelegate(AddressOf MyFunction)
This code demonstrates implementing `GradientWithRespectToParams()` as well as `Evaluate()` in a `DoubleParameterizedFunction` which encapsulates y = a\cos(bx) + b\sin(ax):

Code Example – C# nonlinear least squares fit

```csharp
public class MyFunction : DoubleParameterizedFunction {
    public MyFunction() {
    }

    public override double Evaluate(DoubleVector p, double x) {
        double a = p[0];
        double b = p[1];
        return a * Math.Cos(b * x) + b * Math.Sin(a * x);
    }

    public override void GradientWithRespectToParams(DoubleVector p, double x, ref DoubleVector grad) {
        double a = p[0];
        double b = p[1];
        grad[0] = Math.Cos(b * x) + b * x * Math.Cos(a * x);
        grad[1] = -a * x * Math.Sin(b * x) + Math.Sin(a * x);
    }
}
```

Code Example – VB nonlinear least squares fit

```vbnet
Public Class MyFunction
    Inherits DoubleParameterizedFunction
    Public Sub New()
    End Sub

    Public Overrides Function Evaluate(P As DoubleVector, X As Double) As Double
        Dim A As Double = P(0)
        Dim B As Double = P(1)
        Return a * Math.Cos(b * x) + b * Math.Sin(a * x)
    End Function

    Public Overrides Sub GradientWithRespectToParams(P As DoubleVector, X As Double, ByRef Grad As DoubleVector)
        Dim A As Double = P(0)
        Dim B As Double = P(1)
        Grad(0) = Math.Cos(B * X) + B * X * Math.Cos(A * X)
        Grad(1) = -A * X * Math.Sin(B * X) + Math.Sin(A * X)
    End Sub
End Class
```
Predefined Functions

For convenience, class **AnalysisFunctions** includes a selection of common generalized one variable functions, as shown in Table 23.

Table 23 – Predefined Generalized One Variable Functions

<table>
<thead>
<tr>
<th>Delegate</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>TwoParameterAsymptotic</td>
<td>$y = a + \frac{b}{x}$</td>
</tr>
<tr>
<td>ThreeParameterExponential</td>
<td>$y = ae^{bx} + c$</td>
</tr>
<tr>
<td>ThreeParameterSine</td>
<td>$y = a\sin(bx + c)$</td>
</tr>
<tr>
<td>FourParameterLogistic</td>
<td>$y = d + \frac{a-d}{1 + \left(\frac{x}{c}\right)^b}$</td>
</tr>
<tr>
<td>FiveParameterLogistic</td>
<td>$y = d + \frac{a-d}{\left[1 + \left(\frac{x}{c}\right)^b\right]^g}$</td>
</tr>
</tbody>
</table>

Instances of **DoubleParameterizedDelegate** can be constructed from these functions. For example:

Code Example – C# nonlinear least squares fit

```csharp
var f = new DoubleParameterizedDelegate(
    AnalysisFunctions.FourParameterLogistic);
```

Code Example – VB nonlinear least squares fit

```vbnet
Dim F As New DoubleParameterizedDelegate(
    AnalysisFunctions.FourParameterLogistic)
```

Constructing a OneVariableFunctionFitter

Class **OneVariableFunctionFitter** is templatized on **INonlinearLeastSqMinimizer**, and **BoundedOneVariableFunctionFitter** is templatized on **IBoundedNonlinearLeastSqMinimizer** (Section 32.1). Instances are constructed from an encapsulated, generalized one variable function. For example, this code uses one of the predefined curves in **AnalysisFunctions**:
Code Example – C# nonlinear least squares fit

```csharp
var f = new DoubleParameterizedDelegate(
    AnalysisFunctions.FourParameterLogistic);

var fitter =
    new OneVariableFunctionFitter<TrustRegionMinimizer>( f );
```

Code Example – VB nonlinear least squares fit

```vbnet
Dim F As New DoubleParameterizedDelegate(
    AnalysisFunctions.FourParameterLogistic)

Dim Fitter As New OneVariableFunctionFitter(
    Of TrustRegionMinimizer)(F)
```

As a convenience, there is a constructor that takes a `Func<DoubleVector, double, double>` delegate directly:

Code Example – C# nonlinear least squares fit

```csharp
BoundedOneVariableFunctionFitter<TrustRegionMinimizer> fitter =
    new BoundedOneVariableFunctionFitter<TrustRegionMinimizer>(
    AnalysisFunctions.FourParameterLogistic );
```

Code Example – VB nonlinear least squares fit

```vbnet
Dim Fitter As New BoundedOneVariableFunctionFitter(
    Of TrustRegionMinimizer)(AnalysisFunctions.FourParameterLogistic)
```

An existing minimizer instance can also be passed to the constructor:

Code Example – C# nonlinear least squares fit

```csharp
var minimizer = new LevenbergMarquardtMinimizer();
minimizer.GradientTolerance = 1e-6;

var fitter =
    new OneVariableFunctionFitter<LevenbergMarquardtMinimizer>(
    AnalysisFunctions.FourParameterLogistic, minimizer );
```

Code Example – VB nonlinear least squares fit

```vbnet
Dim Minimizer As New LevenbergMarquardtMinimizer()
Minimizer.GradientTolerance = "1e-6"

Dim Fitter As New OneVariableFunctionFitter(
    Of LevenbergMarquardtMinimizer)(
    AnalysisFunctions.FourParameterLogistic, Minimizer)
```
Fitting Data

Once you’ve constructed an instance of `OneVariableFunctionFitter` or `BoundedOneVariableFunctionFitter` containing a function, you can fit that function to a set of points using the `Fit()` method.

The `Fit()` method on `OneVariableFunctionFitter` takes vectors of \(x\) and \(y\) values representing the data points, and a starting position in the function parameter space. For instance:

Code Example – C# nonlinear least squares fit

```csharp
var x = new DoubleVector( 0.00, 0.00, 0.00, 0.00, 0.00,
                           0.00, 0.94, 0.94, 0.94, 1.88,
                           1.88, 1.88, 3.75, 3.75, 3.75,
                           7.50, 7.50, 7.50, 15.00, 15.00,
                           15.00, 30.00, 30.00, 30.00 );

var y = new DoubleVector( 7.58, 8.00, 8.32, 7.25, 7.37,
                           7.96, 8.35, 6.91, 7.75, 6.87,
                           6.45, 5.92, 1.92, 2.88, 4.23,
                           1.18, 0.85, 1.05, 0.68, 0.52,
                           0.82, 0.25, 0.22, 0.44 );

var start = new DoubleVector( "0.1 0.1 0.1 0.1" );

DoubleVector solution = fitter.Fit( x, y, start );
```

Code Example – VB nonlinear least squares fit

```vbnet
Dim X As New DoubleVector(0.0, 0.0, 0.0, 0.0, 0.0,
                           0.0, 0.94, 0.94, 0.94, 1.88,
                           1.88, 1.88, 3.75, 3.75, 3.75,
                           7.5, 7.5, 7.5, 15.0, 15.0,
                           15.0, 30.0, 30.0, 30.0)

Dim Y As New DoubleVector(7.58, 8.0, 8.32, 7.25, 7.37,
                           7.96, 8.35, 6.91, 7.75, 6.87,
                           6.45, 5.92, 1.92, 2.88, 4.23,
                           1.18, 0.85, 1.05, 0.68, 0.52,
                           0.82, 0.25, 0.22, 0.44)

Dim Start As New DoubleVector("0.1 0.1 0.1 0.1")

Dim Solution As DoubleVector = Fitter.Fit(X, Y, Start)
```

In the space of the function parameters, beginning at a specified `start` point, `Fit()` finds a minimum (possibly local) in the sum of the squared residuals with respect to the given \(x\) and \(y\) values.
NOTE—You must supply at least as many data points to fit as your function has parameters.

The `Fit()` method on `BoundedOneVariableFunctionFitter` additionally accepts linear bounds on the solution:

Code Example – C# nonlinear least squares fit

```csharp
var lowerBounds = new DoubleVector(1.1, 1.8);
var upperBounds = new DoubleVector(2.1, 3.9);
DoubleVector solution =
    fitter.Fit(x, y, start, lowerBounds, upperBounds);
```

Code Example – VB nonlinear least squares fit

```vbnet
Dim LowerBounds As New DoubleVector(1.1, 1.8)
Dim UpperBounds As New DoubleVector(2.1, 3.9)
Dim Solution As DoubleVector = fitter.Fit(X, Y, Start, LowerBounds, UpperBounds)
```

Trying different initial starting points is recommended for better solutions. If possible, use starting points based on *a priori* information about the curve shape and the data being fit. Otherwise, random value close to zero are usually a good choice.

Fit Results

The `Fit()` method returns the solution found by the minimization. To compute the residuals relative to the data points at the solution, use the `ResidualVector()` method:

Code Example – C# nonlinear least squares fit

```csharp
DoubleVector residuals = fitter.ResidualVector(x, y, solution);
```

Code Example – VB nonlinear least squares fit

```vbnet
Dim Residuals As DoubleVector = fitter.ResidualVector(X, Y, solution)
```

Additional information about the last performed fit is available from the underlying minimizer instance, accessible using the `Minimizer` property. For example, this code gets the sum of the squared residuals at the starting point and at the solution, the number of iterations performed, and the stop criterion:

Code Example – C# nonlinear least squares fit

```csharp
INonlinearLeastSqMinimizer minimizer = fitter.Minimizer;

double initialResidual = minimizer.InitialResidual;
double finalResidual = minimizer.FinalResidual;
int iterations = minimizer.Iterations;
```
32.5 Nonlinear Least Squares Surface Fitting

NMath provides classes MultiVariableFunctionFitter and BoundedMultiVariableFunctionFitter for fitting generalized multivariable functions to a set of points. The interface is analogous to OneVariableFunctionFitter and BoundedOneVariableFunctionFitter (Section 32.4), with only a couple changes to accommodate multivariate data. Again, you must supply at least as many data points to fit as your function has parameters.

Generalized Multivariable Functions

A multivariable function takes a vector of \(x \) values, and returns a double \(y \):

\[
y = f(x_1, x_2, \ldots, x_n)
\]

A generalized multivariable function additionally takes a set of parameters, \(p \), which may appear in the function expression in arbitrary ways:

\[
y = f(p_1, p_2, \ldots, p_m; x_1, x_2, \ldots, x_n)
\]

For example, this code computes \(y = ax_1^2x_2 + b\sin(x_1) + cx_2^3 \):

Code Example – C# nonlinear least squares surface fit

```csharp
public double MyFunction( DoubleVector p, DoubleVector x )
{
    return p[0] * Math.Pow( x[0], 2.0 ) * x[1] +
            p[1] * Math.Sin( x[0] ) +
            p[2] * Math.Pow( x[1], 3.0 );
}
```
Encapsulating Generalized Multivariable Functions

In **NMath**, generalized multivariable functions can be encapsulated in two ways:

- By extending the abstract class **DoubleParameterizedFunctional**, and implementing the `Evaluate()` method. The `GradientWith RespectToParams()` can also be implemented to compute the gradient with respect to the parameters; otherwise, a numerical approximation is used.

- By wrapping a `Func<DoubleVector, DoubleVector, double>` delegate in a **DoubleVectorParameterizedDelegate**. An `Action<DoubleVector, DoubleVector, DoubleVector>` delegate can also be provided for computing the gradient with respect to the parameters; otherwise a numerical approximation is used.

For example, this code encapsulates a multivariable function using a **DoubleParameterizedFunctional**:

Code Example – C# nonlinear least squares surface fit

```csharp
public class MyFunction : DoubleParameterizedFunctional
{

    public MyFunction()
        : base (2)
    {

    }

    public override double Evaluate( DoubleVector p, DoubleVector x )
    {
        // z = ayx^2 + bsin(x) + cy^3
        return p[0] * x[0] * Math.Pow( x[1], 2.0 ) +
            p[1] * Math.Sin( x[0] ) +
            p[2] * Math.Pow( x[1], 3.0 );
    }
}

DoubleParameterizedFunctional f = new MyFunction();
```
Code Example – VB nonlinear least squares surface fit

```vbnet
Public Class MyFunction
    Inherits DoubleParameterizedFunctional

    Sub New()
        MyBase.New(2)
    End Sub

    Public Overrides Function Evaluate(P As DoubleVector, X As DoubleVector) As Double
        ' z = ayx^2 + bsin(x) + cy^3
        Return P(0) * X(0) * Math.Pow(X(1), 2.0) +
            P(1) * Math.Sin(X(0)) +
            P(2) * Math.Pow(X(1), 3.0)
    End Function
End Class
```

```vbnet
DoubleParameterizedFunctional F As New MyFunction()
```

This code encapsulates the same function using a `DoubleVectorParameterizedDelegate`:

Code Example – C# nonlinear least squares surface fit

```csharp
public double MyFunction( DoubleVector p, DoubleVector x )
{
    // z = ayx^2 + bsin(x) + cy^3
    return p[0] * x[0] * Math.Pow( x[1], 2.0 ) +
        p[1] * Math.Sin( x[0] ) +
        p[2] * Math.Pow( x[1], 3.0 );
}
```

```csharp
var f = new DoubleVectorParameterizedDelegate( MyFunction );
```

Code Example – VB nonlinear least squares surface fit

```vbnet
Public Function MyFunction(P As DoubleVector, X As DoubleVector) As Double
    Return P(0) * Math.Pow(X(0), 2.0) * X(1) +
        P(1) * Math.Sin(X(0)) +
        P(2) * Math.Pow(X(1), 3.0)
End Function
```

```vbnet
Dim F As New DoubleVectorParameterizedDelegate( MyFunction )
```

Constructing a MultiVariableFunctionFitter

Class `MultiVariableFunctionFitter` is templatized on `INonlinearLeastSqMinimizer`, and class `BoundedMultiVariableFunction` is
templatized on `IBoundedNonlinearLeastSqMinimizer` (Section 32.1). Instances are constructed from an encapsulated generalized multivariable function. For example:

Code Example – C# nonlinear least squares surface fit

```csharp
Func<DoubleVector, DoubleVector, double> myDelegate =
   delegate( DoubleVector p, DoubleVector x )
   {
      // z = ayx^2 + bsin(x) + cy^3
      return p[0] * x[0] * Math.Pow( x[1], 2.0 ) +
         p[1] * Math.Sin( x[0] ) +
         p[2] * Math.Pow( x[1], 3.0 );
   };

DoubleVectorParameterizedDelegate f =
   new DoubleVectorParameterizedDelegate( myDelegate );

MultiVariableFunctionFitter<TrustRegionMinimizer> fitter =
   new MultiVariableFunctionFitter<TrustRegionMinimizer>( f );
```

Again, an existing minimizer instance can also be passed to the constructor:

Code Example – C# nonlinear least squares surface fit

```csharp
var minimizer = new LevenbergMarquardtMinimizer();
minimizer.DefaultTolerance = 1e-6;

var fitter =
   new MultiVariableFunctionFitter<LevenbergMarquardtMinimizer>(
      f, minimizer );
```

Code Example – VB nonlinear least squares surface fit

```vbnet
Dim Minimizer As New LevenbergMarquardtMinimizer()
Minimizer.GradientTolerance = "1e-6"

Dim Fitter As New MultiVariableFunctionFitter(
   Of LevenbergMarquardtMinimizer)(F, Minimizer)
```

Fitting Data

Once you’ve constructed an instance of `MultiVariableFunctionFitter` or `BoundedMultiVariableFunctionFitter` containing a function, you can fit that function to a set of points using the `Fit()` method.

The `Fit()` method on `MultiVariableFunctionFitter` takes a `DoubleMatrix` of `x` values, where each row in the matrix represents a point, a `DoubleVector` of `y` values representing the data points, and a starting position in the function parameter space. For instance:
In the space of the function parameters, beginning at a specified start point, `Fit()` finds a minimum (possibly local) in the sum of the squared residuals with respect to the given x and y values.

NOTE—You must supply at least as many data points to fit as your function has parameters.
The `Fit()` method on `BoundedMultiVariableFunctionFitter` additionally accepts linear bounds on the solution:

Code Example – C# nonlinear least squares surface fit

```csharp
var lowerBounds = new DoubleVector( "[0 -18 0]" );
var upperBounds = new DoubleVector( "[.007 -3 1]" );
DoubleVector solution =
    fitter.Fit( x, y, start, lowerBounds, upperBounds );
```

Code Example – VB nonlinear least squares surface fit

```vbnet
Dim LowerBounds As New DoubleVector("[0 -18 0]")
Dim UpperBounds As New DoubleVector("[.007 -3 1]")
Dim Solution As DoubleVector =
    Fitter.Fit(X, Y, Start, LowerBounds, UpperBounds)
```

Trying different initial starting points is recommended for better solutions. If possible, use starting points based on *a priori* information about the curve shape and the data being fit. Otherwise, random value close to zero are usually a good choice.

Fit Results

The `Fit()` method returns the solution found by the minimization. To compute the residuals relative to the data points at the solution, use the `ResidualVector()` method:

Code Example – C# nonlinear least squares surface fit

```csharp
DoubleVector residuals = fitter.ResidualVector( x, y, solution );
```

Code Example – VB nonlinear least squares surface fit

```vbnet
Dim Residuals As DoubleVector =
    Fitter.ResidualVector(X, Y, solution)
```

Additional information about the last performed fit is available from the underlying minimizer instance, accessible using the `Minimizer` property. For example, this code gets the sum of the squared residuals at the starting point and at the solution, the number of iterations performed, and the stop criterion:

Code Example – C# nonlinear least squares surface fit

```csharp
INonlinearLeastSqMinimizer minimizer = fitter.Minimizer;

double initialResidual = minimizer.InitialResidual;
double finalResidual = minimizer.FinalResidual;
int iterations = minimizer.Iterations;
```
Code Example – VB nonlinear least squares surface fit

Dim Minimizer As INonlinearLeastSqMinimizer = Fitter.Minimizer

Dim InitialResidual As Double = Minimizer.InitialResidual
Dim FinalResidual As Double = Minimizer.FinalResidual
Dim Iterations As Integer = Minimizer.Iterations
CHAPTER 33.
FINDING ROOTS OF UNIVARIATE FUNCTIONS

NMATH includes classes for finding roots of univariate functions. A root-finding algorithm finds a value \(x \) for a given function \(f \), such that \(f(x) = 0 \).

All NMATH root-finding classes derive from the abstract base class RootFinderBase. The interface and behavior is the same as for MinimizerBase (Section 26.1)—iteration stops when either the decrease in function value is less than a specified error tolerance, or the specified maximum number of iterations is reached. The root-finding classes also implement one of the following interfaces:

- Classes that implement the IOneVariableRootFinder interface require only function evaluations to find roots.
- Classes that implement the IOneVariableDRootFinder interface also require evaluations of the derivative of a function.

This chapter describes how to use the root-finding classes.

33.1 Finding Function Roots Without Calculating the Derivative

NMATH provides several classes that implement the IOneVariableRootFinder interface, and find roots of univariate functions using only function evaluations:

- Class SecantRootFinder finds roots of univariate functions using the secant method. The secant method assumes that the function is approximately linear in the local region of interest and uses the zero-crossing of the line connecting the limits of the interval as an estimate of the root. The function is evaluated at the estimate, a new line is formed, and the process is repeated.
- Class **RiddersRootFinder** finds roots of univariate functions using Ridders’ Method. Ridders' Method first evaluates the function at the midpoint of the interval, then factors out the unique exponential function which turns the residual function into a straight line.

- Class **FZero** finds roots of univariate functions using the `zeroin()` root finder published originally in *Computer Methods for Mathematical Computations* by Forsythe, Malcolm and Moler in 1977. This class is similar to MATLAB’s `fzero()` function.

Instances are constructed by specifying an error tolerance and a maximum number of iterations, or by accepting the defaults for these values. For example, this code constructs a **SecantRootFinder** using the default tolerance and a maximum of 50 iterations:

Code Example – C# root finding

```csharp
int maxIter = 50;
var finder = new SecantRootFinder( maxIter );
```

Code Example – VB root finding

```vbnet
Dim MaxIter As Integer = 50
Dim Finder As New SecantRootFinder(MaxIter)
```

Instances provide `Find()` methods for minimizing a given function within a given interval. For instance, the cosine function has a root at \(\frac{\pi}{2} \):

Code Example – C# root finding

```csharp
var f = new OneVariableFunction(    
    new Func<double, double>( Math.Cos ) );

var finder = new RiddersRootFinder();
double lower = 0;
double upper = Math.PI;
double root = finder.Find( f, lower, upper );
```

Code Example – VB root finding

```vbnet
Dim F As New OneVariableFunction(    
    New Func(Of Double, Double)(AddressOf Math.Cos))

Dim Finder As New RiddersRootFinder()
Dim Lower As Double = 0
Dim Upper As Double = Math.PI
Dim Root As Double = Finder.Find(F, Lower, Upper)
```
33.2 Finding Function Roots of Derivable Functions

Class `NewtonRalphsonRootFinder` implements the `IOneVariableDRootFinder` interface and finds roots of univariate functions using the Newton-Raphson Method. The Newton-Raphson algorithm finds the slope of the function at the current point and uses the zero of the tangent line as an estimate of the root.

Like `SecantRootFinder` and `RiddersRootFinder` (Section 33.1), instances of `NewtonRalphsonRootFinder` are constructed by specifying an error tolerance and a maximum number of iterations, or by accepting the defaults for these values. For example:

Code Example – C# root finding

```csharp
double tol = 1e-8;
int maxIter = 100;
var finder = new NewtonRaphsonRootFinder( tol, maxIter );
```

Code Example – VB root finding

```vbnet
Dim Tol As Double = "1e-8"
Dim MaxIter As Integer = 100
Dim Finder As New NewtonRaphsonRootFinder(Tol, MaxIter)
```

Once you have constructed a `NewtonRalphsonRootFinder` instance, you can use the `Find()` method to find a root within a given interval. For instance, this polynomial has a root at 1:

\[f(x) = -2x^3 + 9x^2 - 5x - 2 \]

This code finds the root in the interval \((0, 3)\):

Code Example – C# root finding

```csharp
var p = new Polynomial(    new DoubleVector( -2.0, -5.0, 9.0, -2.0 ) );
var finder = new NewtonRaphsonRootFinder();
double lower = 0;
double upper = 3;
double root = finder.Find( p, p.Derivative(), lower, upper );
```

Code Example – VB root finding

```vbnet
Dim P As New Polynomial(New DoubleVector(-2.0, -5.0, 9.0, -2.0))
Dim Finder As New NewtonRaphsonRootFinder()
Dim Lower As Double = 0
Dim Upper As Double = 3
Dim Root As Double = Finder.Find(P, P.Derivative(), Lower, Upper)
```
The `CenterSpace.NMath.Core` namespace includes classes for computing an approximation of the integral of a `OneVariableFunction` over some interval (Chapter 13). These classes include `RombergIntegrator` and `GaussKronrodIntegrator`, which implement the `IIntegrator` interface.

Also the class `TwoVariableIntegrator` computes the integral of a function of two variables. Class `TwoVariableIntegrator` computes the double integral by breaking up the problem into repeated one-dimensional integrals.

The chapter describes how to use class `TwoVariableIntegrator`.

34.1 Creating `TwoVariableIntegrators`

A `TwoVariableIntegrator` has two instances of `IIntegrator`: one for the x dimension, and one for the y dimension. This code constructs a `TwoVariableIntegrator` with the default univariate integrators:

Code Example – C# integration

```csharp
var integrator = new TwoVariableIntegrator();
```

Code Example – VB integration

```vbnet
Dim Integrator As New TwoVariableIntegrator()
```

Instances of `GaussKronrodIntegrator` are used by default. Alternatively, you can provide non-default univariate integrators:

Code Example – C# integration

```csharp
var gauss1 = new GaussKronrodIntegrator();
var gauss2 = new GaussKronrodIntegrator();
gauss2.Tolerance = 1e-6;
var integrator = new TwoVariableIntegrator( gauss1, gauss2 );
```

Code Example – VB integration

```vbnet
Dim Gauss1 As New GaussKronrodIntegrator()
Dim Gauss2 As New GaussKronrodIntegrator()
Gauss2.Tolerance = "1e-6"
```
Dim Integrator As New TwoVariableIntegrator(Gauss1, Gauss2)

Class TwoVariableIntegrator also provides properties DxIntegrator and DyIntegrator for getting and setting the x and y univariate integrators on a TwoVariableIntegrator instance post-construction.

34.2 Integrating Functions of Two Variables

The Integrate() method on TwoVariableIntegrator integrates a given two-variable function over a given region. For example, to compute the double integral:

\[
\int_0^1 \int_0^1 \frac{dx \, dy}{1 - x^2 y^2}
\]

First write the function:

Code Example – C# integration

```csharp
private double F(DoubleVector v)
{
    return 1.0 / (1.0 - (v[0] * v[0] * v[1] * v[1] ));
}
```

Code Example – VB integration

```vbnet
Function F(V As DoubleVector) As Double
    Return 1.0 / (1.0 - (V(0) * V(0) * V(1) * V(1)))
End Function
```

Then encapsulate the function as a MultiVariableFunction:

Code Example – C# integration

```csharp
var function = new MultiVariableFunction(
    new Func<DoubleVector, double>(F));
```

Code Example – VB integration

```vbnet
Dim MultiFunction As New MultiVariableFunction(
    New Func(Of DoubleVector, Double)(F))
```

Finally, compute the integral:

Code Example – C# integration

```csharp
var integrator = new TwoVariableIntegrator();
double xLower = 0;
double xUpper = 1;
```
double yLower = 0;
double yUpper = 1;
double integral = integrator.Integrate(function, xLower, xUpper,
 yLower, yUpper);

Code Example – VB integration

Dim Integrator As New TwoVariableIntegrator()
Dim XLower As Double = 0
Dim XUpper As Double = 1
Dim YLower As Double = 0
Dim YUpper As Double = 1
Dim Integral As Double = integrator.Integrate(MultiFunction,
 XLower, XUpper, YLower, YUpper)

The code above explicitly sets the x and y bounds. You can also set the y lower bound, y upper bound, or both, as a function of x. For example, to compute this double integral:

$$
\int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} \int_{-3}^{3} (9x^2 - 3y) \, dx \, dy
$$

First define the function:

Code Example – C# integration

private double F(DoubleVector v)
{
 return (9.0 * v[0] * v[0]) - (3.0 * v[1]);
}

Code Example – VB integration

Function F(V As DoubleVector) As Double
 Return (9.0 * V(0) * V(0)) - (3.0 * V(1))
End Function

Then encapsulate the function as a **MultiVariableFunction**:

Code Example – C# integration

var function = new MultiVariableFunction(
 new Func<DoubleVector, double>(F));

Code Example – VB integration

Dim function As New MultiVariableFunction(
 New Func(Of DoubleVector, Double)(F))

Then define the y bounding functions and encapsulate them as **OneVariableFunction** objects:
Code Example – C# integration

```csharp
private double YUpperF( double x )
{
    return Math.Sqrt( 9.0 - ( x * x ) );
}

private double YLowerF( double x )
{
    return -YUpperF( x );
}

var yLowerFunction = new OneVariableFunction(
    new NMathFunctions.DoubleUnaryFunction( YLowerF ) );
var yUpperFunction = new OneVariableFunction(
    new NMathFunctions.DoubleUnaryFunction( YUpperF ) );
```

Code Example – VB integration

```vbnet
Function YUpperF(X As Double) As Double
    Return Math.Sqrt(9.0 - (X * X))
End Function

Function YLowerF(X As Double) As Double
    Return -YUpperF(X)
End Function

Dim YLowerFunction As New OneVariableFunction(
    New Func(Of Double, Double)(AddressOf YLowerF))
Dim YUpperFunction As New OneVariableFunction(
    New Func(Of Double, Double)(AddressOf YUpperF))
```

Finally, compute the integral:

Code Example – C# integration

```csharp
var integrator = new TwoVariableIntegrator();
double xLower = -3;
double xUpper = 3;
double integral = integrator.Integrate( function, xLower, xUpper, yLowerFunction, yUpperFunction );
```

Code Example – VB integration

```vbnet
Dim Integrator As New TwoVariableIntegrator()
Dim XLower As Double = -3
Dim XUpper As Double = 3
Dim Integral As Double = integrator.Integrate(MultiFunction, XLower, XUpper, YLowerFunction, YUpperFunction)
```
CHAPTER 35.
DIFFERENTIAL EQUATIONS

NMath provides classes for solving first order initial value differential equations by the Runge-Kutta method.

An ordinary differential equation (ODE) contains one or more derivatives of a dependent variable y with respect to a single independent variable. A first-order ODE contains only the first derivative of y. Since there are generally many functions that satisfy an ODE, an initial value is necessary to constrain the solution—that is, y is equal to y_0 at a given initial x_0.

NMath includes:

- Class FirstOrderInitialValueProblem encapsulates a first order initial value differential equation.
- Class RungeKuttaSolver solves an initial value ODE by the common Runge-Kutta method.
- Class RungeKutta45OdeSolver solves an initial value ODE using an explicit Runge-Kutta (4, 5) formula known as the Dormand-Prince pair.
- Class RungeKutta5OdeSolver solves an initial value ODE using a non-adaptive explicit Runge-Kutta formula of order 5.
- Class VariableOrderOdeSolver solves stiff and non-stiff ordinary differential equations. The algorithm uses higher order methods and smaller step size when the solution varies rapidly.

The chapter describes how to use class these classes.

35.1 Encapsulating Differential Equations

Class FirstOrderInitialValueProblem represents a first order initial value differential equation. If $y = y(x)$ is the unknown function, the first order initial value problem may be stated as

$$y' = F(x, y), \ y(x_0) = y_0$$

where y' denotes the first derivative of y with respect to x, F is a continuous function with bounded partial derivatives, and y_0 is the value of the unknown function y at the point x_0.

A **FirstOrderInitialValueProblem** instance is constructed from a function, \(F \), and initial value, \(x_0 \) and \(y_0 \). The function \(F \) is encapsulated as a `Func<double, double, double>` delegate which takes two doubles and returns a double.

For example, the following code constructs a **FirstOrderInitialValueProblem** where \(y' = x^2, y(0) = 1 \):

Code Example – C# ordinary differential equations (ODE)

```csharp
Func<double, double, double> f =
    delegate( double x, double y )
    {
        return x * x;
    };

double x0 = 0.0;
double y0 = 1.0;
FirstOrderInitialValueProblem prob =
    new FirstOrderInitialValueProblem( f, x0, y0 );
```

35.2 Solving Differential Equations

Class **RungeKuttaSolver** solves first order initial value differential equations by the Runge-Kutta method. The solver computes the unknown function \(y \) as set of tabulated values \(\{x_i, y_i\} \) such that \(y(x_i) = y_i \).

Constructing RungeKuttaSolver Instances

Instances of **RungeKuttaSolver** are constructed from the number of tabulated points and a nonzero value \(\delta \). From the number of points and the delta, the set \(\{x_i\} \) is determined as \(x_i = x_0 + i\Delta \) for \(i=0,1,...,n \).

For instance:

Code Example – C# ordinary differential equations (ODE)

```csharp
int n = 2000;
double delta = .001;
var solver = new RungeKuttaSolver( n, delta );
```

Code Example – VB ordinary differential equations (ODE)

```vbnet
Dim N As Integer = 2000
Dim Delta As Double = 0.001
Dim Solver As New RungeKuttaSolver(N, Delta)
```
Optionally, the order of the Runge-Kutta method may also be specified, using the
enum `RungeKutterSolver.SolverOrder`.

Code Example – C# ordinary differential equations (ODE)

```csharp
var solver = new RungeKuttaSolver( n, delta, SolverOrder.First );
```

Code Example – VB ordinary differential equations (ODE)

```vbnet
Dim Solver As New RungeKuttaSolver(N, Delta, SolverOrder.First)
```

By default, the fourth order Runge-Kutta method (RK4) is used.

Solving First Order Initial Value Problems

The `Solve()` method on `RungeKuttaSolver` solves a given
`FirstOrderInitialValueProblem` by the common Runge-Kutta method. The
`Solve()` method computes the unknown function \(y \) as set of tabulated values
\(\{x_i, y_i\} \) such that \(y(x_i) = y_i \). The tabulated values are returned either as a
`KeyValuePair<double[], double[]>`, or as a
`CenterSpace.NMath.Core.TabulatedFunction` passed by reference. (See
Section 13.5 for more information on tabulated functions.)

For example:

Code Example – C# ordinary differential equations (ODE)

```csharp
KeyValuePair<double[], double[]> tabulatedValues =
    solver.Solve( prob );
```

Code Example – VB ordinary differential equations (ODE)

```vbnet
Dim TabulatedValues As KeyValuePair(Of Double(), Double()) =
    Solver.Solve(Prob)
```

or

Code Example – C# ordinary differential equations (ODE)

```csharp
TabulatedFunction ftab = null;
solver.Solve( prob, ref ftab );
```

Code Example – VB ordinary differential equations (ODE)

```vbnet
Dim FTab As TabulatedFunction = Nothing
Solver.Solve(Prob, FTab)
```

Similarly, in the following code, results are returned as a `LinearSpline`, a subclass
of `TabulatedFunction` that provides linear interpolation between tabulated values:

Code Example – C# ordinary differential equations (ODE)

```csharp
var spline = new LinearSpline();
```
35.3 Dormand–Prince Method

The Dormand–Prince (DOPRI) method is a member of the Runge–Kutta family of ODE solvers. It uses six function evaluations to calculate fourth- and fifth-order accurate solutions. Dormand–Prince is currently the default method in MATLAB’s `ode45` solver. NMath provides two solvers which use Dormand-Prince methods:

- Class `RungeKutta45OdeSolver` solves an initial value ODE using an explicit Runge-Kutta \((4,5)\) formula known as the Dormand-Prince pair.
- Class `RungeKutta5OdeSolver` solves an initial value ODE using a non-adaptive explicit Runge-Kutta formula of order 5. This is a non-adaptive solver. The step sequence is determined by given vector of time values, but the derivative function is evaluated multiple times per step. The solver implements the Dormand-Prince method of order 5 in a general framework of explicit Runge-Kutta methods.

For example, the following code shows how to use the `RungeKutta45OdeSolver` to solve a non-stiff system of equations describing the motion of a rigid body without external forces:

\[
\begin{align*}
 y_1' &= y_2y_3, & y_1(0) &= 0 \\
 y_2' &= -y_1y_3, & y_2(0) &= 1 \\
 y_3' &= -0.51y_1y_2, & y_3(0) &= 1
\end{align*}
\]

This function describes the system of differential equations:

Code Example – C# ordinary differential equations (ODE)

```csharp
static DoubleVector Rigid( double t, DoubleVector y )
{
    var dy = new DoubleVector( 3 );
    dy[0] = y[1] * y[2];
    dy[1] = -y[0] * y[2];
    dy[2] = -0.51 * y[0] * y[1];
    return dy;
}
```

Code Example – VB ordinary differential equations (ODE)

```vb
Shared Function Rigid(T As Double, Y As DoubleVector)
    Dim DY As New DoubleVector(3)
```
\[
 \begin{align*}
 DY(0) &= Y(1) \times Y(2) \\
 DY(1) &= -Y(0) \times Y(2) \\
 DY(2) &= -0.51 \times Y(0) \times Y(1)
 \end{align*}
\]

Return DY

End Function

Parameter \(t \) is the time parameter, and \(y \) is the state vector.

First, construct the solver:

Code Example – C# ordinary differential equations (ODE)

```csharp
var solver = new RungeKutta45OdeSolver();
```

Code Example – VB ordinary differential equations (ODE)

```vbnet
Dim Solver As New RungeKutta45OdeSolver()
```

Next, construct the time span vector. If this vector contains exactly two points, the solver interprets these to be the initial and final time values. Step size and function output points are provided automatically by the solver. Here the initial time value \(t_0 \) is 0.0 and the final time value is 12.0.

Code Example – C# ordinary differential equations (ODE)

```csharp
var timeSpan = new DoubleVector( 0.0, 12.0 );
```

Code Example – VB ordinary differential equations (ODE)

```vbnet
Dim TimeSpan As New DoubleVector(0.0, 12.0)
```

Specify the initial \(y \) vector.

Code Example – C# ordinary differential equations (ODE)

```csharp
var y0 = new DoubleVector( 0.0, 1.0, 1.0 );
```

Code Example – VB ordinary differential equations (ODE)

```vbnet
Dim Y0 As New DoubleVector(0.0, 1.0, 1.0)
```

Optionally, construct solver options. Here we set the absolute and relative tolerances to use.

Code Example – C# ordinary differential equations (ODE)

```csharp
var solverOptions =
    new RungeKutta45OdeSolver.Options
    {
    AbsoluteTolerance = new DoubleVector( 1e-4, 1e-4, 1e-5 ),
    RelativeTolerance = 1e-4,
    Refine = 1
    };
```
Construct the delegate representing our system of differential equations.

Finally, solve the problem. The solution is returned as a key/value pair. The first element of the pair is the time span vector, the second element is the corresponding solution values. That is, if the computed solution function is \(y \) then \(y(\text{soln.Key}[i]) = \text{soln.Value}[i] \).
35.4 Stiff Equations

A **stiff** equation is a differential equation for which common numerical methods for solving the equation are numerically unstable, unless the step size is taken to be extremely small. In **NMath**, class **VariableOrderOdeSolver** solves stiff and non-stiff ordinary differential equations. The algorithm uses higher order methods and smaller step size when the solution varies rapidly.

The `Solve()` method solves the given initial value problem of ordinary differential equation of the form

\[y' = f(t, y) \]

or

\[y' = M(t, y)f(t, y) \]

for problems that involve a mass matrix \(M \).

The function takes

- A delegate which evaluates the right hand side of the differential equations.
- A timespan vector specifying the interval of integration \([t_0, tf]\). The solver imposes initial conditions at \(t_0 \) and integrates from \(t_0 \) to \(tf \). If the timespan vector contains two elements, the solver returns the solution evaluated at every integration step. If the timespan vector contains more than two points, the solver returns the solution evaluated at the given points. The time values must be in order, either increasing or decreasing.
- The initial value for problem—the value of the unknown function \(y \) at the initial time value.

For example, the van der Pol equations in relaxation oscillation provide an example of a stiff system.\(^4\) The limit cycle has portions where the solution

\(^4\) https://www.mathworks.com/help/matlab/ref/ode15s.html
components change slowly and the problem is quite stiff, alternating with regions of very sharp change where it is not stiff.

\[
y'_0 = y_1 \\
y_0(0) = 2 \\
y'_1 = 1000(1 - y_0^2)y_1 - y_0 \\
y_1(0) = 0
\]

To simulate this system, first create a function containing the equations. The following code creates the parameterized Van der Pol equation with parameter \(\mu = 1000 \). Parameter \(t \) is the time value, and \(y \) is the state value.

Code Example – C# stiff ODE solver

```csharp
public static DoubleVector vdp1000( double t, DoubleVector y) {
    DoubleVector dy = new DoubleVector( 2 );
    double y0 = y[0];
    double y1 = y[1];
    dy[0] = y1;
    dy[1] = 1000 * ( 1 - (y0 * y0) ) * y1 - y0;
    return dy;
}
```

Next, create a function that returns the Jacobian at given \(t \) and \(y \) values.

Code Example – C# stiff ODE solver

```csharp
public static DoubleMatrix vdp1000Jac(double t, DoubleVector y) {
    DoubleMatrix J = new DoubleMatrix( 2, 2 );
    J[0, 0] = 0;
    J[0, 1] = 1;
    J[1, 0] = -2 * 1000 * y[0] * y[1] - 1;
    J[1, 1] = 1000 * ( 1.0 - y[0] * y[0] );
    return J;
}
```

Create the initial values and time interval, and encapsulate the ODE function.

Code Example – C# stiff ODE solver

```csharp
var y0 = new DoubleVector( 2.0, 0.0 );
var timespan = new DoubleVector( 0.0, 3000.0 );
var odeFunc =
    new Func<double, DoubleVector, DoubleVector>( vdp1000 );
```

Create the solver object and set up the solver options. Here we use the default relative and absolute tolerances (\(1e-3 \) and \(1e-6 \), respectively). Also, since we have an explicit form for the Jacobian function, we set this in the solver options too.
Code Example – C# stiff ODE solver

```csharp
var ode15s = new VariableOrderOdeSolver();
var options = new VariableOrderOdeSolver.Options();
options.JacobianFunction =
    new Func<double, DoubleVector, DoubleMatrix>( vdp1000Jac );

Finally, solve the equation and display the solution.

Code Example – C# stiff ODE solver

VariableOrderOdeSolver.Solution<DoubleMatrix> soln =
    ode15s.Solve( vdp1000, timespan, y0, options );

Console.WriteLine( "t = " + NMathFunctions.Round(soln.T, 4) );
Console.WriteLine();
Console.WriteLine( "y = " );
Console.WriteLine(    NMathFunctions.Round( soln.Y, 4 ).ToTabDelimited() );
```
PART V - STATISTICS
NMath’s statistical suite is fully integrated into CenterSpace Software’s NMath™ product. NMath provides object-oriented components for mathematical, engineering, scientific, and financial applications and includes statistical components for descriptive statistics, probability distributions, combinatorial functions, multiple linear regression, hypothesis testing, and analysis of variance all optimized for the .NET platform.

Fully compliant with the Microsoft Common Language Specification, all NMath routines are callable from any .NET language, including C#, Visual Basic, and Managed C++.

36.1 Product Features

The statistical features of NMath include:

- A data frame class for holding data of various types (numeric, string, boolean, datetime, and generic), with methods for appending, inserting, removing, sorting, and permuting rows and columns.

- Functions for computing descriptive statistics, such as mean, variance, standard deviation, percentile, median, quartiles, geometric mean, harmonic mean, RMS, kurtosis, skewness, and many more.

- Probability density function (PDF), cumulative distribution function (CDF), inverse CDF, and random variable moments for a variety of probability distributions.

- Multiple linear regression and logistic regression.

- Basic hypothesis tests, such as z-test, t-test, F-test, and Pearson’s chi-square test, with calculation of p-values, critical values, and confidence intervals.

- One-way and two-way analysis of variance (ANOVA) and analysis of variance with repeated measures (RANOVA).

- Non-parametric tests, such as the Kolmogorov-Smirnov test and Kruskal-Wallis rank sum test.

- Multivariate statistical analyses, including principal component analysis, factor analysis, hierarchical cluster analysis, and k-means cluster analysis.

- Nonnegative matrix factorization (NMF), and data clustering using NMF.
- Partial least squares (PLS).
- Statistical process control.

36.2 Namespaces

All types in **NMath** are in the `CenterSpace.NMath.Core` namespace. To avoid using fully qualified names, preface your code with the namespace statement. For example:

Code Example – C#

```csharp
using CenterSpace.NMath.Core;
```

Code Example – VB

```vbnet
Imports CenterSpace.NMath.Core
```

All **NMath** code shown in this manual assumes the presence of such a namespace statement.
Statistical functions generally support the NMath types DoubleVector and DoubleMatrix, as well as native arrays of doubles. In many cases, these types are sufficient for storing and manipulating your statistical data. However, they suffer from two limitations: they can only store numeric data, and they have limited support for adding, inserting, removing, and reordering data. Because the underlying data is an array of doubles, data must be copied to new storage every time manipulation operations such as these are performed.

For these reasons, NMath provides the DataFrame class which represents a two-dimensional data object consisting of a list of columns of the same length. Columns are themselves lists of different types of data: numeric, string, boolean, generic, and so on.

Methods are provided for appending, inserting, removing, sorting, and permuting rows and columns in a data frame. Because the underlying data is in a list, elements can be added, removed, and reordered without having to copy all of the data to new storage.

A DataFrame can be viewed as a kind of virtual database table. Columns can be accessed by numeric index (0...n-1) or by a string name supplied at construction time. Rows can be accessed by numeric index (0...n-1) or by a key object. Column names and row keys do not need to be unique. For example, this output shows a formatted string representation of data from a sample data frame:

```
#   State  Weight Married
John Smith  OR     165   true
Ruth Barnes WA     147   true
Jane Jones   VT     115   false
Tim Travis   AK     230   false
Betsy Young  MA     130   true
Arthur Smith CA     152   false
Emma Allen   OK     135   false
Roy Wilkenson WI  182   true
```
This data frame contains three columns: column 0, named State, contains string data; column 1, named Weight, contains integer data; column 2, named Married, contains boolean data. There are eight rows of data in this data frame, and the subjects’ names are used as row keys.

This chapter describes how to use the DataFrame class.

37.1 Column Types

A DataFrame may contain columns of different types—the only constraint is that the columns must be of the same length. DFColumn, which implements the IDFCColumn interface, is the abstract base class for data frame columns. NMath provides the following derived classes for column types:

- DFBoolColumn represents a column of logical data.
- DFDatetimeColumn represents a column of temporal data.
- DFGenericColumn represents a column of generic data.
- DFINTCOLUMN represents a column of integer data.
- DFNumericColumn represents a column of double-precision floating point data.
- DFStringColumn represents a column of string data.

Creating Columns

Empty columns are constructed by simply supplying a name for the column. For example:

Code Example – C#

```csharp
var col = new DFDatetimeColumn( "myCol" );
```

Code Example – VB

```vbnet
Dim Col As New DFDatetimeColumn("myCol")
```

The name of a column can be used to access the column in a data frame. Once a column instance is constructed, the name cannot be changed.

NOTE—Columns also provide a modifiable Label property for display purposes; see below.
Columns can also be initialized with an array of data at construction time:

Code Example – C#

```csharp
var bArray =
    new bool[] { true, false, true, true, true, false, false };
var col = new DFBoolColumn( "myCol", bArray );
```

Code Example – VB

```vbnet
Dim BArray() As Boolean = {True, False, True, True, True, False, False}
Dim Col As New DFBoolColumn("myCol", BArray)
```

Constructors that take an array of data use the `params` keyword, so values may also be passed as parameters:

Code Example – C#

```csharp
var col =
    new DFStringColumn( "myCol", "Jane", "Joe", "Mary", "Bill" );
```

Code Example – VB

```vbnet
Dim Col As
    New DFStringColumn("myCol", "Jane", "Joe", "Mary", "Bill")
```

Some column types provide additional options for initializing data at construction time. For instance, this code initializes a numeric column with data from a `DoubleVector`:

Code Example – C#

```csharp
var v = new DoubleVector( 50, 0, .1 );
var col = new DFNumericColumn( "myCol", v );
```

Code Example – VB

```vbnet
Dim V As New DoubleVector(50, 0, 0.1)
Dim Col As New DFNumericColumn("myCol", V)
```

This code initializes a generic column with data from an `ICollection`:

Code Example – C#

```csharp
var list = new ArrayList( 3 );
list.Add( 3.14 );
list.Add( "Hello World" );
list.Add( DateTime.Now );
var col = new DFGenericColumn( "myCol", list );
```

Code Example – VB

```vbnet
Dim List As New ArrayList(3)
List.Add(3.14)
```
List.Add("Hello World")
List.Add(DateTime.Now)
Dim Col As New DFGenericColumn("myCol", List)

Lastly, you can create a column from another column. For example, this code creates a `DFIntColumn` from a `DFStringColumn`:

Code Example – C#

```csharp
var col = new DFStringColumn( "Col1", "1", "2", "3", "4" );
var col2 = new DFIntColumn( "Col2", col1 );
```

Code Example – VB

```vb
Dim Col As New DFStringColumn("Col1", "1", "2", "3", "4")
Dim Col2 As New DFIntColumn("Col2", Col1)
```

A `NMathFormatException` is raised if the data in the given column cannot be converted to the appropriate type.

Adding and Removing Data

Once a column is constructed you can add or remove data from it. The `Add()` method appends an element to the end of the column:

Code Example – C#

```csharp
var col = new DFStringColumn( "Name" );
col.Add( "Joe Smith" );
col.Add( "Jane Doe" );
col.Add( "John Davis" );
```

Code Example – VB

```vb
Dim Col As New DFStringColumn("Name")
Col.Add("Joe Smith")
Col.Add("Jane Doe")
Col.Add("John Davis")
```

The `Insert()` method inserts an element into a column at a given index. For instance, this code insert a new element at the top of the column:

Code Example – C#

```csharp
col.Insert( 0, "Sally Jones" );
```

Code Example – VB

```vb
Col.Insert(0, "Sally Jones")
```

The `RemoveAt()` method removes the element at a given index:
Accessing Column Data

The data frame column classes provide standard indexing operators for getting and setting element values. Thus, \(\text{col}[i] \) always returns the \(i \)th element of the column:

Code Example – C#

```csharp
var col =
    new DFStringColumn( "Names", "Jane", "Joe", "Mary", "Bill" );
col[0] = "Janet";
```

Code Example – VB

```vbnet
Dim Col As New DFStringColumn("Names", "Jane", "Joe", "Mary", "Bill")
Col(0) = "Janet"
```

The `GetEnumerator()` method returns an enumerator for the column data:

Code Example – C#

```csharp
IEnumerator enumerator = col.GetEnumerator();
while ( enumerator.MoveNext() )
{
    // Do something with enumerator.Current
}
```

Code Example – VB

```vbnet
Dim Enumerator As IEnumerator = Col.GetEnumerator()
While (Enumerator.MoveNext())
    ' Do something with enumerator.Current
End While
```

Column Properties

Data frame column types provide the following properties:

- `ColumnType` gets the type of the objects held by the column.
- `Count` gets the number of objects in the column.
IsNumeric returns true if a column is of type DFIntColumn or DFNumericColumn.

Label gets and sets the label in the header of the column.

MissingValue gets and sets the value used to represent missing values in the column (see below).

Name gets the name of the column.

NOTE—The Name of a column can only be set in a constructor. Once a column is constructed, the name cannot be changed. For a modifiable label, see the Label property.

Reordering Column Data

You can use the `Permute()` method to arbitrarily reorder the elements in a column. This method accepts a permutation array of element indices and reorders the elements such that `this[permutation[i]]` is set to the `i`th object in the original column.

For example, this code moves the last two elements to the head of the column:

Code Example – C#

```csharp
var col =
    new DFStringColumn( "myCol", "a", "b", "c", "d", "e" );
col.Permute( 2, 3, 4, 0, 1 );
```

Code Example – VB

```vbnet
Dim Col As New DFStringColumn("myCol", "a", "b", "c", "d", "e")
Col.Permute(2, 3, 4, 0, 1)
```

Missing Values

All column types—except DFBBoolColumn, which has only two valid values—support missing values. Most statistical functions in NMath are accompanied by a paired function that ignores missing values (Section 38.2).

NOTE—To represent missing values in boolean data, use a DFIntColumn. For example, use 1 for true, 0 for false, and -1 for missing.
At construction time, the missing value for a column is defined using a static variable in class `StatsSettings`, as shown in Table 24.

Table 24 – Default missing values for data frame column types

<table>
<thead>
<tr>
<th>Column Type</th>
<th>StatsSettings Variable</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DFDateTimeColumn</code></td>
<td><code>DateTimeMissingValue</code></td>
<td><code>DateTime.MinValue</code></td>
</tr>
<tr>
<td><code>DFGenericColumn</code></td>
<td><code>GenericMissingValue</code></td>
<td><code>null</code></td>
</tr>
<tr>
<td><code>DFIntColumn</code></td>
<td><code>IntegerMissingValue</code></td>
<td><code>int.MinValue</code></td>
</tr>
<tr>
<td><code>DFNumericColumn</code></td>
<td><code>NumericMissingValue</code></td>
<td><code>Double.NaN</code></td>
</tr>
<tr>
<td><code>DFStringColumn</code></td>
<td><code>StringMissingValue</code></td>
<td><code>"."</code></td>
</tr>
</tbody>
</table>

For instance, this code computes the mean of a column of integers, ignoring any missing values:

Code Example – C#
```
var col = new DFIntColumn( "myCol", 5, 2, -1, 1, 0, 7 );
double mean = StatsFunctions.NaNMean( col );
```

Code Example – VB
```
Dim Col As New DFIntColumn("myCol", 5, 2, -1, 1, 0, 7)
Dim Mean As Double = StatsFunctions.NaNMean(Col)
```

By default, a missing value in a `DFIntColumn` is represented using the default setting of `StatsFunctions.IntegerMissingValue`, which is `int.MinValue`. You can change the way a missing value is represented for a particular column instance using the `MissingValue` property:

Code Example – C#
```
col.MissingValue = -1;
double mean = StatsFunctions.NaNMean( col );
```

Code Example – VB
```
Col.MissingValue = -1
Dim Mean As Double = StatsFunctions.NaNMean(Col)
```

In this example, all values in `col` equal to `-1` are ignored when computing the mean.

NOTE—For `DFNumericColumn` instances you can use the `MissingValue` property to indicate that missing values are represented by something other than the default value `Double.NaN`. However, `Double.NaN` will continue to be treated as missing, in addition to whatever value you set.
You can also change the default missing value for all columns of a particular type by setting the appropriate static variable in `StatsSettings`. Thus, this code sets the default missing value for integer columns to -1 for all subsequently constructed `DFIntColumn` instances:

Code Example – C#

```csharp
StatsSettings.IntegerMissingValue = -1;
```

Code Example – VB

```vb
StatsSettings.IntegerMissingValue = -1
```

The `Clean()` method returns a new column with missing values removed.

Transforming Column Data

`NMath` provides convenience methods for applying functions to elements of a column. Each of these methods takes a function delegate. The `Apply()` method returns a new column whose contents are the result of applying the given function to each element of the column. The `Transform()` method modifies a column object by applying the given function to each of its elements.

Suppose, for example, that you want to cap all numeric values in a `DFNumericColumn` at 100.0. You could write a simple function like this:

Code Example – C#

```csharp
private static double Cap( double x )
{
    return x > 100.0 ? 100.0 : x;
}
```

Code Example – VB

```vb
Private Shared Function Cap(X As Double) As Double
    If X > 100 Then
        Return 100
    Else
        Return X
    End If
End Function
```

Then encapsulate the function in a `Func<double, double>` delegate:

Code Example – C#

```csharp
var capDelegate = new Func<double, double>( Cap );
```

Code Example – VB

```vb
Dim CapDelegate As New Func(Of Double, Double)(AddressOf Cap)
```
This code caps all numeric values in column `col`:

Code Example – C#

```csharp
col.Transform( capDelegate );
```

Code Example – VB

```vbnet
Col.Transform( capDelegate )
```

A common use of the `Apply()` functions is to create a new column whose values are a function of values in one or two existing column. For example, suppose you have `FirstName` and `LastName` string columns in data frame `df`, and want to create a new column containing customers’ full names. You could write a simple function like this:

Code Example – C#

```csharp
private static string Cat( string first, string last )
{
    return first + " " + last;
}
```

Code Example – VB

```vbnet
Private Shared Function Cat(First As String, Last As String) As String
    Return First & Last
End Function
```

Then encapsulate the function in a `Func<String, String, String>` delegate:

Code Example – C#

```csharp
var catDelegate = new Func<String, String, String>( Cat );
```

Code Example – VB

```vbnet
Dim CatDelegate As New Func(Of String, String, String)(AddressOf Cat)
```

This code creates a new column containing the concatenated names:

Code Example – C#

```csharp
DFStringColumn col =
    ( (DFStringColumn)data["FirstName"] ).Apply( "FullName", catDelegate, (DFStringColumn)data["LastName"] );
```

Code Example – VB

```vbnet
Dim First As DFStringColumn =
    CType(Data["FirstName"], DFStringColumn )
Dim Last As DFStringColumn =
    CType(Data["LastName"], DFStringColumn )
```
Dim Col As DFStringColumn =
 First.Apply("FullName", CatDelegate, Last)

Exporting Column Data

Data from a column can be exported in various ways:

- **ToArray()** exports the contents of a column to a strongly-typed array.
- **ToDoubleArray()** extracts the contents of a column to an array of doubles (numeric columns only).
- **ToDoubleVector()** extracts the contents of a column to a **DoubleVector** (numeric columns only).
- **ToIntArray()** extracts the contents of a column to an array of integers (integer columns only).
- **ToString()** returns a formatted string representation of a column.
- **ToStringArray()** exports the contents of a column to an array of strings.

37.2 Creating DataFrames

Data frames can be constructed in a variety of ways.

Creating Empty DataFrames

The default constructor creates an empty data frame with no rows or columns. Columns and rows can then be added to the new data frame.

Code Example – C#

```csharp
var df = new DataFrame();

// Add some columns
df.AddColumn( new DFStringColumn( "Sex" ));
df.AddColumn( new DFStringColumn( "AgeGroup" ));
df.AddColumn( new DFIntColumn( "Weight" ) );

// Add some rows
df.AddRow( "John Smith", "M", "Child", 45 );
df.AddRow( "Ruth Barnes", "F", "Senior", 115 );
df.AddRow( "Jane Jones", "F", "Adult", 115 );
df.AddRow( "Timmy Toddler", "M", "Child", 42 );
df.AddRow( "Betsy Young", "F", "Adult", 130 );
```
df.AddRow("Arthur Smith", "M", "Senior", 142);
df.AddRow("Lucy Doe", "F", "Child", 30);
df.AddRow("Emma Allen", "F", "Child", 35);

Code Example – VB

Dim DF As New DataFrame()

' Add some columns
DF.AddColumn(New DFStringColumn("Sex"))
DF.AddColumn(New DFStringColumn("AgeGroup"))
DF.AddColumn(New DFIntColumn("Weight"))

' Add some rows
DF.AddRow("John Smith", "M", "Child", 45)
DF.AddRow("Ruth Barnes", "F", "Senior", 115)
DF.AddRow("Jane Jones", "F", "Adult", 115)
DF.AddRow("Timmy Toddler", "M", "Child", 42)
DF.AddRow("Betsy Young", "F", "Adult", 130)
DF.AddRow("Arthur Smith", "M", "Senior", 142)
DF.AddRow("Lucy Doe", "F", "Child", 30)
DF.AddRow("Emma Allen", "F", "Child", 35)

NOTE—The first parameter to the AddRow() method is the row key. See Section 37.3 and Section 37.4, respectively, for more information on adding columns and rows to a data frame.

Creating DataFrames from Arrays of Columns

You can also construct and populate columns independently, then combine them into a data frame:

Code Example – C#

var col1 = new DFNumericColumn("Col1", 1.1, 2.2, 3.3, 4.4);
var col2 = new DFBoolColumn("Col2", true, true, false, true);
var col3 =
 new DFStringColumn("Col3", "John", "Paulo", "Sam", "Becky");
var cols = new DFColumn[] { col1, col2, col3 };
var df = new DataFrame(cols);

Code Example – VB

Dim Col1 As New DFNumericColumn("Col1", 1.1, 2.2, 3.3, 4.4)
Dim Col2 As New DFBoolColumn("Col2", True, True, False, True)
Dim Col3 As
 New DFStringColumn("Col3", "John", "Paulo", "Sam", "Becky")
Dim Cols As DFColumn() = {Col1, Col2, Col3}
Dim DF As New DataFrame(Cols)
An **InvalidArgumentException** is thrown if the columns are not all of the same length.

In this case, the row keys are set to nulls; they can later be initialized using the `SetRowKeys()` method. Alternatively, you can pass in a collection of row keys at construction time:

Code Example – C#

```csharp
var keys = new object[] { "Row1", "Row2", "Row3", "Row4" };
var df = new DataFrame( cols, keys );
```

Code Example – VB

```vbnet
Dim Keys As Object() = {"Row1", "Row2", "Row3", "Row4"}
Dim DF As New DataFrame(Cols, Keys)
```

Creating DataFrames from Matrices

You can construct a data frame from a `DoubleMatrix` and an array of column names. A new `DFNumericColumn` is added for each column in the matrix. For instance, this code creates a data frame from an 8 x 3 matrix:

Code Example – C#

```csharp
var A = new DoubleMatrix( 8, 3, 0, 1 );
var colNames = new string[] { "A", "B", "C" };
var df = new DataFrame( A, colNames );
```

Code Example – VB

```vbnet
Dim A As New DoubleMatrix(8, 3, 0, 1)
Dim ColNames As String() = {"A", "B", "C"}
Dim DF As New DataFrame(A, ColNames)
```

The number of column names must match the number of columns in the matrix.

Creating DataFrames from ADO.NET Objects

You can construct a data frame from an ADO.NET `DataTable`. For example, assuming `table` is a `DataTable` instance:

Code Example – C#

```csharp
var df = new DataFrame( table );
```

Code Example – VB

```vbnet
Dim DF As New DataFrame(Table)
```
In this case, the row keys are set to the default `rowIndex + 1`—that is, 1...n. You can also specify the row keys in various ways. This code passes in an array of row keys:

Code Example – C#

```csharp
var keys = new object[] { "Row1", "Row2", "Row3", "Row4" };
var df = new DataFrame(table, keys);
```

Code Example – VB

```vbnet
Dim Keys As Object() { "Row1", "Row2", "Row3", "Row4" } Dim DF As New DataFrame(Table, Keys)
```

Alternatively, you can indicate a column in the `DataTable`, either by column index or column name, to use for the row keys. This code uses column `ID` for row keys:

Code Example – C#

```csharp
var df = new DataFrame(table, "ID");
```

Code Example – VB

```vbnet
Dim DF As New DataFrame(Table, "ID")
```

Creating DataFrames from Strings

You can construct a data frame from a string representation. For example, if `str` is a tab-delimited string containing:

<table>
<thead>
<tr>
<th>Key</th>
<th>Col1</th>
<th>Col2</th>
<th>Col3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row1</td>
<td>1.1</td>
<td>true</td>
<td>A</td>
</tr>
<tr>
<td>Row2</td>
<td>2.2</td>
<td>true</td>
<td>B</td>
</tr>
<tr>
<td>Row3</td>
<td>3.3</td>
<td>false</td>
<td>A</td>
</tr>
<tr>
<td>Row4</td>
<td>4.4</td>
<td>true</td>
<td>C</td>
</tr>
</tbody>
</table>

Then you could construct a data frame like so:

Code Example – C#

```csharp
var df = new DataFrame(str);
```

Code Example – VB

```vbnet
Dim DF As New DataFrame(Str)
```

For more control, you can also indicate:

- whether the first row of data contains column headers
- whether the first column of data contains row keys
- the delimiter used to separate columns
whether to parse the column types, or to treat everything as string data

For example, if `str` is a comma-delimited string containing column headers but no row keys:

```
Col1,Col2,Col3
1.1,true,A
2.2,true,B
3.3,false,A
4.4,true,C
```

you could construct a data frame like so:

Code Example – C#

```csharp
var df = new DataFrame( str, true, false, "", true );
```

Code Example – VB

```vb
Dim DF As New DataFrame( Str, True, False, ",", True)
```

37.3 Adding and Removing Columns

The `AddColumn()` method adds a column to a data frame:

Code Example – C#

```csharp
var df = new DataFrame();
var col = new DFNumericColumn( "myCol" );
df.AddColumn( col );
```

Code Example – VB

```vb
Dim DF As New DataFrame()
Dim Col As New DFNumericColumn("myCol")
DF.AddColumn( Col )
```

NOTE—The `AddColumn()` method raises a `MismatchedSizeException` if you attempt to add a column that is not the same length as any existing columns in a data frame.

You can also add all the columns from one data frame to another, optionally copying the data in the columns. For example, assuming `df` is a data frame, this code adds the columns of `df` to a new data frame and copies all the column data:

Code Example – C#

```csharp
var df2 = new DataFrame();
df2.AddColumn( df, true );
```
Code Example – VB

Dim DF2 As New DataFrame()
DF2.AddColumns(DF, True)

Overloads of AddColumn() and AddColumns() accept ADO.NET DataColumn and DataColumnCollection instances, respectively. If the data frame already contains rows of data, you must also pass in a DataRowCollection of the same Count as the number of rows in the data frame.

InsertColumn() inserts a column at a given column index. This code adds a column in the first position:

Code Example – C#

var col = new DFStringColumn("myCol");
df.InsertColumn(0, col);

Code Example – VB

Dim Col As New DFStringColumn("myCol")
DF.InsertColumn(0, Col)

RemoveColumn() removes the column at a given index:

Code Example – C#

df.RemoveColumn(3);

Code Example – VB

DF.RemoveColumn(3)

You can also identify a column by name:

Code Example – C#

df.RemoveColumn("myCol");

Code Example – VB

DF.RemoveColumn("myCol")

Because column names are not constrained to be unique, this method will remove all columns in the data frame with the given name.

RemoveAllColumns() removes all columns from a data frame, but preserves the existing row keys. RemoveColumns() removes the columns specified in a given subset or slice.

Clear() method removes all columns and rows from a data frame. CleanCols() returns a new data frame containing only those columns in a data frame that do not contain missing values.
37.4 Adding and Removing Rows

The `AddRow()` method adds a row of data to a data frame. The first parameter is the row key; subsequent parameters are the row data. For example:

Code Example – C#

```csharp
var df = new DataFrame();
df.AddColumn( new DFStringColumn( "Col1" ));
df.AddColumn( new DFNumericColumn( "Col2" ));
df.AddColumn( new DFNumericColumn( "Col3" ));
df.AddRow( 1546, "Test1", 1.5445, 667.87 );
```

Code Example – VB

```vbnet
Dim DF As New DataFrame()
DF.AddColumn( New DFStringColumn( "Col1" ))
DF.AddColumn( New DFNumericColumn( "Col2" ))
DF.AddColumn( New DFNumericColumn( "Col3" ))
DF.AddRow( 1546, "Test1", 1.5445, 667.87 )
```

NOTE—The `AddRow()` method raises a `MismatchedSizeException` if the number of row elements does not match the number of columns in the data frame.

This example uses 1546 as an integer row key, perhaps representing some sort of ID. Row keys can be any object, and need not be unique.

Additional overloads of `AddRow()` accept data in various collections other than an array of objects. One overload takes an `ICollection`. For instance:

Code Example – C#

```csharp
var myQ = new Queue();
myQ.Enqueue( "Hello" );
myQ.Enqueue( 47.0 );
myQ.Enqueue( -0.34 );
df.AddRow( "Row1", myQ );
```

Code Example – VB

```vbnet
Dim MyQ As New Queue()
MyQ.Enqueue( "Hello" )
MyQ.Enqueue( 47.0 )
MyQ.Enqueue( -0.34 )
DF.AddRow( "Row1", MyQ )
```

Another overload accepts an `IDictionary` in which the keys are the column names and the values are the row data:

Code Example – C#

```csharp
var df = new DataFrame();
df.AddColumn( new DFNumericColumn( "V1" ));
```
df.AddColumn(new DFBoolColumn("V2"));
df.AddColumn(new DFStringColumn("V3"));
var myHT = new Hashtable();
myHT.Add("V1", 3.14);
myHT.Add("V3", "Hello");
myHT.Add("V2", true);
df.AddRow("Row1", myHT);

Code Example – VB

Dim DF As New DataFrame()
DF.AddColumn(New DFNumericColumn("V1"))
DF.AddColumn(New DFBoolColumn("V2"))
df.AddColumn(New DFStringColumn("V3"))
Dim MyHT As New Hashtable()
MyHT.Add("V1", 3.14)
MyHT.Add("V3", "Hello")
MyHT.Add("V2", True)
DF.AddRow("Row1", MyHT)

If all of the columns in your data frame are numeric, you can add a row as a DoubleVector:

Code Example – C#

var v = new DoubleVector(10, 0, 1);
df.AddRow("myKey", v);

Code Example – VB

Dim V As New DoubleVector(10, 0, 1)
DF.AddRow("myKey", V)

Other overloads of AddRow() and AddRows() accept ADO.NET DataRow and DataRowCollection instances, respectively.

InsertRow() inserts a row at a given row index. For example, this code inserts a row into the second position:

Code Example – C#

var df = new DataFrame();
df.AddColumn(new DFNumericColumn("Col1"));
df.AddColumn(new DFNumericColumn("Col2"));
df.AddColumn(new DFNumericColumn("Col3"));
df.AddRow("Row1", 2.5, 0.0, 3.4);
df.AddRow("Row2", 3.14, -.5, -.33);
df.AddRow("Row3", 0.1, 55.34, 12.02);
df.AddRow("Row4", 3.14, -33.2, 7.22);
var myRow = object[] { 5.5, 9.05, -6.11 };
df.InsertRow(1, "Row1a", myRow);
Code Example – VB

Dim DF As New DataFrame() = New DataFrame()
DF.AddColumn(New DFNumericColumn("Col1"))
DF.AddColumn(New DFNumericColumn("Col2"))
DF.AddColumn(New DFNumericColumn("Col3"))
DF.AddRow("Row1", 2.5, 0.0, 3.4)
DF.AddRow("Row2", 3.14, -0.5, -0.33)
DF.AddRow("Row3", 0.1, 55.34, 12.02)
DF.AddRow("Row4", 3.14, -33.2, 7.22)
Dim MyRow As Object() = {5.5, 9.05, -6.11}
DF.InsertRow(1, "Row1a", MyRow)

Again, overloads are provided for adding row data in various collection types.

RemoveRow() removes the row at a given index:

Code Example – C#

df.RemoveRow(0);

Code Example – VB

DF.RemoveRow(0)

You can also identify a row by key:

Code Example – C#

df.RemoveRow("Row3");

Code Example – VB

DF.RemoveRow("Row3")

Because row keys are not constrained to be unique, this method will remove all rows in the data frame with the given key.

RemoveAllRows() removes all rows from a data frame, but preserves the existing columns. RemoveRows() removes the rows specified in a given subset or slice.

Clear() method removes all rows and columns from a data frame. CleanRows() returns a new data frame containing only those rows in a data frame that do not contain missing values.

Modifying Row Keys

Unlike column names which are fixed at construction time, row keys can be changed at any time. The SetRowKey() method sets the key for a given row to a given value. Remember that row keys can be any object:
Code Example – C#

```csharp
df.SetRowKey( 0, 1.14 );
df.SetRowKey( 1, "John Doe" );
df.SetRowKey( 2, true );
```

Code Example – VB

```vbnet
DF.SetRowKey(0, 1.14)
DF.SetRowKey(1, "John Doe")
DF.SetRowKey(2, True)
```

SetRowKeys() accepts a collection of row keys, and raises a **MismatchedSizeException** if the number of elements in the collection does not equal the number of rows in this data frame:

Code Example – C#

```csharp
object[] keys = { "Subject1", "Subject2", "Subject3" };
df.SetRowKeys( keys );
```

Code Example – VB

```vbnet
Dim Keys As Object() = {"Subject1", "Subject2", "Subject3"}
DF.SetRowKeys(Keys)
```

Finally, IndexRowKeys() resets the row keys for all rows to rowIndex + 1; that is, 1...n.

37.5 Properties of DataFrames

The **DataFrame** class provides the following properties:

- **Cols** gets the number of columns.
- **ColumnNames** gets an array of the column names.
- **ColumnHeaders** gets and sets the array of column labels used for display purposes.
- **CreateDate** gets the creation datetime for the date frame.
- **Name** gets and sets the name of the data frame.
- **Rows** gets the number of rows.
- **RowKeyHeader** gets and sets the header for the row keys for display purposes. The default row key header is #.
- **RowKeys** gets an object array of the row keys.
37.6 Accessing DataFrames

Class **DataFrame** provides a wide range of indexers and member functions accessing individual elements, columns, or rows in a data frame.

NOTE—For information on getting arbitrary sub-frames from a data frame, see Section 37.8.

Accessing Elements

Class **DataFrame** provides a two-dimensional indexing operator for getting and setting individual element values. Thus, \(df[i,j] \) always returns the \(i \)th element of the \(j \)th column:

Code Example – C#

\[
\text{df}[3, 0] = 1.0;
\]

Code Example – VB

\[
\text{DF(3, 0)} = 1.0
\]

Accessing Columns

The one-dimensional indexing operator \(df[i] \) always returns the \(i \)th column:

Code Example – C#

\[
\text{DFNumericColumn col = df[3];}
\]

Code Example – VB

\[
\text{Dim Col As DFNumericColumn = DF(3)}
\]

You can also access columns by name:

Code Example – C#

\[
\text{DFNumericColumn col = df["myCol"];}
\]

Code Example – VB

\[
\text{Dim Col As DFNumericColumn = DF("myCol")}
\]

Because column names are not constrained to be unique, this returns the first column with the given name, or `null` if a column by that name is not found.
The `IndexOfColumn()` method returns the index of the first column with a given name, or `null` if a column by that name is not found. `IndicesOfColumn()` returns an array of all column indices for a given column name.

You can also check whether a column of a given name exists in a data frame using the `ContainsColumn()` method:

Code Example – C#
```csharp
if ( df.ContainsColumn( "myCol" ) )
{
    // Do something here with df[ "myCol" ]
}
```

Code Example – VB
```vbnet
If (DF.ContainsColumn("myCol")) Then
    '' Do something here with DF( "myCol" )
End If
```

Finally, the `GetColumnDictionary()` method returns an `IDictionary` of the values in a given column. For instance, this code gets a dictionary of the values in column 2:

Code Example – C#
```csharp
IDictionary dict = df.GetColumnDictionary( 2 );
```

Code Example – VB
```vbnet
Dim Dict As IDictionary = DF.GetColumnDictionary(2)
```

The row keys are used as keys in the dictionary. Alternatively, you can specify two column indices—the first is used for the dictionary keys, the second for the dictionary values:

Code Example – C#
```csharp
IDictionary dict = df.GetColumnDictionary( 0, 2 );
```

Code Example – VB
```vbnet
Dim Dict As IDictionary = DF.GetColumnDictionary(0, 2)
```

In this example, the elements in column 0 are used as the dictionary keys.

Accessing Rows

Because the one-dimensional indexer `df[i]` is already used for accessing data frame columns, class `DataFrame` provides `GetRow()` methods for accessing individual rows. Thus, `GetRow(i)` returns the data in the `i`th row as an array of objects:
You can also access rows by key:

Code Example – C#
```
object[] rowData = df.GetRow( "myKey" );
```

Code Example – VB
```
Dim RowData As Object() = DF.GetRow("myKey")
```

Because row keys are not constrained to be unique, this returns the first row with the given key, or `null` if a row with that key is not found.

The `IndexOfKey()` method returns the index of the first row with a given key, or `null` if a row with that key is not found. `IndicesOfKey()` returns an array of all row indices for a given key.

You can also retrieve the indices of rows with a particular value in a given column. `IndexOf()` returns the first row with a particular value in a column; `IndicesOf()` returns all rows. For instance, this code gets an array of row indices for all rows which have the value "John Doe" in column 2:

Code Example – C#
```
int[] rowIndices = df.IndicesOf( 2, "John Doe" );
```

Code Example – VB
```
Dim RowIndices As Integer() = DF.IndicesOf(2, "John Doe")
```

Lastly, the `GetRowDictionary()` method returns an `IDictionary` of the data in a given row, specified either by row index or row key. The column names are used as keys in the dictionary. Thus, this code gets a dictionary of the data in row 3:

Code Example – C#
```
IDictionary dict = df.GetRowDictionary( 3 );
```

Code Example – VB
```
Dim Dict As IDictionary = DF.GetRowDictionary(3)
```
37.7 Subsets

In addition to accessors for individual elements, columns, or rows in a data frame (Section 37.6), class **DataFrame** provides a large number of indexers and member functions for accessing sub-frames containing any arbitrary subset of rows, columns, or both (Section 37.8).

Such indexers and methods accept the **NMath** types **Slice** and **Range** to indicate sets of row or column indices with constant spacing, as well as abstract values like **Slice.All** for indexing all elements.

In addition, **NMath** introduces a new class called **Subset**. Like a **Slice** or **Range**, a **Subset** represents a collection of indices that can be used to view a subset of data from another data structure. Unlike a **Slice** or **Range**, however, a **Subset** need not be continuous, or even ordered. It is simply an arbitrary collection of indices.

This section describes the **Subset** class.

Creating Subsets

Subset instances can be constructed in a variety of ways. One constructor simply accepts an array of integers:

Code Example – C#

```csharp
var sub = new Subset( new int[] { 5, 4, 0, 12 } );
```

Code Example – VB

```vb
Dim Subset As New Subset(New Integer() {5, 4, 0, 12})
```

Another constructor accepts an **ICollection** whose elements are all **System.Int32**.

A very useful constructor takes an array of boolean values and constructs a **Subset** containing the indices of all **true** elements in the array. This can used, for example, to create a subset from a **DataFrame** containing the indices of the rows or columns than meet a certain criteria.

Thus, this code creates a subset of row indices containing those rows where the value in column 2 is greater than the value in column 3:

Code Example – C#

```csharp
var bArray = new bool[ df.Rows ];
for ( int i = 0; i < df.Rows; i++ )
{
    bArray[i] = ( df[2][i] > df[3][i] );
}
var rowIndices = new Subset( bArray );
```
Code Example – VB

Dim BArray(DF.Rows) As Boolean
For I As Integer = 0 To DF.Rows - 1
 BArray(I) = DF(2)(I) > DF(3)(I)
Next
Dim RowIndices As New Subset(BArray)

This Subset could be used to access the sub-frame containing only those rows that meet the criterion, as described in Section 37.8.

A Subset can also be constructed from an array of other subsets. The subsets are simply concatenated. To create a sorted Subset of the unique indices, you can call Unique() on the constructed Subset (see below).

Lastly, constructors are provided that construct subsets with continuous spacing, like slices and ranges. For instance, this code creates a subset starting at 2, with 5 total elements, and a stepsize of 1:

Code Example – C#

var sub = new Subset(2, 5, 1);

Code Example – VB

Dim Subset As New Subset(2, 5, 1)

Properties of Subsets

Class Subset provides the following read-only properties:

- **First** gets the first index in the subset.
- **Length** gets the total number of indices in the subset.
- **Indices** gets the underlying array of integers.
- **Last** gets the last index in the subset.

Accessing Elements

Class Subset provides an indexing operator for getting and setting element values. Thus, subset[i] returns the i\text{th} element of the underlying array of integers.

Code Example – C#

sub[3] = 4;

Code Example – VB

Subset(3) = 4
NOTE—Indexing starts at 0.

The `Get(i)` method safely gets the index at a given position by looping around the end of the subset if `i` exceeds the length of the subset:

Code Example – C#

```csharp
var sub = new Subset(new int[] { 3, 4, 5, 8, 9 });
int index = sub.Get(5);
// index = 3
```

Code Example – VB

```vbnet
Dim Subset As New Subset(New Integer() {3, 4, 5, 8, 9})
Dim Index As Integer = Subset.Get(5)
' index = 3
```

You can also create a **Subset** of a **Subset** using the indexing operator. For instance:

Code Example – C#

```csharp
var sub1 = new Subset(new int[] { 1, 3, 4, 7, 9 });
var sub2 = new Subset(new int[] { 0, 2, 4 });
Subset sub3 = sub1[sub2];
// sub3.Indices = 1, 4, 9
```

Code Example – VB

```vbnet
Dim Sub1 As New Subset(New Integer() {1, 3, 4, 7, 9})
Dim Sub2 As New Subset(New Integer() {0, 2, 4})
Dim Sub3 As Subset = Sub1(Sub2)
' sub3.Indices = 1, 4, 9
```

Logical Operations on Subsets

Operator `==` tests for equality of two subsets, and returns `true` if both subsets are the same length and all elements are equal; otherwise, `false`. Following the convention of the .NET Framework, if both objects are `null`, they test equal. Operator `!=` returns the logical negation of `==`. The `Equals()` member function also tests for equality.

Arithmetic Operations on Subsets

NMath provides overloaded arithmetic operators for subsets with their conventional meanings for those .NET languages that support them, and equivalent named methods for those that do not. Table 25 lists the equivalent operators and methods.
Manipulating Subsets

The `Append()` method adds an index to the end of a subset:

Code Example – C#

```csharp
sub.Append(5);
```

Code Example – VB

```vbnet
Subset.Append(5)
```

`Remove()` removes the first occurrence of a given index from a subset. `Reverse()` reverses the indices of a subset. `Unique()` sorts the indices in a subset and removes any repetitions. Thus:

Code Example – C#

```csharp
var sub = new Subset(new int[] { 0, 5, 3, 2, 7, 5 });
sub.Remove(3);
// sub.Indices = 0, 5, 2, 7, 5
sub.Reverse();
// sub.Indices = 5, 7, 2, 5, 0
sub.Unique();
// sub.Indices = 0, 2, 5, 7
```

Code Example – VB

```vbnet
Dim Subset As New Subset(New Integer() {0, 5, 3, 2, 7, 5})
Subset.Remove(3)
' sub.Indices = 0, 5, 2, 7, 5
```

Table 25 – Arithmetic operators for subsets

<table>
<thead>
<tr>
<th>Operator</th>
<th>Equivalent Named Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Add()</td>
</tr>
<tr>
<td>-</td>
<td>Subtract()</td>
</tr>
<tr>
<td>*</td>
<td>Multiply()</td>
</tr>
<tr>
<td>/</td>
<td>Divide()</td>
</tr>
<tr>
<td>Unary -</td>
<td>Negate()</td>
</tr>
<tr>
<td>++</td>
<td>Increment()</td>
</tr>
<tr>
<td>--</td>
<td>Decrement()</td>
</tr>
<tr>
<td>&</td>
<td>Intersection()</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subset.Reverse()
' sub.Indices = 5, 7, 2, 5, 0
Subset.Unique()
' sub.Indices = 0, 2, 5, 7

Similarly, ToReverse() returns a new subset containing the indices of a subset in the reverse order; ToUnique() returns a new subset containing the sorted indices of a subset, with all repetitions removed.

The Repeat() method creates a new subset by repeating the source subset until a given length is reached. For instance:

Code Example – C#

var sub1 = new Subset(3);
// sub1.Indices = 0,1,2
Subset sub2 = sub1.Repeat(11);
// sub2.Indices = 0,1,2,0,1,2,0,1,2,0,1

Code Example – VB

Dim Sub1 As New Subset(3)
' sub1.Indices = 0,1,2
Dim Sub2 As Subset = Sub1.Repeat(11)
' sub2.Indices = 0,1,2,0,1,2,0,1,2,0,1

The Split() method splits a source subset into an arbitrary array of subsets. The parameters are the number of subsets into which to split the source subset, and another subset the same length as the source subset, the \(i \)th element of which indicates into which bin to place the \(i \)th element of the source subset. For example:

Code Example – C#

var sub = new Subset(10);
// sub.Indices = 0,1,2,3,4,5,6,7,8,9
var bins =
 new Subset(new int[] { 3, 1, 0, 2, 2, 1, 1, 2, 3, 0 });
Subset[] subsetArray = sub.Split(4, bins);
// subsetArray[0] = 2,9
// subsetArray[1] = 1,5,6
// subsetArray[2] = 3,4,7
// subsetArray[3] = 0,8

Code Example – VB

Dim Subset As New Subset(10)
' sub.Indices = 0,1,2,3,4,5,6,7,8,9
Dim Bins As New Subset(New Integer() {3, 1, 0, 2, 2, 1, 1, 2, 3, 0})
Dim SubsetArray() As Subset = Subset.Split(4, Bins)
' subsetArray[0] = 2,9
' subsetArray[1] = 1,5,6
' subsetArray[2] = 3,4,7
Lastly, the `ToString()` returns a comma-delimited string list of the indices in a subset.

Groupings

The static `GetGroupings()` methods on `Subset` create subsets from factors. One overload of this method accepts a single `Factor` and returns an array of subsets containing the indices for each level of the given factor. Another overload accepts two `Factor` objects and returns a two-dimensional jagged array of subsets containing the indices for each combination of levels in the two factors. See Section 37.10 for more information on factors and the `GetGroupings()` methods.

Random Samples

The static method `Sample(n)` returns a random shuffle of `0..n-1`. The returned `Subset` can be used to randomly reorder the rows in a data frame, as described in Section 37.8.

37.8 Accessing Sub-Frames

In addition to accessing individual elements, columns, or rows in a data frame (Section 37.6), class `DataFrame` provides a large number of member functions and indexers for accessing sub-frames containing any arbitrary subset of rows, columns, or both. Such methods and indexers accept `Slice` and `Subset` objects to indicate which rows and columns to return. (See Section 37.7 for more information on the `Subset` class.)

For example, `GetColumns()` returns a new data frame containing the columns indicated by a given `Slice` or `Subset`. For instance, if `df` has 5 columns, this code creates a new data frame containing columns 0, 4, and 5:

Code Example – C#

```csharp
var colSubset = new Subset( new int[] { 0, 4, 5 } );
DataFrame subDF = df.GetColumns( colSubset );
```

Code Example – VB

```vbnet
Dim ColSubset As New Subset(New Integer() {0, 4, 5})
Dim SubDF As DataFrame = DF.GetColumns(ColSubset)
```
Similarly, GetRows() returns a new data frame containing the rows indicated by a given Slice or Subset. Thus, this code gets every other row in the source data frame:

Code Example – C#

```csharp
var rowSubset = new Range(0, df.Rows - 1, 2);
DataFrame subDF = df.GetRows(rowSubset);
```

Code Example – VB

```vbnet
Dim RowSubset As New Range(0, DF.Rows - 1, 2)
Dim SubDF As DataFrame = DF.GetRows(RowSubset)
```

Class DataFrame also provides a wide range of indexers for accessing subframes:

Code Example – C#

```csharp
this[int colIndex, Slice rowSlice]
this[int colIndex, Subset rowSubset]
this[Slice rowSlice, Slice colSlice]
this[Subset rowSubset, Subset colSubset]
this[Slice rowSlice, Subset colSubset]
this[Subset rowSubset, Slice colSlice]
```

Code Example – VB

```vbnet
Item(ColIndex As Integer, RowSlice As Slice)
Item(ColIndex As Integer, RowSubset As Subset)
Item(RowSlice As Slice, ColSlice As Slice)
Item(RowSubset As Subset, ColSlice As Slice)
Item(RowSlice As Slice, ColSubset As Subset)
Item(RowSubset As Subset, ColSlice As Slice)
```

These indexers can be used to return any portion of a data frame. For example, this code gets a new data frame containing columns 3-8 in reverse order, and all rows where column 0 equals Test1:

Code Example – C#

```csharp
var colRange = new Range(8, 3, -1);
var bArray = new bool[df.Rows];
for (int i = 0; i < df.Rows; i++)
{
   bArray[i] = (df[0][i] == "Test1");
}
var rowSubset = new Subset(bArray);
DataFrame df2 = df[rowSubset, colRange];
```

Code Example – VB

```vbnet
Dim ColRange As New Range(8, 3, -1)
Dim ColRange As New Range(8, 3, -1)
Dim ColRange As New Range(8, 3, -1)
```
```csharp
Dim BArray() As Boolean = New Boolean(DF.Rows) {}
For I As Integer = 0 To DF.Rows - 1
    BArray(I) = (DF(0)(I) = "Test1")
Next
Dim RowSubset As New Subset(BArray)

Dim DF2 As DataFrame = DF(RowSubset, ColRange)
```

Finally, there is the `GetSubRow()` method. Whereas `GetRow()` returns an entire row for a given row index, `GetSubRow()` returns the portion of the row indicated by the given column `Slice` or `Subset`:

Code Example – C#
```
var colSlice = new Slice(0, 3, 1);
object[] subRow = df.GetSubRow(3, colSlice);
```

Code Example – VB
```
Dim ColSlice As New Slice(0, 3, 1)
Dim SubRow As Object() = DF.GetSubRow(3, ColSlice)
```

37.9 Reordering DataFrames

The `DataFrame` class provides method for both sorting rows, and for arbitrarily reordering rows and columns.

Sorting Rows

The `SortRows()` method sorts the rows in a data frame according to a given ordered array of column indices. The first index is the primarily sort column, the second index is the secondary sort column, and so forth. For instance:

Code Example – C#
```
df.SortRows(3, 0, 1);
```

Code Example – VB
```
DF.SortRows(3, 0, 1)
```

By default, all sorting is in ascending order.

For more control, you can also pass an array of `SortingType` enumerated values (`Ascending` or `Descending`):
Chapter 37. Data Frames

Code Example – C#

```
int[] colIndices = { 3, 0, 1 };
SortingType[] sortingTypes = { SortingType.Ascending,
                              SortingType.Descending,
                              SortingType.Ascending };
df.SortRows( colIndices, sortingTypes );
```

Code Example – VB

```
Dim ColIndices As Integer() = {3, 0, 1}
Dim SortingTypes As SortingType() = {SortingType.Ascending,
                                        SortingType.Descending,
                                        SortingType.Ascending}

DF.SortRows(ColIndices, SortingTypes)
```

Finally, the `SortRowsByKeys()` method sorts the rows in a data frame by their row keys, in the specified order:

Code Example – C#

```
df.SortRowsByKeys( SortingType.Ascending );
```

Code Example – VB

```
DF.SortRowsByKeys(SortingType.Ascending)
```

NOTE—StatsSettings.Sorting specifies the default SortingType.

Permuting Rows and Columns

The `PermuteColumns()` and `PermuteRows()` methods enable you to arbitrarily reorder the columns and rows in a data frame, respectively. Each method takes an array of indices. The array must be same length as the number of columns or rows, and contain unique indices. In both cases:

Code Example – C#

```
new[ permutation[i] ] = old[ i ]
```

Code Example – VB

```
New( permutation(i) ) = Old( i )
```

For example, assuming `df` has 3 columns, this code switches the last two columns:

Code Example – C#

```
df.PermuteColumns( 0, 2, 1 );
```

Code Example – VB

```
DF.PermuteColumns(0, 2, 1)
```
Assuming df has 5 rows, this code moves the second and fourth rows to the top:

Code Example – C#

```csharp
df.PermuteRows( 2, 0, 3, 1, 4 );
```

Code Example – VB

```vbnet
DF.PermuteRows(2, 0, 3, 1, 4)
```

37.10 Factors

The `Factor` class represents a categorical vector in which all elements are drawn from a finite number of factor levels. Thus, a `Factor` contains two parts:

- an object array of factor levels
- an integer array of categorical data, of which each element is an index into the array of levels

For example, this string data:

could be presented as a `Factor` with the following levels and categorical data:

Code Example – C#

```csharp
object[] levels = { "A", "B", "C" };
int[] data = { 0, 0, 2, 1, 0, 2, 1 };
```

Code Example – VB

```vbnet
Dim Levels As Object() = {"A", "B", "C"}
Dim Data As Integer() = {0, 0, 2, 1, 0, 2, 1}
```

Factors are usually constructed from a data frame column using the `GetFactor()` method, but they can also be constructed independently.

Creating Factors

The `GetFactor()` method on `DataFrame` accepts a column index or name and returns a `Factor` with levels for the sorted, unique elements in the given column:

Code Example – C#

```csharp
Factor myColFactor = df.GetFactor( "myCol" );
```
Code Example – VB

Dim ColFactor As Factor = DF.GetFactor("myCol")

Alternatively, you can provide the factor levels yourself. The order is preserved. Thus:

Code Example – C#

var levels = new object[] { "Q1", "Q2", "Q3", "Q4" };
Factor myColFactor = df.GetFactor("myCol", levels);

Code Example – VB

Dim Levels As Object() = {"Q1", "Q2", "Q3", "Q4"}
Dim ColFactor As Factor = DF.GetFactor("myCol", Levels)

An **InvalidArgumentException** is raised if the specified column contains a value not present in the given array of levels.

You can also construct a **Factor** independently of a **DataFrame**. For example, you can construct a **Factor** from an array of values:

Code Example – C#

var strArray = new object[] { 1, 1, 3, 2, 1, 3, 2 };
var factor = new Factor(strArray);

Code Example – VB

Dim StrArray As Object() = {1, 1, 3, 2, 1, 3, 2}
Dim Factor As New Factor(StrArray)

Factor levels are constructed from a sorted list of unique values in the passed array.

Alternatively, you can construct a **Factor** from an array of factor levels, and a data array consisting of indices into the factor levels:

Code Example – C#

var levels = new object[] { 1, 2, 3 };
var data = new int[] { 0, 0, 2, 1, 0, 2, 1 };
var factor = new Factor(levels, data);

Code Example – VB

Dim Levels As Object() = {1, 2, 3}
Dim Data As Integer() = {0, 0, 2, 1, 0, 2, 1}
Dim Factor As New Factor(Levels, Data)

An **InvalidArgumentException** is thrown if the given data array contains an invalid index.
Properties of Factors

The **Factor** class provides the following properties:

- **Data** gets the categorical data for the factor. Each element in the returned integer array is an index into **Levels**.

- **Levels** gets the levels of the factor as an array of objects.

- **Length** gets the length of the **Data** in the factor.

- **Name** gets and set the name of the factor.

- **NumberOfLevels** gets the number of levels in the factor.

Accessing Factors

A standard indexer is provided for accessing the element at a given index:

Code Example – C#

```csharp
string str = (string)factor[2];
```

Code Example – VB

```vbnet
Dim Str As String = CType(Factor(2), String)
```

The indexer returns **Levels[Data[index]]**—that is, it returns the level at the given position.

Creating Groupings with Factors

The principal use of factors is in conjunction with the **GetGroupings()** methods on **Subset**. One overload of this method accepts a single **Factor** and returns an array of subsets containing the indices for each level of the given factor. Another overload accepts two **Factor** objects and returns a two-dimensional jagged array of subsets containing the indices for each combination of levels in the two factors.
For example, suppose we weigh human subjects based on sex and age group. The data for 15 subjects might look like this:

Table 26 – Sample data

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child</td>
<td>45, 42</td>
<td>30, 35, 60, 40</td>
</tr>
<tr>
<td>Adult</td>
<td>182, 170</td>
<td>115, 130, 110</td>
</tr>
<tr>
<td>Senior</td>
<td>142, 155</td>
<td>115, 123</td>
</tr>
</tbody>
</table>

In a **DataFrame**, each observation would be a row, like so:

Code Example – C#

```csharp
var df = new DataFrame();
df.AddColumn( new DFStringColumn( "Sex" ) );
df.AddColumn( new DFStringColumn( "AgeGroup" ));
df.AddColumn( new DFIntColumn( "Weight" ) );

df.AddRow( "John Smith", "Male", "Child", 45 );
df.AddRow( "Ruth Barnes", "Female", "Senior", 115 );
df.AddRow( "Jane Jones", "Female", "Adult", 115 );
df.AddRow( "Timmy Toddler", "Male", "Child", 42 );
df.AddRow( "Betsy Young", "Female", "Adult", 130 );
df.AddRow( "Arthur Smith", "Male", "Senior", 142 );
df.AddRow( "Lucy Young", "Female", "Child", 30 );
df.AddRow( "Emma Allen", "Female", "Child", 35 );
df.AddRow( "Roy Wilkenson", "Male", "Adult", 182 );
df.AddRow( "Susan Schwarz", "Female", "Senior", 110 );
df.AddRow( "Ming Tao", "Female", "Senior", 123 );
df.AddRow( "Johanna Glynn", "Female", "Child", 60 );
df.AddRow( "Randall Harvey", "Male", "Adult", 170 );
df.AddRow( "Tom Howard", "Male", "Senior", 155 );
df.AddRow( "Jennifer Watson", "Female", "Child", 40 );
```

Code Example – VB

```vb
Dim DF As New DataFrame()
DF.AddColumn(New DFStringColumn("Sex"))
DF.AddColumn(New DFStringColumn("AgeGroup"))
DF.AddColumn(New DFIntColumn("Weight"))

DF.AddRow("John Smith", "Male", "Child", 45)
DF.AddRow("Ruth Barnes", "Female", "Senior", 115)
DF.AddRow("Jane Jones", "Female", "Adult", 115)
DF.AddRow("Timmy Toddler", "Male", "Child", 42)
DF.AddRow("Betsy Young", "Female", "Adult", 130)
DF.AddRow("Arthur Smith", "Male", "Senior", 142)
DF.AddRow("Lucy Young", "Female", "Child", 30)
DF.AddRow("Emma Allen", "Female", "Child", 35)
DF.AddRow("Roy Wilkenson", "Male", "Adult", 182)
DF.AddRow("Susan Schwarz", "Female", "Senior", 110)
DF.AddRow("Ming Tao", "Female", "Senior", 123)
DF.AddRow("Johanna Glynn", "Female", "Child", 60)
DF.AddRow("Randall Harvey", "Male", "Adult", 170)
DF.AddRow("Tom Howard", "Male", "Senior", 155)
DF.AddRow("Jennifer Watson", "Female", "Child", 40)
```
DF.AddRow("Emma Allen", "Female", "Child", 35)
DF.AddRow("Roy Wilkenson", "Male", "Adult", 182)
DF.AddRow("Susan Schwarz", "Female", "Senior", 110)
DF.AddRow("Ming Tao", "Female", "Senior", 123)
DF.AddRow("Johanna Glynn", "Female", "Child", 60)
DF.AddRow("Randall Harvey", "Male", "Adult", 170)
DF.AddRow("Tom Howard", "Male", "Senior", 155)
DF.AddRow("Jennifer Watson", "Female", "Child", 40)

In this case, we’re using the subjects’ names as row keys.

It is natural to construct factors from the Sex and AgeGroup columns:

Code Example – C#

```csharp
Factor sex = df.GetFactor( "Sex" );
Factor age = df.GetFactor( "AgeGroup" );
```

Code Example – VB

```vb
Dim Sex As Factor = DF.GetFactor("Sex")
Dim Age As Factor = DF.GetFactor("AgeGroup")
```

We can then use these factors in conjunction with the GetGroupings() methods on Subset to create subsets representing the original rows, columns, and cells in Table 26:

Code Example – C#

```csharp
Subset[] sexGroups = Subset.GetGroupings( sex );
Subset[] ageGroups = Subset.GetGroupings( age );
Subset[,] cellGroups = Subset.GetGroupings( sex, age );
```

Code Example – VB

```vb
Dim SexGroups As Subset() = Subset.GetGroupings(Sex)
Dim AgeGroups As Subset() = Subset.GetGroupings(Age)
Dim CellGroups As Subset(,) = Subset.GetGroupings(Sex, Age)
```

These subsets can then be used to operate on the relevant portions of the data frame. For instance, this code prints out row means, column means, and cell means for Table 26:

Code Example – C#

```csharp
Console.WriteLine( "\nTABLE ROW MEANS" );
for ( int i = 0; i < age.NumberOfLevels; i++ )
{
    double mean = StatsFunctions.Mean( 
        df[ df.IndexOfColumn( "Weight" ), ageGroups[i] ] );
    Console.WriteLine( "Mean for {0} = {1}", age.Levels[i], mean );
}
```
```csharp
Console.WriteLine( "\nTABLE COLUMN MEANS" );
for ( int i = 0; i < sex.NumberOfLevels; i++ )
{
    double mean = StatsFunctions.Mean(
        df[ df.IndexOfColumn( "Weight" ), sexGroups[i] ] );
    Console.WriteLine( "Mean for {0} = {1}", sex.Levels[i], mean );
}

Console.WriteLine( "\nTABLE CELL MEANS" );
for ( int i = 0; i < sex.NumberOfLevels; i++ )
{
    for ( int j = 0; j < age.NumberOfLevels; j++ )
    {
        double mean = StatsFunctions.Mean(
            df[ df.IndexOfColumn( "Weight" ), cellGroups[i,j] ] );
        Console.WriteLine( "Mean for {0} {1} = {2}",
            sex.Levels[i], age.Levels[j], mean );
    }
}

Code Example – VB

Console.WriteLine(Environment.NewLine & "TABLE ROW MEANS")
For I As Integer = 0 To Age.NumberOfLevels - 1
    Dim Mean As Double =
        StatsFunctions.Mean(DF(DF.IndexOfColumn("Weight"),
            AgeGroups(I)))
    Console.WriteLine("Mean for {0} = {1}", Age.Levels(I), Mean)
Next

Console.WriteLine(Environment.NewLine & "TABLE COLUMN MEANS")
For I As Integer = 0 To Sex.NumberOfLevels - 1
    Dim Mean As Double =
        StatsFunctions.Mean(DF(DF.IndexOfColumn("Weight"),
            SexGroups(I)))
    Console.WriteLine("Mean for {0} = {1}", Sex.Levels(I), Mean)
Next

Console.WriteLine(Environment.NewLine & "TABLE CELL MEANS")
For I As Integer = 0 To Sex.NumberOfLevels - 1
    For J As Integer = 0 To Age.NumberOfLevels - 1
        Dim Mean As Double =
            StatsFunctions.Mean(DF(DF.IndexOfColumn("Weight"),
                CellGroups(I, J)))
        Console.WriteLine("Mean for {0} {1} = {2}", Sex.Levels(I),
            Age.Levels(J), Mean)
    Next
Next

The output is:
TABLE ROW MEANS
Mean for Adult = 149.25
Mean for Child = 42
Mean for Senior = 129

TABLE COLUMN MEANS
Mean for Female = 84.2222222222222
Mean for Male = 122.6666666666667

TABLE CELL MEANS
Mean for Female Adult = 122.5
Mean for Female Child = 41.25
Mean for Female Senior = 116
Mean for Male Adult = 176
Mean for Male Child = 43.5
Mean for Male Senior = 148.5

See also the Tabulate() convenience methods on class DataFrame, as described in Section 37.11.

37.11 Cross-Tabulation

As described in Section 37.10, the DataFrame.GetFactor() method can be used in conjunction with Subset.GetGroupings() to access “cells” of data based on one or two grouping factors. This is such a common operation that class DataFrame also provides the Tabulate() methods as a convenience. This method accepts one or two grouping columns, a data column, and a delegate to apply to each data column subset. The results are returned in a new data frame.

Column Delegates

Overloads of Tabulate() accept static IDFColumn function delegates that return various types. For instance, this code encapsulates the static StatsFunctions.Mean() function in a Func<IDFColumn, double>:

Code Example – C#

```csharp
var mean = new Func<IDFColumn, double>(StatsFunctions.Mean);
```

Code Example – VB

```vbnet
Dim Mean As Func(Of IDFColumn, Double) = AddressOf StatsFunctions.Mean
```
Most of the static descriptive statistics functions on class `StatsFunctions` (Chapter 38) have overloads that accept an `IDFColumn` and return a double, and so can be encapsulated in this way. A few return integers.

For example, this code encapsulates `StatsFunctions.Count()`, which returns the number of items in a column, in a `Func<IDFColumn, int>`:

**Code Example – C#**

```csharp
var count = new Func<IDFColumn, int>(StatsFunctions.Count);
```

**Code Example – VB**

```vb
Dim Count As Func(Of IDFColumn, Integer) = AddressOf StatsFunctions.Count
```

### Applying Column Delegates to Tabulated Data

The following code fills a `DataFrame` with some sales data:

**Code Example – C#**

```csharp
var df = new DataFrame();
df.AddColumn(new DFStringColumn("Product"));
df.AddColumn(new DFStringColumn("Month"));
df.AddColumn(new DFIntColumn("Quantity"));
df.AddColumn(new DFNumericColumn("Price"));
df.AddColumn(new DFNumericColumn("TotalSale"));

int rowID = 0;
df.AddRow(rowID++, "Squash", "Nov", 40, 1.50, 60.0);
df.AddRow(rowID++, "Carrots", "Nov", 15, 1.20, 18.0);
df.AddRow(rowID++, "Squash", "Nov", 37, 1.45, 53.65);
df.AddRow(rowID++, "Carrots", "Nov", 18, 1.25, 22.50);
df.AddRow(rowID++, "Squash", "Nov", 34, 1.39, 47.26);
df.AddRow(rowID++, "Carrots", "Dec", 20, 1.30, 26.0);
df.AddRow(rowID++, "Squash", "Dec", 31, 1.30, 40.30);
df.AddRow(rowID++, "Carrots", "Dec", 25, 1.40, 35.0);
df.AddRow(rowID++, "Squash", "Dec", 25, 1.25, 31.25);
df.AddRow(rowID++, "Carrots", "Dec", 30, 1.45, 43.50);
df.AddRow(rowID++, "Carrots", "Jan", 33, 1.50, 49.50);
df.AddRow(rowID++, "Squash", "Jan", 19, 1.21, 22.99);
df.AddRow(rowID++, "Carrots", "Jan", 40, 1.65, 66.0);
df.AddRow(rowID++, "Carrots", "Jan", 15, 1.11, 16.65);
df.AddRow(rowID++, "Carrots", "Jan", 47, 1.80, 84.60);
df.AddRow(rowID++, "Squash", "Jan", 10, 1.00, 10.0);
```

**Code Example – VB**

```vb
Dim DF As New DataFrame()
DF.AddColumn(New DFStringColumn("Product"))
```
DF.AddColumn(New DFStringColumn("Month"))
DF.AddColumn(New DFIntColumn("Quantity"))
DF.AddColumn(New DFNumericColumn("Price"))
DF.AddColumn(New DFNumericColumn("TotalSale"))

Dim RowID As Integer = 0
RowID += 1
DF.AddRow(RowID, "Squash", "Nov", 40, 1.5, 60.0)
RowID += 1
DF.AddRow(RowID, "Carrots", "Nov", 15, 1.2, 18.0)
RowID += 1
DF.AddRow(RowID, "Squash", "Nov", 37, 1.45, 53.65)
RowID += 1
DF.AddRow(RowID, "Carrots", "Nov", 18, 1.25, 22.5)
RowID += 1
DF.AddRow(RowID, "Squash", "Nov", 34, 1.39, 47.26)
RowID += 1
DF.AddRow(RowID, "Carrots", "Dec", 20, 1.3, 26.0)
RowID += 1
DF.AddRow(RowID, "Squash", "Dec", 31, 1.3, 40.3)
RowID += 1
DF.AddRow(RowID, "Carrots", "Dec", 25, 1.4, 35.0)
RowID += 1
DF.AddRow(RowID, "Squash", "Dec", 25, 1.25, 31.25)
RowID += 1
DF.AddRow(RowID, "Carrots", "Dec", 30, 1.45, 43.5)
RowID += 1
DF.AddRow(RowID, "Carrots", "Jan", 33, 1.5, 49.5)
RowID += 1
DF.AddRow(RowID, "Squash", "Jan", 19, 1.21, 22.99)
RowID += 1
DF.AddRow(RowID, "Carrots", "Jan", 40, 1.65, 66.0)
RowID += 1
DF.AddRow(RowID, "Squash", "Jan", 15, 1.11, 16.65)
RowID += 1
DF.AddRow(RowID, "Carrots", "Jan", 47, 1.8, 84.6)
RowID += 1
DF.AddRow(RowID, "Squash", "Jan", 10, 1.0, 10.0)

This code displays the average sales for each product:

**Code Example – C#**

```csharp
var mean =
 new Func<IDFColumn, double>(StatsFunctions.Mean);
Console.WriteLine(df.Tabulate("Product", "TotalSale", mean));
```

**Code Example – VB**

```vb
Dim Mean As Func(Of IDFColumn, Double) = AddressOf StatsFunctions.Mean
Console.WriteLine(DF.Tabulate("Product", "TotalSale", Mean))
```
The Product column is used as a grouping column, TotalSale contains the data, and the mean delegate returns the mean of the value in each cell. The output is:

<table>
<thead>
<tr>
<th></th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrots</td>
<td>43.1375</td>
</tr>
<tr>
<td>Squash</td>
<td>35.2625</td>
</tr>
<tr>
<td>Overall</td>
<td>39.2000</td>
</tr>
</tbody>
</table>

The Tabulate() methods return a new data frame. If only one grouping factor is specified, as in this example, the row keys are the sorted, unique factor levels. The only column, named Results, contains the results of applying the given delegate to the values in the data column tabulated for each level of the factor. A final row is appended, with key Overall, containing the results of applying the given delegate to all values in the data column.

Similarly, this code displays the number of observations in each cell for every combination of Product and Month:

**Code Example – C#**

```csharp
var count =
 new Func<IDFColumn, int>(StatsFunctions.Count);
Console.WriteLine(
 df.Tabulate("Product", "Month", "TotalSale", count);
```

**Code Example – VB**

```vbnet
Dim Count As Func(Of IDFColumn, Integer) = AddressOf
 StatsFunctions.Count
Console.WriteLine(DF.Tabulate("Product", "Month", "TotalSale",
 Count))
```

The Product and Month columns are used as grouping columns, TotalSale contains the data, and the count delegate returns the number of items in each cell. The output is:

<table>
<thead>
<tr>
<th></th>
<th>Dec</th>
<th>Jan</th>
<th>Nov</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrots</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Squash</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Overall</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>16</td>
</tr>
</tbody>
</table>

When two grouping factors are specified, as in this case, the returned data frame has row keys containing the sorted, unique levels of the first grouping factor as strings. The columns in the data frame are named using the sorted, unique levels of the second grouping factor.

**NOTE**—In this example the alphabetic sorting of the Month names has put them into non-chronological order. In the months had been stored as DateTime objects in an DFDDateTimeColumn, they would have been ordered chronologically.
Each cell in the data frame contains the results of applying the given delegate to the values in the data column tabulated for the appropriate combination of the two factors. A final column is appended, named Overall, containing the overall results for each level of the first factor. A final row is appended, with key Overall, containing the overall results for each level of the second factor. The lower right corner cell, accessed by indexer `this["Overall","Overall"]`, contains the results of applying the given delegate to all values in the data column.

### 37.12 Exporting Data from DataFrames

The contents of a data frame can be exported in various ways.

**Exporting to a Matrix**

The `ToDoubleMatrix()` method exports all the numeric data in a data frame to a `DoubleMatrix`. Non-numeric columns are ignored. For example, this code constructs a `DataFrame` from a `DoubleMatrix`, adds a column of string data, then exports the contents of the data frame to another `DoubleMatrix`:

**Code Example – C#**

```csharp
var A = new DoubleMatrix(8, 3, 0, .1);
df = new DataFrame(A, new string[] { "A", "B", "C" });

var col4 = new DFStringColumn("D",
 new String[] { "x", "x", "x", "x", "x", "x", "x", "x" });
df.AddColumn(col4);

DoubleMatrix B = df.ToDoubleMatrix();
```

**Code Example – VB**

```vbnet
Dim A As New DoubleMatrix(8, 3, 0, 0.1)
DF = New DataFrame(A, New String("A", "B", "C"))

Dim Col4 As New DFStringColumn("D",
 New String("x", "x", "x", "x", "x", "x", "x", "x"))
DF.AddColumn(Col4)

Dim B As DoubleMatrix = DF.ToDoubleMatrix()
```

The two matrices are equal (`A == B`); the string column is ignored.
Exporting to a String

The `ToString()` method returns a formatted string representation of a data frame:

**Code Example – C#**

```csharp
string str = df.ToString();
```

**Code Example – VB**

```vbnet
Dim Str As String = DF.ToString()
```

For more control, you can also indicate:

- whether to export column headers (the default is `true`)
- whether to export row keys (the default is `true`)
- the delimiter to use to separate columns (the default is tab-delimited)

For instance, this code exports the column headers, but not the row keys, and uses a comma delimiter:

**Code Example – C#**

```csharp
string str = df.ToString(true, false, "",);
```

**Code Example – VB**

```vbnet
Dim Str As String = DF.ToString(True, False, ",")
```

Convenience methods are also provided for persisting a text representation of a data frame to a text file. `Save()` exports the contents of the data frame to a given filename:

**Code Example – C#**

```csharp
df.Save("myData.txt");
```

**Code Example – VB**

```vbnet
DF.Save("myData.txt")
```

Again, you can also indicate whether to export column header or row keys, and specify the column delimiter:

**Code Example – C#**

```csharp
df.Save("myData.txt", true, false, ",");
```

**Code Example – VB**

```vbnet
DF.Save("myData.txt", True, False, ",")
```

The `LaunchSaveFileDialog()` method allows the end user to specify the filename. The `OpenInEditor()` method programmatically opens a data frame in
the default text editor on the user’s system. The user can then edit the contents of the data frame. Lastly, the static Load() method imports a data frame from a text file:

**Code Example – C#**

```csharp
DataFrame df = DataFrame.Load("myData.txt");
```

**Code Example – VB**

```vb
Dim DF As DataFrame = DataFrame.Load("myData.txt")
```

Again, you can indicate whether the text file includes column headers and row keys, and the delimiter used to separate the columns.

## Exporting to an ADO.NET DataTable

The ToDataTable() method exports the data in a data frame to an ADO.NET DataTable object. The row keys are placed in a DataColumn named DFRowKeys. Thus, this code:

**Code Example – C#**

```csharp
var df = new DataFrame();
df.AddColumn(
 new DFNumericColumn("ids", new DoubleVector(3, 3, -1)));
df.AddColumn(
 new DFStringColumn("names", "a", "b", "c"));
df.AddColumn(
 new DFBoolColumn("bools", true, false, true));
df.SetRowKeys(new String[] { "Row1", "Row2", "Row3" });
DataTable table = df.ToDataTable();
```

**Code Example – VB**

```vb
Dim DF As New DataFrame()
DF.AddColumn(
 New DFNumericColumn("ids", New DoubleVector(3, 3, -1)))
DF.AddColumn(
 New DFStringColumn("names", "a", "b", "c"))
DF.AddColumn(
 New DFBoolColumn("bools", True, False, True))
DF.SetRowKeys(New String() {"Row1", "Row2", "Row3"})
Dim Table As DataTable = DF.ToDataTable()
```

returns a **DataTable** that looks like this:

```
name: CenterSpace.NMath.Core.DataFrame
DFRowKeys ids names bools
1 Row1 3.0000 a True
2 Row2 2.0000 b False
```
If no name is assigned to a data frame before `ToDataTable()` is called, the name of the ` DataTable` is set to the type: `CenterSpace.NMath.Core.DataFrame`.

### Binary and SOAP Serialization

Class `DataFrame` implements the `ISerializable` interface to control serialization and deserialization. Common Language Runtime (CLR) serialization `Formatter` classes call the provided `GetObjectData()` method at serialization time to populate a `SerializationInfo` object with all the data required to represent a `DataFrame`. For example, the `BinaryFormatter` class provides `Serialize()` and `Deserialize()` methods for persisting an object in binary format to a given stream. For example, this code serializes a data frame to a file:

**Code Example – C#**

```csharp
using System.IO;

FileStream binStream = File.Create("myData.dat");
var binFormatter = new BinaryFormatter();
binFormatter.Serialize(binStream, df);
binStream.Close();
```

**Code Example – VB**

```vb
Imports System.IO

Dim BinStream As FileStream = File.Create("myData.dat")
Dim BinFormatter As New BinaryFormatter()
BinFormatter.Serialize(BinStream, DF)
BinStream.Close()
```

This code restores the data frame from the file:

**Code Example – C#**

```csharp
binStream = File.OpenRead("myData.dat");
DataFrame df2 = (DataFrame)binFormatter.Deserialize(binStream);
binStream.Close();
File.Delete("myData.dat");
```

**Code Example – VB**

```vb
BinStream = File.OpenRead("myData.dat")
Dim DF2 As DataFrame = CType(BinFormatter.Deserialize(BinStream), DataFrame)
BinStream.Close()
File.Delete("myData.dat")
```
Similarly, the **SoapFormatter** class persists an object in SOAP format to a given stream. Thus:

**Code Example – C#**

```csharp
using System.IO;

FileStream xmlStream = File.Create("myData.xml");
var xmlFormatter = new SoapFormatter();
xmlFormatter.Serialize(xmlStream, df);
xmlStream.Close();
```

**Code Example – VB**

```vbnet
Imports System.IO

Dim XMLStream As FileStream = File.Create("myData.xml")
Dim XMLFormatter As New SoapFormatter()
XMLFormatter.Serialize(XMLStream, DF)
XMLStream.Close()
```

This code restores the data frame from the file:

**Code Example – C#**

```csharp
xmlStream = File.OpenRead("myData.xml");
DataFrame df2 = (DataFrame)xmlFormatter.Deserialize(xmlStream)
xmlStream.Close();
File.Delete("myData.xml");
```

**Code Example – VB**

```vbnet
XMLStream = File.OpenRead("myData.xml")
Dim DF2 As DataFrame = CType(XMLFormatter.Deserialize(XMLStream), DataFrame)
XMLStream.Close()
File.Delete("myData.xml")
```
Class **StatsFunctions** provides a wide variety of static functions for computing descriptive statistics, such as mean, variance, standard deviation, percentile, median, quartiles, geometric mean, harmonic mean, RMS, kurtosis, skewness, and many more.

Method overloads accept data as an array of doubles, as a **DoubleVector**, or as a column in a **DataFrame** (Chapter 37). For example:

**Code Example – C#**

```csharp
double[] dblArray = { 1.12, -2.0, 3.88, 1.2, 15.345 };
double mean1 = StatsFunctions.Mean(dblArray);

var v = new DoubleVector("1.12 -2.0 3.88 1.2 15.345");
double mean2 = StatsFunctions.Mean(v);

var df = new DataFrame();
df.AddColumn(
 new DFNumericColumn("myData", 1.12, -2.0, 3.88, 1.2, 15.345));
double mean3 = StatsFunctions.Mean(df["myData"]);

// mean1 == mean2 == mean3
```

**Code Example – VB**

```vb
Dim DblArray() As Double = {1.12, -2.0, 3.88, 1.2, 15.345}
Dim Mean1 As Double = StatsFunctions.Mean(DblArray)

Dim V As New DoubleVector("1.12 -2.0 3.88 1.2 15.345")
Dim Mean2 As Double = StatsFunctions.Mean(V)

Dim DF As New DataFrame()
DF.AddColumn(New DFNumericColumn("myData", 1.12, -2.0, 3.88, 1.2, 15.345))
Dim Mean3 As Double = StatsFunctions.Mean(DF("myData"))

' mean1 == mean2 == mean3
```

In this chapter, where **data** is used in code examples, it should be understood to be an instance of any of these three types.
38.1 Column Types

Most functions in class StatsFunctions require numeric data, although they accept any instance of IDFCColumn. If a column is not an instance of DFIntColumn or DFNumericColumn, an attempt is made to convert the data to double using System.Convert.ToDouble().

NOTE—An NMathFormatException is raised if the data cannot be converted to double.

For instance, these functions will work with a DFStringColumn containing numbers represented as strings.

Code Example – C#

```csharp
var col =
 new DFStringColumn("Col1", "1.5", "2", "1.33", "4.76");
double mean = StatsFunctions.Mean(col);
```

Code Example – VB

```vbnet
Dim Col As New DFStringColumn("Col1", "1.5", "2", "1.33", "4.76")
Dim Mean As Double = StatsFunctions.Mean(Col)
```

However, there is a processing penalty due to such type conversion. If you need to perform many statistical functions on a column, first create a new DFIntColumn or DFNumericColumn from your data column, so type conversion occurs only once. For example, if column 4 in data frame df is a DFGenericColumn containing decimal types, this works:

Code Example – C#

```csharp
double mean = StatsFunctions.Mean(df[4]);
double stdev = StatsFunctions.StandardDeviation(df[4]);
```

Code Example – VB

```vbnet
Dim Mean As Double = StatsFunctions.Mean(DF(4))
Dim StdDev As Double = StatsFunctions.StandardDeviation(DF(4))
```

but the decimal data is converted to doubles twice. This code first creates a new DFNumericColumn containing doubles from the generic column, then computes the statistics:

Code Example – C#

```csharp
var col = new DFNumericColumn(df[4].Name, df[4]);
double mean = StatsFunctions.Mean(col);
double stdev = StatsFunctions.StandardDeviation(col);
```

Code Example – VB

```vbnet
Dim Col As New DFNumericColumn(DF(4).Name, DFBoolColumn(4))
```
Dim Mean As Double = StatsFunctions.Mean(Col)
Dim StdDev As Double = StatsFunctions.StandardDeviation(Col)

In some cases, you may want to replace the original generic column in the data frame with the new DFNumericColumn:

**Code Example – C#**

df.RemoveColumn( 4 );
df.InsertColumn( 4, col );
double mean = StatsFunctions.Mean( df[4] );
double stdev = StatsFunctions.StandardDeviation( df[4] );

**Code Example – VB**

DF.RemoveColumn(4)
DF.InsertColumn(4, Col)
Dim Mean As Double = StatsFunctions.Mean(DF(4))
Dim StdDev As Double = StatsFunctions.StandardDeviation(DF(4))

Note that sometimes you may not even be aware that your data is stored in a generic column. (You can always return the type of a column using the ColumnType property.) This is most likely to occur when you read data from a text file or database directly into a DataFrame. For example, if your database stores data using SQL NUMERIC or DECIMAL types, these get mapped to System.Decimal in ADO. NMATH does not silently convert decimals to doubles, because of the loss of precision, so they are stored in the dataframe as objects in a DFGenericColumn. If you intend to perform multiple statistical functions on the data, convert the column to a DFNumericColumn first, as shown above.

### 38.2 Missing Values

Most functions in class StatsFunctions are accompanied by a paired function that ignores missing values, such as Double.NaN in a DoubleVector, DFNumericColumn, or array of doubles. For example, there are Mean() and NaNMean() functions, Variance() and NaNVariance() functions, and so forth. Unless a function is explicitly designed to handle missing values, it may return NaN or have unexpected results if values are missing.

**Code Example – C#**

    var v = new DoubleVector( "[ 3.2 1.0 Double.NaN 4.5 -1.2 ]" );
    double mean1 = StatsFunctions.Mean( v );
    // mean1 = Double.NaN

    double mean2 = StatsFunctions.NaNMean( v );
    // mean2 = 1.875
**Code Example – VB**

```vbnet
Dim V As New DoubleVector("[3.2 1.0 Double.NaN 4.5 -1.2]")

Dim Mean1 As Double = StatsFunctions.Mean(V)
' mean1 = Double.NaN

Dim Mean2 As Double = StatsFunctions.NaNMean(V)
' mean2 = 1.875
```

The provided convenience method `NaNCheck()` returns `true` if a given data set contains any missing values. `NaNRemove()` creates a copy of a data set with missing values removed. For two-dimensional data sets, such as matrices and data frames, `NaNRemoveCols()` creates a copy with only those columns that do not contain missing values. `NaNRemoveRows()` removes any rows containing missing data. The `CleanCols()` and `CleanRows()` methods on class `DataFrame` have the same effect.

As described in Section 37.1, data frame column types enable you to specify how missing values are represented within a particular column instance, or for all columns of a particular type. For example, this column stores numeric data in a string column, and uses `NA` to indicate a missing value:

**Code Example – C#**

```csharp
var col =
 new DFStringColumn("myCol", "32.1", "NA", "6.0", "34");
```

**Code Example – VB**

```vbnet
Dim Col As New DFStringColumn("myCol", "32.1", "NA", "6.0", "34")
```

This code identifies the missing value string, then computes the mean, ignoring missing values:

**Code Example – C#**

```csharp
col.MissingValue = "NA";
double mean = StatsFunctions.NaNMean(col);
```

**Code Example – VB**

```vbnet
Col.MissingValue = "NA"
Dim Mean As Double = StatsFunctions.NaNMean(Col)
```

Because the column is not an instance of `DFIntColumn` or `DFNumericColumn`, an attempt is made to convert the data to double using `System.Convert.ToDouble()` (Section 38.1). If `StatsFunctions.Mean()` was used, instead of `StatsFunctions.NaNMean()`, or if `col.MissingValue` was set to something other than `NA` (for example, the default value is ".") an exception would be thrown.
38.3 Counts and Sums

The static `Count()` method on class `StatsFunctions` returns the number of elements in a data set:

**Code Example – C#**

```csharp
int numElements = StatsFunctions.Count(data);
```

**Code Example – VB**

```vbnet
Dim NumElements As Integer = StatsFunctions.Count(Data)
```

`Counts()` returns an `IDictionary` of key-value pairs in which the keys are the unique elements in a given data set, and the values are the counts for each element.

`CountIf()` calculates how many elements in a data set return `true` when a logical function is applied. For example, suppose `MeetsThreshold()` is a method that returns `true` if a given numeric value is greater than 100:

**Code Example – C#**

```csharp
public bool MeetsThreshold(double x)
{
 return (x > 100);
}
```

**Code Example – VB**

```vbnet
Public Function MeetsThreshold(X As Double) As Boolean
 Return (X > 100)
End Function
```

This code counts the number of elements in a data set that meet the criterion:

**Code Example – C#**

```csharp
int num = StatsFunctions.CountIf(data, new Func<double, bool>(MeetsThreshold));
```

**Code Example – VB**

```vbnet
Dim Num As Integer = StatsFunctions.CountIf(DataArray, New Func(Of Double, Boolean)(AddressOf MeetsThreshold))
```

Similarly, the static `Sum()` method sums the elements in a data set. `SumIf()` sums the elements in a data set that return `true` when a logical function is applied:

**Code Example – C#**

```csharp
double sum = StatsFunctions.SumIf(data, new Func<double, bool>(MeetsThreshold));
```
Code Example – VB

Dim Sum As Double = StatsFunctions.SumIf(DataColumn,
    New Func(Of Double, Boolean)(AddressOf MeetsThreshold))

An overload of SumIf() sums the elements in one data set based on evaluating a logical function on another data set. For instance, this code sums the elements in data2 that correspond to those elements in data where MeetsThreshold() returns true:

Code Example – C#

double sum = StatsFunctions.SumIf( data, function, data2 );

Code Example – VB

Dim Sum As Double = StatsFunctions.SumIf(DataVector, MyFunction,
    data2)

A MismatchedSizeException is raised if the two data sets do not have the same number of elements.

### 38.4 Min/Max Functions

Class StatsFunctions provides static min/max finding methods that return the integer index of the element in a data set that meets the appropriate criterion:

- **MaxIndex()** returns the index of the element with the greatest value.
- **MinIndex()** returns the index of the element with the smallest value.
- **MaxAbsIndex()** returns the index of the element with the greatest absolute value.
- **MinAbsIndex()** returns the index of the element with the smallest absolute value.

Min/max value methods MaxValue(), MinValue(), MaxAbsValue(), and MinAbsValue() return the value of the element that meets the appropriate criterion.

### 38.5 Ranks, Percentiles, Deciles, and Quartiles

The static Ranks() method on class StatsFunctions returns the rank of each element in a data set an as array of integers. For example:
By default, the ranks are calculated using ascending order. Alternatively, you can specify a sort order using a value from the `SortingType` enumeration. Thus:

```csharp
int[] ranks = StatsFunctions.Ranks(data, SortingType.Descending);
```

```vb
Dim Ranks As Integer() = StatsFunctions.Ranks(MyData, SortingType.Descending)
```

**NOTE—StatsSettings.Sorting specifies the default SortingType.**

The `Rank()` method returns where a given value *would* rank within a data set, if it were part of the data set. Again, the sorting order can be specified using a value from the `SortingType` enumeration. For instance:

```csharp
double x = 5.342;
int rank = StatsFunctions.Rank(data, x, SortingType.Descending);
```

```vb
Dim X As Double = 5.342
Dim Rank As Integer = StatsFunctions.Rank(MyData, X, SortingType.Descending)
```

`Percentile()` calculates the value at the \( n \)th percentile of the elements in a data set, where \( 0 \leq n \leq 1 \). For example, to find the value at the 95th percentile:

```csharp
double x = StatsFunctions.Percentile(data, 0.95);
```

```vb
Dim X As Double = StatsFunctions.Percentile(MyData, 0.95)
```

`PercentileRank()` performs the inverse calculation, returning the percentile a given value would have if it were part of the data set:

```csharp
double x = 23.653;
double percentile = StatsFunctions.Percentile(data, x);
```
Code Example – VB

Dim X As Double = 23.653
Dim Percentile As Double = StatsFunctions.Percentile(MyData, X)

The returned percentile value is between 0 and 1.

Similarly, Decile() calculates a given decile, specified as an integer between 0 and 10, of the elements in a data set. Quartile() calculates a given quartile, specified as an integer between 0 and 4. For example, this code finds the third quartile value:

Code Example – C#

double x = StatsFunctions.Quartile( data, 3 );

Code Example – VB

Dim X As Double = StatsFunctions.Quartile(MyData, 3)

38.6 Central Tendency

Measures of central tendency are measures of the location of the middle or the center of a data set. For example, the static Mean() method on class StatsFunctions computes the arithmetic mean (average) of the elements in a data set:

Code Example – C#

double mean = StatsFunctions.Mean( data );

Code Example – VB

Dim Mean As Double = StatsFunctions.Mean(MyData)

Median() calculates the median of the elements in a data set:

Code Example – C#

double median = StatsFunctions.Median( data );

Code Example – VB

Dim Median As Double = StatsFunctions.Median(MyData)

The median is the middle of the set—half the values are above the median and half are below the median. If there are an even number of elements, Median() returns the average of the middle two elements.

Mode() determines the most frequently occurring value in a data set:

Code Example – C#

double mode = StatsFunctions.Mode( data );
GeometricMean() calculates the geometric mean.

\[ n \sqrt[1]{x_1 \cdot x_2 \cdots x_n} \]

HarmonicMean() calculates the harmonic mean.

\[ \frac{1}{\frac{1}{x_1} + \frac{1}{x_2} + \cdots + \frac{1}{x_n}} \]

TrimmedMean() calculates the mean of a data set after the specified trimming. A trimmed mean is calculated by discarding a certain percentage of the lowest and the highest values and then computing the mean of the remaining values. For example, a mean trimmed 50% is computed by discarding the lower and higher 25% of the values and taking the mean of the remaining values. TrimmedMean() takes a trimming parameter, which is a value between 0.0 and 1.0. For example, this code computes the mean trimmed 50%:

**Code Example – C#**

```csharp
double trimMean = StatsFunctions.TrimmedMean(data, 0.50);
```

**Code Example – VB**

```vb
Dim TrimMean As Double = StatsFunctions.TrimmedMean(MyData, 0.5)
```

The median is the mean trimmed 1.0, and the arithmetic mean is the mean trimmed 0.0.

WeightedMean() calculates the weighted average of all the elements in a data set using a given set of corresponding weights. The weighted mean is calculated as

\[ \frac{w_1 x_1 + w_2 x_2 + \cdots + w_n x_n}{w_1 + w_2 + \cdots + w_n} \]

For instance:

**Code Example – C#**

```csharp
var v = new DoubleVector("-0.3 -0.03 4 2.8 -12.3 -5 3 10");
var weights = new DoubleVector("1 2 3 4 2 1 3 4");
double weightedMean = StatsFunctions.WeightedMean(v, weights);
```
Code Example – VB

Dim V As New DoubleVector("-0.3 -0.03 4 2.8 -12.3 -5 3 10")
Dim Weights As New DoubleVector("1 2 3 4 2 1 3 4")
Dim WeightedMean As Double = StatsFunctions.WeightedMean(V, Weights)

A **MismatchedSizeException** is raised if the number of weights does not equal the number of elements in the data set. Note that if all the weights are equal, the weighted mean is the same as the arithmetic mean.

Lastly, **RMS()** calculates the root mean square of the elements in a data set. RMS, sometimes called the quadratic mean, is the square root of the mean squared value.

## 38.7 Spread

Measures of *spread* are measures of the degree values in the data set differ from each other. For example, the static **SumOfSquaredErrors()** method on class **StatsFunctions** calculates the sum of squared errors (SSE) of the elements in the data set. SSE is the sum of the squared differences between each element and the mean.

**StandardDeviation()** computes the biased standard deviation of the elements in a data set.

\[
\sqrt{\frac{\text{SSE}}{n}}
\]

For instance:

**Code Example – C#**

```csharp
double stdev = StatsFunctions.StandardDeviation(data);
```

**Code Example – VB**

```vbnet
Dim StdDev As Double = StatsFunctions.StandardDeviation(MyData)
```

Alternatively, you can specify the unbiased standard deviation

\[
\sqrt{\frac{\text{SSE}}{n - 1}}
\]

using a value from the **BiasType** enumeration:

**Code Example – C#**

```csharp
double stdev =
 StatsFunctions.StandardDeviation(data, BiasType.Unbiased);
```
Code Example – VB

Dim StdDev As Double = StatsFunctions.StandardDeviation(MyData, BiasType.Unbiased)

**NOTE**—StatsSettings.Bias specifies the default BiasType.

Variance() calculates the variance of the elements in a data set. Variance is the square of the standard deviation. Again, you can specify a biased or unbiased estimator using values from the BiasType enumeration.

MeanDeviation() calculates the mean deviation of the elements in a data set. The mean deviation is the mean of the absolute deviations about the mean. The mean deviation is defined by

\[
\frac{1}{n} \sum_{i=1}^{n} |x_i - \bar{x}|
\]

Similarly, MedianDeviationFromMean() calculates the median of the absolute deviations from the mean. MedianDeviationFromMedian() calculates the median of the absolute deviations from the median.

Lastly, InterquartileRange() returns the difference between the median of the highest half and the median of the lowest half of the elements in a data set:

**38.8 Shape**

The static Skewness() method on class StatsFunctions computes the skewness of the elements in a data set. Skewness is the degree of asymmetry of a distribution. A distribution is skewed if one of its tails is longer than the other. Thus:

**Code Example – C#**

```csharp
double skewness = StatsFunctions.Skewness(data);
```

**Code Example – VB**

```vbnet
Dim Skewness As Double = StatsFunctions.Skewness(MyData)
```
By default, `Skewness()` uses a biased estimator of the standard deviation (Section 38.7). Alternatively, you can specify the unbiased standard deviation using a value from the `BiasType` enumeration:

**Code Example – C#**

```csharp
double skewness =
 StatsFunctions.Skewness(data, BiasType.Unbiased);
```

**Code Example – VB**

```vbnet
Dim Skewness As Double = StatsFunctions.Skewness(MyData,
 BiasType.Unbiased)
```

**NOTE—StatsSettings.Bias specifies the default BiasType.**

`Kurtosis()` calculates the kurtosis of the elements in a data set. Kurtosis is a measure of the degree of peakedness of a distribution. Again, a biased estimator of the standard deviation is used by default—you can specify the unbiased standard deviation using a value from the `BiasType` enumeration.

Finally, `CentralMoment()` returns the moment about the mean of a data set specified by a positive integer `order`. The first central moment is equal to zero. The second central moment is the variance. The third central moment is the skewness. The fourth central moment is the kurtosis.

### 38.9 Covariance, Correlation, and Autocorrelation

The static `Covariance()` method on class `StatsFunctions` computes the covariance of two data sets. Covariance is a measure of the tendency of two data sets to vary together, and is defined by

\[
\text{Cov}_{x,y} = \frac{\sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y)}{n}
\]

Each deviation score in the first data set is multiplied by the corresponding deviation score in the second data set. For example:

**Code Example – C#**

```csharp
double cov = StatsFunctions.Covariance(data1, data2);
```

**Code Example – VB**

```vbnet
Dim Cov As Double = StatsFunctions.Covariance(MyData1, MyData2)
```
You can also specify a biased or unbiased estimator using values from the `BiasType` enumeration.

`CovarianceMatrix()` creates a square, symmetric matrix containing the variances and covariances of the columns in a given data matrix. The diagonal elements represent the variances for the columns; the off-diagonal elements represent the covariances of each pair of columns.

`Correlation()` calculates the correlation between two data sets. Correlation is covariance standardized by dividing by the standard deviation of each data set:

$$\text{cor}_{x,y} = \frac{\text{COV}_{x,y}}{S_x S_y}$$

The resultant value is the Pearson product-moment correlation coefficient, more commonly known simply as the correlation.

`Spearmans()` calculates the Spearman rank correlation coefficient, commonly known as Spearman’s rho. Spearman’s rho differs from Pearson’s correlation only in that the computation is done after the values in the data set are converted to ranks (Section 38.5).

`Fisher()` calculates the Fisher transformation at a given value, which can be used to perform hypothesis testing on the correlation coefficient. `FisherInv()` calculates the inverse Fisher transformation.

`Cronbach()` calculates the standardized Cronbach’s alpha test for reliability.

Autocorrelation is the correlation between members of a time series of observations. Class `StatsFunctions` provides two static methods for computing first-order autocorrelation:

- `DurbinWatson()` calculates the Durbin-Watson statistic for the elements in a data set.
- `VonNeumannRatio()` calculates the Von Neumann ratio for the elements in a data set.

For instance:

**Code Example – C#**

```csharp
double dw = StatsFunctions.DurbinWatson(data);
double vnr = StatsFunctions.VonNeumannRatio(data);
```

**Code Example – VB**

```vb
Dim DW As Double = StatsFunctions.DurbinWatson(MyData)
Dim VNR As Double = StatsFunctions.VonNeumannRatio(MyData)
```
### 38.10 Sorting

The static `Sort()` method on class `StatsFunctions` sorts the elements of a data set in ascending or descending order using the quicksort algorithm and returns a new data set containing the result. The sort order is specified using a value from the `SortingType` enumeration.

For example:

**Code Example – C#**

```csharp
var v = new DoubleVector("5 7 1 3 9 4 5 2 1 0 11 3");
v = StatsFunctions.Sort(v, SortingType.Descending);
```

**Code Example – VB**

```vbnet
Dim V As New DoubleVector("5 7 1 3 9 4 5 2 1 0 11 3")
V = StatsFunctions.Sort(V, SortingType.Descending)
```

*NOTE—StatsSettings.Sorting specifies the default `SortingType`.*

### 38.11 Logical Functions

The static `If()` method on class `StatsFunctions` creates an array of boolean values determined by applying a given logical function to the elements in a data set.

For example, suppose `OnInterval01()` is a method that returns `true` if a given numeric value is between 0 and 1:

**Code Example – C#**

```csharp
public bool OnInterval01(double x)
{
 return ((x >= 0) && (x <= 1));
}
```

**Code Example – VB**

```vbnet
Public Function OnInterval01(X As Double) As Boolean
 Return ((X >= 0) & (X <= 1))
End Function
```

This code creates an array of boolean values by applying the criterion to a data set:

**Code Example – C#**

```csharp
bool[] bArray = StatsFunctions.If(data, new
 new Func<double, bool>(OnInterval01));
```
As described in Section 37.7, the resultant boolean array could be used to create a **Subset** containing the indices of all **true** elements in the array. The subset could then be used to create a sub-frame from a **DataFrame** containing the rows or columns than meet the criterion.

An overload of **If()** creates a new data set by applying a logical function to the elements of another data set. Elements in the original data set that return **true** are set to a given true value in the new data set; elements that return **false** are not changed.

For instance, suppose **GreaterThan100()** is a method that returns **true** if a given numeric value is greater than **100**. This code creates a new data in which all values in **DoubleVector** data that are greater than **100** are set to NaN:

**Code Example – C#**

```csharp
DoubleVector data2 = StatsFunctions.If(data,
 new Func<double, bool>(GreaterThan100),
 Double.NaN);
```

**Code Example – VB**

```vb
Dim MyData2 As DoubleVector = StatsFunctions.If(MyData,
 New Func(Of Double, Boolean)(AddressOf GreaterThan100),
 Double.NaN)
```

You can also supply a false value, in which case elements in the original data set that return **false** are set to that value.

**Static CountIf()** and **SumIf()** methods are also provided on class **StatsFunctions**. See Section 38.3 for more information.
CHAPTER 39.
SPECIAL FUNCTIONS

In addition to the descriptive statistics described in Chapter 38, class StatsFunctions also provides several special functions useful for statistical computation, including combinatorial functions, the beta function, and the gamma function.

39.1 Combinatorial Functions

The static Factorial() method on class StatsFunctions returns \( n! \), the number of ways that \( n \) objects can be permuted. A lookup table is used for \( n < 24 \) for faster access. For example:

Code Example – C# factorial

```csharp
int i = StatsFunctions.Factorial(20);
// i = 2,432,902,008,176,640,000
```

FactorialLn() returns the natural log factorial of \( n \), \( \ln(n!) \).

The static Binomial() method returns the binomial coefficient. The binomial coefficient \( \binom{n}{m} \) (“\( n \) choose \( m \)”) is the number of ways of picking \( m \) unordered outcomes from \( n \) possibilities:

\[
\binom{n}{m} = \frac{n!}{(n-m)!m!}
\]

For instance:

Code Example – C# binomial

```csharp
int nCm = StatsFunctions.Binomial(6, 4);
```

BinomialLn() returns the natural log of the binomial coefficient.

39.2 Gamma Function

The static GammaLn() method on class StatsFunctions evaluates the log of the gamma function \( \Gamma(x) \) at a value \( x \). The gamma function is an extension of the factorial function to complex and real number arguments.
The “complete” gamma function $\Gamma(x)$ can be generalized to the incomplete gamma function $\Gamma(a, x)$, such that $\Gamma(a) = \Gamma(a, 0)$. The “lower” incomplete gamma function is given by:

$$P(x, a) = \frac{1}{\Gamma(a)} \int_0^x t^{a-1} e^{-t} dt$$

`IncompleteGamma()` returns the value of the lower regularized incomplete gamma function.

### 39.3 Beta Function

The static `Beta()` method on class `StatsFunctions` method evaluates the beta function $B(n, m)$, which is related to the gamma function $\Gamma(x)$ as follows:

$$B(n, m) = \frac{\Gamma(n) \Gamma(m)}{\Gamma(n + m)} = \frac{(n-1)! (m-1)!}{(n+m-1)!}$$

The incomplete beta function $B_z(n, m)$ is a generalization of the beta function:

$$B_z(a, x) = \int_0^z u^{a-1} (1-u)^{b-1} du$$

`IncompleteBeta()` returns the value of the incomplete beta function.
Chapter 40.
Probability Distributions

**NMath Stats** provides classes for computing the probability density function (PDF), the cumulative distribution function (CDF), the inverse cumulative distribution function, and random variable moments for a variety of probability distributions, including beta, binomial, chi-square (\(\chi^2\)), exponential, \(F\), gamma, geometric, Johnson, logistic, log-normal, negative binomial, normal (Gaussian), Poisson, Student’s \(t\), triangular, uniform, and Weibull distributions. The distribution classes share a common interface, so once you learn how to use one distribution class, it’s easy to use any of the others.

This chapter describes the distribution classes and how to use them. This chapter also describes how to create correlated sets of random variables drawn from different distributions.

### 40.1 Distribution Classes

The **NMath Stats** probability distribution classes are listed in Table 27.

**Table 27 – Probability Distribution Classes**

<table>
<thead>
<tr>
<th>Class</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>BetaDistribution</td>
<td>Beta distribution</td>
</tr>
<tr>
<td>BinomialDistribution</td>
<td>Binomial distribution</td>
</tr>
<tr>
<td>ChiSquareDistribution</td>
<td>Chi-Square ((\chi^2)) distribution</td>
</tr>
<tr>
<td>ExponentialDistribution</td>
<td>Exponential distribution</td>
</tr>
<tr>
<td>FDistribution</td>
<td>(F) distribution</td>
</tr>
<tr>
<td>GammaDistribution</td>
<td>Gamma distribution</td>
</tr>
<tr>
<td>GeometricDistribution</td>
<td>Geometric distribution</td>
</tr>
<tr>
<td>JohnsonDistribution</td>
<td>Johnson distribution</td>
</tr>
<tr>
<td>LogisticDistribution</td>
<td>Logistic distribution</td>
</tr>
<tr>
<td>LognormalDistribution</td>
<td>Log-normal distribution</td>
</tr>
</tbody>
</table>
All distribution classes share a common interface. Class `ProbabilityDistribution` is the abstract base class for the distribution classes, and provides the following abstract methods implemented by the derived classes:

- `PDF()` computes the probability density function at a given $x$.
- `CDF()` computes the cumulative distribution function at a given $x$.
- `InverseCDF()` computes the inverse cumulative distribution function for a given probability $p$—that is, it returns $x$ such that $CDF(x) = p$.

In addition, all `NMath Stats` distribution classes implement the `IRandomVariableMoments` interface, which provides the following read-only properties:

- `Mean` gets the mean of the distribution.
- `Variance` gets the variance of the distribution.
- `Kurtosis` gets the kurtosis of the distribution.
- `Skewness` gets the skewness of the distribution.

Variance is the square of the standard deviation. Kurtosis is a measure of the degree of peakedness of a distribution; skewness is a measure of the degree of asymmetry.

---

**Table 27 – Probability Distribution Classes**

<table>
<thead>
<tr>
<th>Class</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>NegativeBinomialDistribution</strong></td>
<td>Negative Binomial distribution</td>
</tr>
<tr>
<td><strong>NormalDistribution</strong></td>
<td>Normal (Gaussian) distribution</td>
</tr>
<tr>
<td><strong>PoissonDistribution</strong></td>
<td>Poisson distribution</td>
</tr>
<tr>
<td><strong>TDistribution</strong></td>
<td>Student’s $t$ distribution</td>
</tr>
<tr>
<td><strong>TriangularDistribution</strong></td>
<td>Triangular distribution</td>
</tr>
<tr>
<td><strong>UniformDistribution</strong></td>
<td>Uniform distribution</td>
</tr>
<tr>
<td><strong>WeibullDistribution</strong></td>
<td>Weibull distribution</td>
</tr>
</tbody>
</table>
Once you have constructed a derived distribution type, you can query it for the PDF, CDF, inverse CDF, and random variable moments. For example, this code constructs a \texttt{NormalDistribution} with mean $0$ and variance $1$, then queries it:

\textbf{Code Example – C# normal distribution}

```csharp
var dist = new NormalDistribution(0, 1);
double pdf = dist.PDF(0);
double cdf = dist.CDF(0);
double invCdf = dist.InverseCDF(.5);
double mean = dist.Mean;
double var = dist.Variance;
double kurt = dist.Kurtosis;
double skew = dist.Skewness;
```

\textbf{Code Example – VB normal distribution}

```vbnet
Dim Dist As New NormalDistribution(0, 1)
Dim PDF As Double = Dist.PDF(0)
Dim CDF As Double = Dist.CDF(0)
Dim InvCDF As Double = Dist.InverseCDF(0.5)
Dim Mean As Double = Dist.Mean
Dim Var As Double = Dist.Variance
Dim Kurt As Double = Dist.Kurtosis
Dim Skew As Double = Dist.Skewness
```

\textbf{Beta Distribution}

Class \texttt{BetaDistribution} represents the beta probability distribution. The beta distribution is a family of curves with two free parameters, usually labelled $\alpha$ and $\beta$. Beta distributions are nonzero only on the interval $(0, 1)$.

The distribution function for the beta distribution is:

$$ f(x | \alpha, \beta) = \frac{x^{\alpha-1} (1 - x)^{\beta-1}}{B(\alpha, \beta)} $$

where $B(x,y)$ is the beta function. The beta CDF is the same as the incomplete beta function.

For example, this code constructs a \texttt{BetaDistribution}:

\textbf{Code Example – C# beta distribution}

```csharp
double alpha = 3;
double beta = 7;
var dist = new BetaDistribution(alpha, beta);
```

\textbf{Code Example – VB beta distribution}

```vbnet
Dim Alpha As Double = 3
```
Dim Beta As Double = 7
Dim Dist As New BetaDistribution(Alpha, Beta)

The default constructor creates a **BetaDistribution** with $\alpha$ and $\beta$ equal to 1:

**Code Example** – C# beta distribution

```csharp
var dist = new BetaDistribution();
```

**Code Example** – VB beta distribution

```vbnet
Dim Dist As New BetaDistribution()
```

The provided **Alpha** and **Beta** properties can be used to get and set the shape parameters after construction:

**Code Example** – C# beta distribution

```csharp
dist.Alpha = 4;
dist.Beta = 10;
```

**Code Example** – VB beta distribution

```vbnet
Dist.Alpha = 4
Dist.Beta = 10
```

Once you have constructed a **BetaDistribution** object, you can query it for the PDF, CDF, inverse CDF, and random variable moments, as described in Section 40.1.

**Binomial Distribution**

Class **BinomialDistribution** represents the discrete probability distribution of obtaining exactly $n$ successes in $N$ trials where the probability of success on each trial is $p$. For example, this code constructs an **BinomialDistribution**:

**Code Example** – C# binomial distribution

```csharp
int n = 20;
double p = 0.25;
var bin = new BinomialDistribution(n, p);
```

**Code Example** – VB binomial distribution

```vbnet
Dim N As Integer = 20
Dim P As Double = 0.25
Dim Bin As New BinomialDistribution(N, P)
```

The default constructor creates an **BinomialDistribution** with $n = 2$ and $p = 0.5$:

**Code Example** – C# binomial distribution

```csharp
var bin = new BinomialDistribution();
```
Code Example – VB binomial distribution

Dim Bin As New BinomialDistribution()

The provided \( N \) and \( P \) properties can be used to get and set the number of trials and the probability of success on each trial after construction:

Code Example – C# binomial distribution

```csharp
bin.N = 75;
bin.P = 0.02;
```

Code Example – VB binomial distribution

```vbnet
Bin.N = 75
Bin.P = 0.02
```

Once you have constructed an \textbf{BinomialDistribution} object, you can query it for the PDF, CDF, inverse CDF, and random variable moments, as described in Section 40.1.

**Chi-Square Distribution**

Class \textbf{ChiSquareDistribution} represents the chi-square (\( \chi^2 \)) probability distribution. The chi-square distribution is a special case of the gamma distribution with \( \alpha = df/2 \) and \( \beta = 2 \), where \( df \) is the degrees of freedom.

For example, this code constructs a \textbf{ChiSquareDistribution}:

Code Example – C# chi-square distribution

```csharp
double df = 16;
var chiSq = new ChiSquareDistribution(df);
```

Code Example – VB chi-square distribution

```vbnet
Dim DF As Double = 16
Dim ChiSq As New ChiSquareDistribution(DF)
```

The default constructor creates a \textbf{ChiSquareDistribution} with 1 degree of freedom:

Code Example – C# chi-square distribution

```csharp
var chiSq = new ChiSquareDistribution();
```

Code Example – VB chi-square distribution

```vbnet
Dim ChiSq As New ChiSquareDistribution()
```

The provided \textbf{DegreesOfFreedom} property can be used to get and set the degrees of freedom of the distribution after construction:
Exponential Distribution

Class ExponentialDistribution represents the exponential distribution. A random variable \( w \) is said to have an exponential distribution if it has a probability density function

\[
g(w) = \lambda e^{-\lambda w}
\]

where \( \lambda > 0 \) is often called the rate parameter. The mean of an exponential distribution is \( 1/\lambda \), and the variance is \( 1/\lambda^2 \). For example, this code constructs an ExponentialDistribution:

Code Example – C# exponential distribution

```csharp
double lambda = 22;
var exp = new ExponentialDistribution(lambda);
```

Code Example – VB exponential distribution

```vbnet
Dim Lambda As Double = 22
Dim Exp As New ExponentialDistribution(Lambda)
```

The provided Lambda property can be used to get and set the rate after construction:

Code Example – C# exponential distribution

```csharp
exp.Lambda = 15;
```

Code Example – VB exponential distribution

```vbnet
Exp.Lambda = 15
```

Once you have constructed an ExponentialDistribution object, you can query it for the PDF, CDF, inverse CDF, and random variable moments, as described in Section 40.1.
**F Distribution**

Class **FDistribution** represents the $F$ probability distribution. The $F$ distribution is the ratio of two chi-square distributions with degrees of freedom $df_1$ and $df_2$, respectively, where each chi-square has first been divided by its degrees of freedom. For example, this code constructs an **FDistribution**:

**Code Example – C# F distribution**

```csharp
double df1 = 11;
double df2 = 19;
var f = new FDistribution(df1, df2);
```

**Code Example – VB F distribution**

```vbnet
Dim DF1 As Double = 11
Dim DF2 As Double = 19
Dim F As New FDistribution(DF1, DF2)
```

The default constructor creates an **FDistribution** with both degrees of freedom equal to 1:

**Code Example – C# F distribution**

```csharp
var f = new FDistribution();
```

**Code Example – VB F distribution**

```vbnet
Dim F As New FDistribution()
```

The provided **DegreesOfFreedom1** and **DegreesOfFreedom2** properties can be used to get and set the degrees of freedom after construction:

**Code Example – C# F distribution**

```csharp
f.DegreesOfFreedom1 = 15;
f.DegreesOfFreedom2 = 23;
```

**Code Example – VB F distribution**

```vbnet
F.DegreesOfFreedom1 = 15
F.DegreesOfFreedom2 = 23
```

Once you have constructed an **FDistribution** object, you can query it for the PDF, CDF, inverse CDF, and random variable moments, as described in Section 40.1.

**Gamma Distribution**

Class **GammaDistribution** represents the gamma probability distribution. The gamma distribution is a family of curves with two free parameters, usually labelled $\alpha$ and $\beta$. The mean of the distribution is $\alpha \beta$; the variance is $\alpha \beta^2$. When $\alpha$ is large, the gamma distribution closely approximates a normal distribution.
The distribution function for the gamma distribution is:

\[ f(x|\alpha, \beta) = \frac{x^{\alpha - 1} e^{-x/\beta}}{\beta^\alpha \Gamma(\alpha)} \]

where \( \Gamma(x) \) is the Gamma function.

For example, this code constructs a GammaDistribution:

**Code Example – C# gamma distribution**

```csharp
double alpha = 7;
double beta = 12;
var gamma = new GammaDistribution(alpha, beta);
```

**Code Example – VB gamma distribution**

```vbnet
Dim Alpha As Double = 7
Dim Beta As Double = 12
Dim Gamma As New GammaDistribution(Alpha, Beta)
```

The default constructor creates a GammaDistribution with \( \alpha \) and \( \beta \) equal to 1:

**Code Example – C# gamma distribution**

```csharp
var gamma = new GammaDistribution();
```

**Code Example – VB gamma distribution**

```vbnet
Dim Gamma As New GammaDistribution()
```

The provided Alpha and Beta properties can be used to get and set the shape parameters after construction:

**Code Example – C# gamma distribution**

```csharp
gamma.Alpha = 10;
gamma.Beta = 15;
```

**Code Example – VB gamma distribution**

```vbnet
Gamma.Alpha = 10
Gamma.Beta = 15
```

Once you have constructed a GammaDistribution object, you can query it for the PDF, CDF, inverse CDF, and random variable moments, as described in Section 40.1.
Geometric Distribution

Class GeometricDistribution represents the geometric distribution. The geometric distribution is the probability distribution of the number of failures before the first success. It is supported on the set \( \{0, 1, 2, 3, \ldots\} \).

A GeometricDistribution is constructed from a given probability of success \( p \), where \( 0 < p \leq 1 \). For example:

Code Example – C# geometric distribution

double p = .25;
var geo = new GeometricDistribution(p);

Code Example – VB geometric distribution

Dim P As Double = 0.25
Dim Geo As New GeometricDistribution(P)

Class GeometricDistribution provides property \( p \) that gets and sets the probability for success for the distribution.

Code Example – C# geometric distribution

geo.P = .5;

Code Example – VB geometric distribution

Geo.P = 0.5

Once you have constructed a GeometricDistribution object, you can query it for the PDF, CDF, inverse CDF, and random variable moments, as described in Section 40.1.

Johnson Distribution

Class JohnsonDistribution represents the Johnson system of distributions. The Johnson system is based on three possible transformations of a normal random variable—exponential, logistic, and hyperbolic sine—plus the identity transformation:

\[
z = \gamma + \delta \ln(f(u)) \text{ where } u = \left( \frac{x - \xi}{\lambda} \right)
\]

where the transformation \( f() \) has four possible forms based on the distribution type:
- Normal (SN): \( f(u) = \exp(u) \)
- Log Normal (SL): \( f(u) = u \)
- Unbounded (SU): \( f(u) = u + \sqrt{1+u^2} \)
- Bounded (SB): \( f(u) = \frac{u}{1-u} \)

A `JohnsonDistribution` instance is constructed from a set of distribution parameter values, and a `JohnsonTransformationType` enumerated value specifying the transformation type. For instance:

**Code Example – C# Johnson distribution**

```csharp
double gamma = -0.18;
double delta = 2.55;
double xi = -0.14;
double lambda = 2.35;
JohnsonTransformationType type = JohnsonTransformationType.Normal;

var dist =
 new JohnsonDistribution(gamma, delta, xi, lambda, type);
```

**Code Example – VB Johnson distribution**

```vb
Dim Gamma As Double = -0.18
Dim Delta As Double = 2.55
Dim Xi As Double = -0.14
Dim Lambda As Double = 2.35
Dim Type As JohnsonTransformationType =
 JohnsonTransformationType.Normal

Dim Dist As New JohnsonDistribution(Gamma, Delta, Xi, Lambda, Type)
```

Once you have constructed a `JohnsonDistribution` object, you can query it for the PDF, CDF, inverse CDF, and random variable moments, as described in Section 40.1.

Class `JohnsonDistribution` also provides a static `Fit()` method for fitting a Johnson distribution to a data set. Estimation of the Johnson parameters is done from quantiles that correspond to the cumulative probabilities \([0.05, 0.206, 0.5, 0.794, 0.95]\) using the method of Wheeler (1980).\(^1\) For example:

**Code Example – C# Johnson distribution**

```csharp
var data = new DoubleVector(-0.09736927, 0.21615254,
 0.88246516, 0.20559750, -0.61643584, -0.73479925, -0.13180279,
 0.31001699, -1.03968035, -0.18430887, 0.96726726, -0.10828009, -
 0.69842067, -0.27594517, 1.11464855, 0.55004396, 1.23667580,
 0.13909786, 0.41027510, -0.55845691);
```

var dist = JohnsonDistribution.Fit(data);

**Code Example – VB Johnson distribution**

Dim Data As New DoubleVector(-0.09736927, 0.21615254, 0.88246516, 0.2055975, -0.61643584, -0.73479925, -0.13180279, 0.31001699, -1.03968035, -0.18430887, 0.96726726, -0.10828009, -0.69842067, -0.27594517, 1.11464855, 0.55004396, 1.2366758, 0.13909786, 0.4102751, -0.55845691)
Dim Dist As JohnsonDistribution = JohnsonDistribution.Fit(Data)

The `Transform()` method transforms data using a `JohnsonDistribution` object.

### Logistic Distribution

Class **LogisticDistribution** represents the logistic probability distribution with a specified location (mean) and scale. The logistic distribution with location $m$ and scale $b$ has distribution function:

$$ f(x) = \frac{1}{1 + e^{-\frac{x-m}{b}}} $$

and density:

$$ f(x) = \frac{e^{-\frac{x-m}{b}}}{b[1 + e^{-\frac{x-m}{b}}]^2} $$

For example, this code constructs a **LogisticDistribution**:

**Code Example – C# logistic distribution**

double loc = 2.0;
double scale = 1.5;
var logistic = new LogisticDistribution( loc, scale );

**Code Example – VB logistic distribution**

Dim Loc As Double = 2.0
Dim Scale As Double = 1.5
Dim Logistic As New LogisticDistribution(Loc, Scale)

The provided `Location` and `Scale` properties can be used to get and set distribution parameters after construction:

**Code Example – C# logistic distribution**

logistic.Location = 7.123;
logistic.Scale = 4.5;
Code Example – VB logistic distribution

Logistic.Location = 7.123
Logistic.Scale = 4.5

Once you have constructed a LogisticDistribution object, you can query it for the PDF, CDF, inverse CDF, and random variable moments, as described in Section 40.1.

Log-Normal Distribution

Class LognormalDistribution represents the log-normal distribution. A log-normal distribution has a normal distribution as its logarithm:

\[ f(x) = e^{\text{normal}(\mu, \sigma)} \]

For example, this code constructs an LognormalDistribution whose associated normal distribution has the specified mean and standard deviation:

Code Example – C# log-normal distribution

double mu = -99;
double sigma = 6;
var ln = new LognormalDistribution( mu, sigma );

Code Example – VB log-normal distribution

Dim Mu As Double = -99
Dim Sigma As Double = 6
Dim LN As New LognormalDistribution(Mu, Sigma)

The default constructor creates a LognormalDistribution whose associated normal distribution has mean 0 and standard deviation 1:

Code Example – C# log-normal distribution

var ln = new LognormalDistribution();

Code Example – VB log-normal distribution

Dim LN As New LognormalDistribution()

The Mu and Sigma properties can be used to get and set the mean and standard deviation after construction:

Code Example – C# log-normal distribution

ln.Mu = 2.25;
ln.Sigma = .75;

Code Example – VB log-normal distribution

LN.Mu = 2.25
LN.Sigma = 0.75

Once you have constructed a LognormalDistribution object, you can query it for the PDF, CDF, inverse CDF, and random variable moments, as described in Section 40.1.

**Negative Binomial Distribution**

Class NegativeBinomialDistribution represents the discrete probability distribution of obtaining \( N \) successes in a series of \( x \) trials, where the probability of success on each trial is \( P \).

For example, this code constructs an NegativeBinomialDistribution:

**Code Example – C# negative binomial distribution**

```csharp
int n = 5;
double p = 0.25;
var negBin = new NegativeBinomialDistribution(n, p);
```

**Code Example – VB negative binomial distribution**

```vbnet
Dim N As Integer = 5
Dim P As Double = 0.25
Dim NegBin As New NegativeBinomialDistribution(N, P)
```

The default constructor creates an NegativeBinomialDistribution with \( n = 2 \) and \( p = 0.5 \):

**Code Example – C# negative binomial distribution**

```csharp
var negBin = new NegativeBinomialDistribution();
```

**Code Example – VB negative binomial distribution**

```vbnet
Dim NegBin As New NegativeBinomialDistribution()
```

The provided \( N \) and \( P \) properties can be used to get and set the number of successes and the probability of success on each trial after construction:

**Code Example – C# negative binomial distribution**

```csharp
negBin.N = 75;
negBin.P = 0.02;
```

**Code Example – VB negative binomial distribution**

```vbnet
Bin.N = 75
Bin.P = 0.02
```

Once you have constructed an NegativeBinomialDistribution object, you can query it for the PDF, CDF, inverse CDF, and random variable moments, as described in Section 40.1.
Normal Distribution

Class **NormalDistribution** represents the normal (Gaussian) probability distribution with a specified mean and variance. For example, this code creates a normal distribution with a mean of 1 and variance of 2.5:

**Code Example – C# normal distribution**

```csharp
var norm = new NormalDistribution(1, 2.5);
```

**Code Example – VB normal distribution**

```vbnet
Dim Norm As New NormalDistribution(1, 2.5)
```

The default constructor creates a **NormalDistribution** with mean 0 and variance 1:

**Code Example – C# normal distribution**

```csharp
var norm = new NormalDistribution();
```

**Code Example – VB normal distribution**

```vbnet
Dim Norm As New NormalDistribution()
```

The **Mean** and **Variance** properties inherited from **IRandomVariableMoments** can be used to get and set the mean and variance after construction:

**Code Example – C# normal distribution**

```csharp
norm.Mean = 2.25;
norm.Variance = .75;
```

**Code Example – VB normal distribution**

```vbnet
Norm.Mean = 2.25
Norm.Variance = 0.75
```

Once you have constructed a **NormalDistribution** object, you can query it for the PDF, CDF, inverse CDF, and random variable moments, as described in Section 40.1.

Poisson Distribution

Class **PoissonDistribution** represents a poisson distribution with a specified \( \lambda \) parameter, which is both the mean and the variance of the distribution. The poisson distribution is the probability of obtaining exactly \( n \) successes in \( N \) trials. It is often used as a model for the number of events in a specific time period. Poisson (1837) showed that the Poisson distribution is the limiting case of a binomial distribution where \( N \) approaches infinity and \( p \) goes to zero while \( Np = \lambda \). The distribution function for the Poisson distribution is:

\[
 f(x|\lambda) = \frac{e^{-\lambda} \lambda^x}{x!}
\]
For example, this code constructs a **PoissonDistribution**:

**Code Example – C# poisson distribution**

```csharp
double lambda = 150;
var poisson = new PoissonDistribution(lambda);
```

**Code Example – VB poisson distribution**

```vbnet
Dim Lambda As Double = 150
Dim Poisson As New PoissonDistribution(Lambda)
```

The **Mean** and **Variance** properties inherited from **IRandomVariableMoments** can also be used to get and set \( \lambda \) after construction:

**Code Example – C# poisson distribution**

```csharp
poisson.Mean = 3;
```

**Code Example – VB poisson distribution**

```vbnet
Poisson.Mean = 3
```

Once you have constructed a **PoissonDistribution** object, you can query it for the PDF, CDF, inverse CDF, and random variable moments, as described in Section 40.1.

### Student’s t Distribution

Class **TDistribution** represents Student’s \( t \) distribution with specified degrees of freedom. As the number of degrees of freedom grows, the \( t \) distribution approaches the normal distribution with mean 0 and variance 1.

For example, this code constructs a **TDistribution**:

**Code Example – C# t distribution**

```csharp
double df = 53;
var t = new TDistribution(df);
```

**Code Example – VB t distribution**

```vbnet
Dim DF As Double = 53
Dim T As New TDistribution(DF)
```

The default constructor creates a **TDistribution** with 1 degree of freedom:

**Code Example – C# t distribution**

```csharp
var t = new TDistribution();
```

**Code Example – VB t distribution**

```vbnet
Dim T As New TDistribution()
```
The provided DegreesOfFreedom property can be used to get and set the degrees of freedom of the distribution after construction:

**Code Example – C# t distribution**

```csharp
t.DegreesOfFreedom = 54;
```

**Code Example – VB t distribution**

```vbnet
T.DegreesOfFreedom = 54
```

Once you have constructed a TDistribution object, you can query it for the PDF, CDF, inverse CDF, and random variable moments, as described in Section 40.1.

### Triangular Distribution

Class TriangularDistribution represents the triangular distribution. The triangular distribution is defined by three parameters, a lower limit $a$, an upper limit $b$, and number $c$, between $a$ and $b$, called the mode. The probability density function has the shape of a triangle in the X/Y plane with vertices $(a, 0)$, $(b, 0)$, and $(c, y)$, where $y$ is chosen so that the area of the triangle is 1.

For example, this code constructs an TriangularDistribution with the given parameters:

**Code Example – C# triangular distribution**

```csharp
double lower = 3;
double upper = 10;
double mode = 8;
var td = new TriangularDistribution(lower, upper, mode);
```

**Code Example – VB triangular distribution**

```vbnet
Dim Lower As Double = 3
Dim Upper As Double = 10
Dim Mode As Double = 8
Dim TD As New TriangularDistribution(Lower, Upper, Mode)
```

If you don’t specify the mode, the midpoint of the lower and upper limits is used.

The default constructor creates a TriangularDistribution with lower limit 0, upper limit 1, and mode 0.5:

**Code Example – C# triangular distribution**

```csharp
var td = new TriangularDistribution();
```

**Code Example – VB triangular distribution**

```vbnet
Dim TD As New TriangularDistribution()
```
The `LowerLimit`, `UpperLimit`, and `Mode` properties can be used to get and set the distribution parameters after construction:

**Code Example – C# triangular distribution**

```csharp
td.LowerLimit = 1.5;
td.UpperLimit = 3.5;
td.Mode = 2.75;
```

**Code Example – VB triangular distribution**

```vbnet
TD.LowerLimit = 1.5
TD.UpperLimit = 3.5
TD.Mode = 2.75
```

Once you have constructed a `TriangularDistribution` object, you can query it for the PDF, CDF, inverse CDF, and random variable moments, as described in Section 40.1.

**Uniform Distribution**

Class `UniformDistribution` represents the uniform distribution. For example, this code constructs an `UniformDistribution` with the specified lower and upper limits:

**Code Example – C# uniform distribution**

```csharp
double lower = -.77;
double upper = 1.22;
var uni = new UniformDistribution(lower, upper);
```

**Code Example – VB uniform distribution**

```vbnet
Dim Lower As Double = -0.77
Dim Upper As Double = 1.22
Dim Uni As New UniformDistribution(Lower, Upper)
```

The default constructor creates a `UniformDistribution` with lower limit 0 and upper limit 1:

**Code Example – C# uniform distribution**

```csharp
var uni = new UniformDistribution();
```

**Code Example – VB uniform distribution**

```vbnet
Dim Uni As New UniformDistribution()
```

The `LowerLimit` and `UpperLimit` properties can be used to get and set the lower and upper limits after construction:
Code Example – C# uniform distribution

uni.LowerLimit = 0;
uni.UpperLimit = 2.0;

Code Example – VB uniform distribution

Uni.LowerLimit = 0
Uni.UpperLimit = 2.0

Once you have constructed a UniformDistribution object, you can query it for the PDF, CDF, inverse CDF, and random variable moments, as described in Section 40.1.

Weibull Distribution

Class WeibullDistribution represents the Weibull distribution. The probability density function of the Weibull distribution is given by:

\[ f(x|k, \lambda) = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-\left(\frac{x}{\lambda}\right)^k} \]

where \( k > 0 \) is the shape parameter and \( \lambda > 0 \) is the scale parameter of the distribution.

For example, this code constructs an WeibullDistribution with the specified distribution parameters:

Code Example – C# Weibull distribution

double scale = 1.5;
double shape = 3;
var wb = new WeibullDistribution( scale, shape );

Code Example – VB Weibull distribution

Dim Scale As Double = 1.5
Dim Shape As Double = 3
Dim WB As New WeibullDistribution(Scale, Shape)

The Scale and Shape properties can be used to get and set the distribution parameters after construction:

Code Example – C# Weibull distribution

wb.Scale = .5;
wbshape = 2;

Code Example – VB Weibull distribution

WB.Scale = 0.5
WB.Shape = 2
Once you have constructed a `WeibullDistribution` object, you can query it for the PDF, CDF, inverse CDF, and random variable moments, as described in Section 40.1.

### 40.2 Correlated Random Inputs

**NMath Stats** provides classes `InputVariableCorrelator` and `ReducedVarianceInputCorrelator` to induce a desired rank correlation among a set of random input variables. The correlated inputs retain the same marginal distributions as the original inputs but have a Spearman’s rank correlation matrix approximately equal to that specified by the user. The method used is that of Iman and Conover (1982).\(^2\)

`ReducedVarianceInputCorrelator` performs the same function as `InputVariableCorrelator` class, but uses an algorithm that produces more accurate results, at some cost in performance.

#### Constructing Correlator Instances

Instances of `InputVariableCorrelator` and `ReducedVarianceInputCorrelator` are constructed from the number of samples and the desired correlation matrix. This code assume 500 samples of 6 input variables:

**Code Example – C# correlated random inputs**

```csharp
int numSamples = 500;
string str = "6x6 [1 0 0 0 0 0 " +
 "0 1 0 0 0 0 " +
 "0 0 1 0 0 0 " +
 "0 0 0 1 .75 -.70 " +
 "0 0 0 .75 1 -.95 " +
 "0 0 0 -.7 -.95 1]";
var desiredCorrelations = new DoubleMatrix(str);

var correlator = new
 InputVariableCorrelator(numSamples, desiredCorrelations);
```

**Code Example – VB correlated random inputs**

```vbnet
Dim NumSamples As Integer = 500
Dim Str As String = "6x6 [1 0 0 0 0 0 " &
 "0 1 0 0 0 0 " &
 "0 0 1 0 0 0 " &
 "0 0 0 1 .75 -.70 " &
 "0 0 0 .75 1 -.95 " &
 "0 0 0 -.7 -.95 1]"

var desiredCorrelations = new DoubleMatrix(str);

Dim correlator = new
 InputVariableCorrelator(numSamples, desiredCorrelations);
```

---

Dim DesiredCorrelations As New DoubleMatrix("0 0 1 0 0 0 \& "0 0 1 .75 -.7 " \& "0 0 .75 1 -.95 " \& "0 0 -.7 -.95 1]"

Dim Correlator As New 
  InputVariableCorrelator(NumSamples, DesiredCorrelations)

Most of the work done by the correlation algorithm involves setting up a score matrix which has been transformed so that it's Spearman’s rank correlation matrix is equal to the desired correlation matrix. The computation of this score matrix requires only the number of samples and the desired correlation matrix, and is performed at construction time. Once you have constructed an InputVariableCorrelator or ReducedVarianceInputCorrelator instance, you can correlate batches of random inputs relatively quickly.

Correlating Random Inputs

The GetCorrelatedInputs() method on InputVariableCorrelator and ReducedVarianceInputCorrelator returns a matrix containing a given set of input variables values re-ordered so as to have the desired correlations.

For instance, this code creates a set of samples drawn from 4 different distributions (each row of the inputs matrix is a random sample of the 6 input variables), and induces the desired correlation:

Code Example – C# correlated random inputs

```csharp
var betaRng = new RandGenBeta();
var uniformRng = new RandGenUniform();
var poissonRng = new RandGenPoisson();
var normalRng = new RandGenNormal();

var inputs = new DoubleMatrix(numSamples, 6);
betaRng.Fill(inputs.Col(0).DataBlock.Data);
uniformRng.Fill(inputs.Col(1).DataBlock.Data);
poissonRng.Fill(inputs.Col(2).DataBlock.Data);
normalRng.Fill(inputs.Col(3).DataBlock.Data);
betaRng.Fill(inputs.Col(4).DataBlock.Data);
uniformRng.Fill(inputs.Col(5).DataBlock.Data);

DoubleMatrix correlatedInputs =
 correlator.GetCorrelatedInputs(inputs);
```

Code Example – VB correlated random inputs

```vbnet
Dim BetaRng As New RandGenBeta()
Dim UniformRng As New RandGenUniform()
Dim PoissonRng As New RandGenPoisson()
```
Dim NormalRng As New RandGenNormal()

Dim Inputs As New DoubleMatrix(NumSamples, 6)
BetaRng.Fill(Inputs.Col(0).DataBlock.Data)
UniformRng.Fill(Inputs.Col(1).DataBlock.Data)
PoissonRng.Fill(Inputs.Col(2).DataBlock.Data)
NormalRng.Fill(Inputs.Col(3).DataBlock.Data)
BetaRng.Fill(Inputs.Col(4).DataBlock.Data)
UniformRng.Fill(Inputs.Col(5).DataBlock.Data)

Dim CorrelatedInputs As DoubleMatrix =
   Correlator.GetCorrelatedInputs(Inputs)

You can compare the actual Spearman's rank correlation matrix with the desired
correlation matrix, like so:

Code Example – C# correlated random inputs

DoubleMatrix actualCorrelations =
   StatsFunctions.Spearmans( correlatedInputs );

Console.WriteLine( "Desired: " + desiredCorrelations );
Console.WriteLine( "Actual: " + actualCorrelations );

Code Example – VB correlated random inputs

Dim ActualCorrelations As DoubleMatrix =
   StatsFunctions.Spearmans(CorrelatedInputs)

Console.WriteLine( "Desired: " & DesiredCorrelations)
Console.WriteLine( "Actual: " & ActualCorrelations)

Correlator Properties

InputVariableCorrelator and ReducedVarianceInputCorrelator provide the
following read-only properties:

- Rstar gets the permuted score matrix which has been transformed to have
  the desired correlation matrix.
- NumInputVariables gets the number of input variables.
- SampleSize gets the sample size of the input variables.

Convenience Method

The static CorrelatedRandomInputs() convenience method is provided on class
StatsFunctions for cases where you need only one set of correlated inputs. For
example:
In the special case of two input variables, an additional overload obviates the need for setting up the original input sample matrix. For instance, this code creates two sequences of 100 normally distributed random numbers which have, approximately, the specified rank correlation coefficient 0.8:

Code Example – C# correlated random inputs

```csharp
double mean1 = 43.2;
double var1 = 1.2;
var normalRng1 = new RandGenNormal(mean1, var1);

double mean2 = 102.45;
double var2 = 8.098;
var normalRng2 = new RandGenNormal(mean2, var2);

double desiredRankCorrelation = .8;
int numSamples = 100;

DoubleMatrix correlatedInputs =
 StatsFunctions.CorrelatedRandomInputs(numSamples,
 desiredRankCorrelation, normalRng1, normalRng2);
```

Code Example – VB correlated random inputs

```vbnet
Dim Mean1 As Double = 43.2
Dim Var1 As Double = 1.2
Dim NormalRng1 As New RandGenNormal(Mean1, Var1)

Dim Mean2 As Double = 102.45
Dim Var2 As Double = 8.098
Dim NormalRng2 As New RandGenNormal(Mean2, Var2)

Dim DesiredRankCorrelation As Double = 0.8
Dim NumSamples As Integer = 100

Dim CorrelatedInputs As DoubleMatrix =
 StatsFunctions.CorrelatedRandomInputs(NumSamples,
 DesiredRankCorrelation, NormalRng1, NormalRng2)
```
40.3 Box-Cox Power Transformations

Box-Cox power transformations compute a rank-preserving transformation of data to stabilize variance and make the data more normal. The power transformation is defined as a continuously varying function, with respect to the power parameter \( \lambda \),

\[
y(\lambda) = \frac{y^\lambda - 1}{\lambda}
\]

In NMath Stats, class `BoxCox` compute the Box-Cox power transformations for a set of data points and parameter value \( \lambda \). In addition, methods are provided for computing the corresponding log-likelihood function and the value of \( \lambda \) which maximizes it.

For example:

**Code Example – C# Box-Cox transformations**

```csharp
var data = new DoubleVector("[.15 .09 .18 .10 .05 .12 .08 .05 .08
 .10 .07 .02 .01 .10 .10 .02 .10 .01 .40 .10 .05 .03 .05 .15 .10
 .15 .09 .08 .18 .10 .20 .11 .30 .02 .20 .20 .30 .30 .40 .30 .05]"
);

var interval = new Interval(-5, 5, Interval.Type.Closed);

var bc = new BoxCox(data, interval);

Console.WriteLine(bc.Lambda);
Console.WriteLine(bc.TransformedData);
```

**Code Example – VB Box-Cox transformations**

```vbnet
Dim Data As New DoubleVector("[.15 .09 .18 .10 .05 .12 .08 .05 .08
 .10 .07 .02 .01 .10 .10 .02 .10 .01 .40 .10 .05 .03 .05 .15 .10
 .15 .09 .08 .18 .10 .20 .11 .30 .02 .20 .20 .30 .30 .40 .30 .05]"
)

Dim Interval As New Interval(-5, 5, Interval.Type.Closed)

Dim BC As New BoxCox(Data, Interval)

Console.WriteLine(BC.Lambda)
Console.WriteLine(BC.TransformedData)
```

BoxCox searches from \(-5\) to \(5\) until the best value of \( \lambda \) is found (the value which maximizes the log-likelihood function).
Hypothesis tests use statistics to determine the probability that a given hypothesis is true. For example, could the differences between two sample means be explained away as sampling error? NMath Stats provides classes for many common hypothesis tests.

This chapter describes the hypothesis test classes. For non-parametric tests, see Chapter 45.

41.1 Common Interface

All hypothesis test classes share substantially the same interface. Once you learn how to use one test, it’s easy to use any of the others.

Static Properties

All hypothesis test classes have static DefaultAlpha properties that get and set the default alpha level associated with tests of that type. The default value is 0.01. For instance:

Code Example – C# hypothesis tests

```csharp
var test1 = new OneSampleTTest();
// test1.Alpha == 0.01
OneSampleTTest.DefaultAlpha = 0.05;
var test2 = new OneSampleTTest();
// test2.Alpha == 0.05
```

Code Example – VB hypothesis tests

```vbnet
Dim Test1 As New OneSampleTTest()
' test1.Alpha == 0.01
OneSampleTTest.DefaultAlpha = 0.05
Dim Test2 As New OneSampleTTest()
' test2.Alpha == 0.05
```

Similarly, all hypothesis test classes have static DefaultType properties that get and set the default form of the alternative hypothesis. The form is specified using the HypothesisType enumeration, with the following enumerated values:

- **Left** indicates a one-sided form to the left, $\mu < \mu_0$. 

Right indicates a one-sided form to the right, $\mu > \mu_0$.

TwoSided indicates a two-sided form, $\mu \neq \mu_0$.

The default value for all test classes is HypothesisType.TwoSided. For example:

**Code Example – C# hypothesis tests**

```csharp
var test1 = new OneSampleTTest();
// test1.Type == HypothesisType.TwoSided
OneSampleTTest.DefaultType = HypothesisType.Left;
var test2 = new OneSampleTTest();
// test2.Type == HypothesisType.Left
```

**Code Example – VB hypothesis tests**

```vbnet
Dim Test1 As New OneSampleTTest()
' ' test1.Type == HypothesisType.TwoSided
OneSampleTTest.DefaultType = HypothesisType.Left
Dim Test2 As New OneSampleTTest()
' ' test2.Type == HypothesisType.Left
```

### Creating Hypothesis Test Objects

All hypothesis test classes provide two paths for constructing instances of that type:

- A *parameter-based* method, in which all necessary sample and population parameters are explicitly specified.

- A *data-based* method, in which sample parameters are computed from supplied sample data.

**NOTE**—In the data-based method, once sample parameters have been computed from the given data, the data is discarded, and cannot be recovered from the test object.

For example, a one-sample z-test compares a single sample mean to an expected mean from a normal distribution with known standard deviation. This code constructs a **OneSampleZTest** object by explicitly specifying a sample mean, sample size, population mean, and population standard deviation:

**Code Example – C# hypothesis tests**

```csharp
double xbar = 112.8;
int n = 9;
double mu0 = 100;
double sigma = 15;
var test = new OneSampleZTest(xbar, n, mu0, sigma);
```

**Code Example – VB hypothesis tests**

```vbnet
Dim XBar As Double = 112.8
```
Dim N As Integer = 9
Dim Mu0 As Double = 100
Dim Sigma As Double = 15
Dim Test As New OneSampleZTest(XBar, N, Mu0, Sigma)

This code constructs a OneSampleZTest object by supplying a vector of sample data, and the necessary population parameters:

**Code Example – C# hypothesis tests**

```csharp
var data =
 new DoubleVector("[116 110 111 113 112 113 111 109 121]");
double mu0 = 100;
double sigma = 15;
var test = new OneSampleZTest(data, mu0, sigma);
```

**Code Example – VB hypothesis tests**

```vbnet
Dim MyData As New DoubleVector("[116 110 111 113 112 113 111 109 121]")
Dim Mu0 As Double = 100
Dim Sigma As Double = 15
Dim Test As New OneSampleZTest(MyData, Mu0, Sigma)
```

In this case, the sample mean and sample size are calculated from the given data. The data-based method supports sample data in vectors, arrays, and data frame columns.

In both the parameter-based method and the data-based method, the alpha level for the hypothesis test is set to the current value specified by the static DefaultAlpha property, and the form of the hypothesis test is set to the current DefaultType, as described above.

Constructors are also provided for all test classes that enable you to set the alpha level and hypothesis type to non-default values. For example:

**Code Example – C# hypothesis tests**

```csharp
var test = new OneSampleZTest(data, mu0, sigma, 0.05, HypothesisType.Left);
```

**Code Example – VB hypothesis tests**

```vbnet
Dim Test As New OneSampleZTest(MyData, Mu0, Sigma, 0.05, HypothesisType.Left)
```

### Properties of Hypothesis Test Objects

All hypothesis test classes provide the following read-only properties:

- **Distribution** gets the distribution of the test statistic associated with the hypothesis test.
• **Statistic** gets the value of the test statistic associated with this hypothesis test.

• **P** gets the *p*-value associated with the test statistic.

• **Reject** tests whether the null hypothesis can be rejected, using the current hypothesis type and alpha level.

• **LeftCriticalValue** gets the one-sided to the left critical value based on the current probability distribution and alpha level.

• **RightCriticalValue** gets the one-sided to the right critical value based on the current probability distribution and alpha level.

• **LeftProbability** gets the area under the probability distribution to the left of the test statistic.

• **RightProbability** gets the area under the probability distribution to the right of the test statistic.

• **LowerConfidenceLimit** gets the 1 – *α* lower confidence limit for the true mean.

• **UpperConfidenceLimit** gets the 1 – *α* upper confidence limit for the true mean.

• **SEM** gets the standard error of the mean.

The following read-write properties are also provided:

• **Alpha** gets and sets the alpha level associated with the hypothesis test.

• **Type** gets and sets the form of the alternative hypothesis associated with the hypothesis test.

Additionally, each hypothesis test provides properties for accessing the specific sample and population parameters that define the test. For example, a **OneSampleZTest** has additional properties for accessing the sample mean, **Xbar**, the sample size, **N**, the population mean, **Mu0**, and the population standard deviation, **Sigma**.

### Modifying Hypothesis Test Objects

All hypothesis test classes provide **Update()** methods for modifying a test with new sample parameters or sample data, and new population parameters. For example, if **test** is a **TwoSampleFTest** instance, this code updates the test with two new samples, taken from two columns in a data frame **df**:

**Code Example – C# hypothesis tests**

```
 test.Update(df[3], df[7]);
```
Code Example – VB hypothesis tests

Test.Update(DF(3), DF(7))

Printing Results

All hypothesis test classes provide a ToString() method that returns a formatted string representation of the test results. For instance:

Code Example – C# hypothesis tests

```csharp
var data1 = new DoubleVector("9.21 11.51 12.79 11.85 9.97 8.79 9.69 9.68 9.19");
var data2 = new DoubleVector("7.53 7.48 8.08 8.09 10.15 8.40 10.88 6.13 7.90 7.05 7.48 7.58 8.11");
var test = new TwoSampleFTest(data1, data2, 0.05, HypothesisType.TwoSided);
Console.WriteLine(test.ToString());
```

Code Example – VB hypothesis tests

```vbnet
Dim MyData2 As New DoubleVector("7.53 7.48 8.08 8.09 10.15 8.40 10.88 6.13 7.90 7.05 7.48 7.58 8.11")
Dim Test As New TwoSampleFTest(MyData1, MyData2, 0.05, HypothesisType.TwoSided)
Console.WriteLine(Test.ToString())
```

The output is:

```
Two Sample F Test

Sample Sizes = 9 and 13
Standard Deviations = 1.39787139767736 and 1.23808008936914
Variances = 1.95404444444444 and 1.53284230769231
Ratio of Variances = 1.27478504125206
Computed F statistic: 1.27478504125206, num df = 8, denom df = 12

Hypothesis type: two-sided
Null hypothesis: true ratio of variances = 1
Alt hypothesis: true ratio of variances != 1
P-value: 0.679745985376403
RETAIN the null hypothesis for alpha = 0.05
0.95 confidence interval: 0.363002872041806 5.3536732579205
```
41.2 One Sample Z-Test

Class **OneSampleZTest** determines whether a sample from a normal distribution with known standard deviation could have a given mean. For example, suppose we wish to determine whether the IQs of children from a particular school are above average, given that Wechsler IQ scores are normally distributed with a mean of 100 and standard deviation of 15. Sample scores from 9 students are 116 110 111 113 112 113 111 109 121, with a mean of 112.8.

As described Section 41.1, all hypothesis test classes provide two paths for constructing instances of that type: a parameter-based method and a data-based method. Thus, you can construct a **OneSampleZTest** object by explicitly specifying a sample mean ($x$), sample size ($n$), population mean ($\mu_0$), and population standard deviation ($\sigma$), like so:

**Code Example – C# z-test**

```csharp
double xbar = 112.8;
int n = 9;
double mu0 = 100;
double sigma = 15;
var test = new OneSampleZTest(xbar, n, mu0, sigma);
```

**Code Example – VB z-test**

```vb
Dim XBar As Double = 112.8
Dim N As Integer = 9
Dim Mu0 As Double = 100
Dim Sigma As Double = 15
Dim Test As New OneSampleZTest(XBar, N, Mu0, Sigma)
```

Or by supplying a set of sample data, and the necessary population parameters:

**Code Example – C# z-test**

```csharp
var data =
 new DoubleVector("[116 110 111 113 112 113 111 109 121]");
double mu0 = 100;
double sigma = 15;
var test = new OneSampleZTest(data, mu0, sigma);
```

**Code Example – VB z-test**

```vb
Dim MYData As New DoubleVector("[116 110 111 113 112 113 111 109 121]")
Dim Mu0 As Double = 100
Dim Sigma As Double = 15
Dim Test As New OneSampleZTest(MyData, Mu0, Sigma)
```

In this case, the sample mean and sample size are calculated from the given data.
In addition to the properties common to all hypothesis test objects (Section 41.1), a OneSampleZTest object provides the following read-only properties:

- **Xbar** gets the sample mean.
- **N** gets the sample size.
- **Mu0** gets the population mean.
- **Sigma** gets the population standard deviation.

By default, a OneSampleZTest object performs a two-sided hypothesis test \( H_1 : \mu \neq \mu_0 \) with \( \alpha = 0.01 \). In this example, we wish to test the one-sided form to the right \( H_1 : \mu > \mu_0 \); that is, we wish to test whether the children in our sample have a higher than average IQ. Suppose also that we wish to set the alpha level to 0.05. Non-default test parameters can be specified at the time of construction using constructor overloads, or after construction using the provided Alpha and Type properties, like so:

**Code Example – C# z-test**

```csharp
test.Type = HypothesisType.Right;
test.Alpha = 0.05;
```

**Code Example – VB z-test**

```vbnet
Test.Type = HypothesisType.Right
Test.Alpha = 0.05
```

Once you’ve constructed and configured a OneSampleZTest object, you can access the test results using the provided properties, as described in Section 41.1:

**Code Example – C# z-test**

```csharp
Console.WriteLine("z-statistic = " + test.Statistic);
Console.WriteLine("p-value = " + test.P);
Console.WriteLine("reject the null hypothesis? " + test.Reject);
```

**Code Example – VB z-test**

```vbnet
Console.WriteLine("z-statistic = " & Test.Statistic)
Console.WriteLine("p-value = " & Test.P)
Console.WriteLine("reject the null hypothesis? " & Test.Reject)
```

The output is:

```
z-statistic = 2.56
p-value = 0.0052336081635578
reject the null hypothesis? true
```

This indicates that we can reject the null hypotheses \( H_0 : \mu = \mu_0 \). We can conclude that the children have IQs significantly above average.
Finally, remember that the `ToString()` method returns a formatted string representation of the complete test results:

One Sample Z Test
-----------------
Sample mean = 112.8
Sample size = 9
Population mean = 100
Population standard deviation = 15
Computed Z statistic: 2.56

Hypothesis type: one-sided to the right
Null hypothesis: sample mean = population mean
Alt hypothesis: sample mean > population mean
P-value: 0.00523360816355578
REJECT the null hypothesis for alpha = 0.05
0.95 confidence interval: 104.575731865243 Infinity

41.3 One Sample T-Test

Class `OneSampleTTest` determines whether a sample from a normal distribution with unknown standard deviation could have a given mean. For example, suppose we wish to determine whether the self-esteem of children from a particular school differ from average, given a known population value of 3.9 on the Rosenberg Self-Esteem Scale. 113 children are tested, with a mean score of 4.0408 and a standard deviation of .6542.

As described Section 41.1, all hypothesis test classes provide two paths for constructing instances of that type: a parameter-based method and a data-based method. Thus, you can construct a `OneSampleTTest` object by explicitly specifying a sample mean (x̄), sample standard deviation (s), sample size (n), and population mean (μ₀), like so:

Code Example – C# t-test

```csharp
double xbar = 4.0408;
double s = .6542;
int n = 113;
double mu0 = 3.9;
var test = new OneSampleTTest(xbar, s, n, mu0);
```

Code Example – VB t-test

```vbnet
Dim XBar As Double = 4.0408
Dim S As Double = 0.6542
Dim N As Integer = 113
Dim Mu0 As Double = 3.9
```
Dim Test As New OneSampleTTest(XBar, S, N, Mu0)

Or by supplying a set of sample data, and the necessary population parameters. For instance, if the sample data is in column 3 of DataFrame df:

Code Example – C# t-test
double mu0 = 3.9;
var test = new OneSampleTTest( df[3], mu0 );

Code Example – VB t-test
Dim Mu0 As Double = 3.9
Dim Test As New OneSampleTTest(DF(3), Mu0)

In this case, the sample mean, standard deviation, and size are calculated from the given data.

In addition to the properties common to all hypothesis test objects (Section 41.1), a OneSampleTTest object provides the following read-only properties:

- \( \bar{x} \) gets the sample mean.
- \( s \) gets the sample standard deviation.
- \( n \) gets the sample size.
- \( \mu_0 \) gets the population mean.
- DegreesOfFreedom gets the degrees of freedom.

By default, a OneSampleTTest object performs a two-sided hypothesis test \((H_1: \mu \neq \mu_0)\) with \(\alpha = 0.01\). Non-default test parameters can be specified at the time of construction using constructor overloads, or after construction using the provided Alpha and Type properties, like so:

Code Example – C# t-test
test.Alpha = 0.05;

Code Example – VB t-test
Test.Alpha = 0.05

Once you’ve constructed and configured a OneSampleTTest object, you can access the various test results using the provided properties, as described in Section 41.1:

Code Example – C# t-test
Console.WriteLine( "t-statistic = " + test.Statistic );
Console.WriteLine( "deg of freedom = " + test.DegreesOfFreedom );
Console.WriteLine( "p-value = " + test.P );
Console.WriteLine( "reject the null hypothesis? " + test.Reject);
Code Example – VB t-test

```vbnet
Console.WriteLine("t-statistic = " & Test.Statistic)
Console.WriteLine("deg of freedom = " & Test.DegreesOfFreedom)
Console.WriteLine("p-value = " & Test.P)
Console.WriteLine("reject the null hypothesis? " & Test.Reject)
```

The output is:

- t-statistic = 2.28786996397591
- deg of freedom = 112
- p-value = 0.0240223660991041
- reject the null hypothesis? True

This indicates that we can reject the null hypotheses \( H_0: \mu = \mu_0 \). We can conclude that the children have self-esteem scores significantly different than average.

Finally, remember that the `ToString()` method returns a formatted string representation of the complete test results:

```
One Sample t Test

Sample mean = 4.0408
Sample standard deviation = 0.6542
Sample size = 113
Population mean = 3.9
Computed t statistic: 2.28786996397591, df = 112
Hypothesis type: two-sided
Null hypothesis: sample mean = population mean
Alt hypothesis: sample mean != population mean
P-value: 0.0240223660991041
REJECT the null hypothesis for alpha = 0.05
0.95 confidence interval: 3.91886249658971 4.16273750341029
```

# 41.4 Two Sample Paired T-Test

Class `TwoSamplePairedTTest` tests the null hypothesis that the population mean of the paired differences of two samples is zero. Pairing involves matching up individuals in two samples so as to minimize their dissimilarity except in the factor under study. Paired samples often occur in pre-test/post-test studies in which subjects are measured before and after an intervention. They also occur in matched-pairs (for example, matching on age and sex), cross-over trials, and sequential observational samples. Paired samples are also called matched samples and dependent samples.
NOTE—TwoSamplePairedTTest is equivalent to performing a OneSampleTTest on the paired differences (see Section 41.3).

For example, suppose we measure the thickness of plaque (mm) in the carotid artery of 10 randomly selected patients with mild atherosclerotic disease. Two measurements are taken: before treatment with Vitamin E (baseline), and after two years of taking Vitamin E daily. The mean difference between paired measurements is 0.045 with a standard deviation of 0.0264.

As described Section 41.1, all hypothesis test classes provide two paths for constructing instances of that type: a parameter-based method and a data-based method. Thus, you can construct a TwoSamplePairedTTest object by explicitly specifying the mean difference between paired observations ($\bar{x}$), the standard deviation of the differences ($s$), and the sample size ($n$), like so:

**Code Example – C# paired t-test**

```csharp
double xbar = 0.045;
double s = 0.0264;
int n = 10;
var test = new TwoSamplePairedTTest(xbar, s, n);
```

**Code Example – VB paired t-test**

```csharp
Dim XBar As Double = 0.045
Dim S As Double = 0.0264
Dim N As Integer = 10
Dim Test As New TwoSamplePairedTTest(XBar, S, N)
```

Alternatively, you can supply two sets of sample data. For instance, this code adds data to a DataFrame (Chapter 37):

**Code Example – C# paired t-test**

```csharp
var df = new DataFrame();
df.AddColumn(new DFNumericColumn("Baseline"));
df.AddColumn(new DFNumericColumn("Vit E"));
df.AddRow(1, 0.66, 0.60);
df.AddRow(2, 0.72, 0.65);
df.AddRow(3, 0.85, 0.79);
df.AddRow(4, 0.62, 0.63);
df.AddRow(5, 0.59, 0.54);
df.AddRow(6, 0.63, 0.55);
df.AddRow(7, 0.64, 0.62);
df.AddRow(8, 0.70, 0.67);
df.AddRow(9, 0.73, 0.68);
df.AddRow(10, 0.68, 0.64);
```

**Code Example – VB paired t-test**

```vb
Dim DF As New DataFrame()
DF.AddColumn(New DFNumericColumn("Baseline"))
DF.AddColumn(New DFNumericColumn("Vit E"))
```
And this code constructs a `TwoSamplePairedTTest` from the two columns of data:

**Code Example – C# paired t-test**

```csharp
var test =
 new TwoSamplePairedTTest(df["Baseline"], df["Vit E"]);
```

**Code Example – VB paired t-test**

```vb
Dim Test As New TwoSamplePairedTTest(DF("Baseline"), DF("Vit E"))
```

The mean difference between paired measurements, the standard deviation, and the sample size are calculated from the given data.

In addition to the properties common to all hypothesis test objects (Section 41.1), a `TwoSamplePairedTTest` object provides the following read-only properties:

- `Xbar` gets the mean of the differences between paired observations.
- `S` gets the standard deviation of the differences between paired observations.
- `N` gets the number of pairs.
- `DegreesOfFreedom` gets the degrees of freedom.

By default, a `TwoSamplePairedTTest` object performs a two-sided hypothesis test ($H_1: \mu_d \neq 0$) with $\alpha = 0.01$. Non-default test parameters can be specified at the time of construction using constructor overloads, or after construction using the provided `Type` and `Alpha` properties.

Once you’ve constructed and configured a `TwoSamplePairedTTest` object, you can access the various test results using the provided properties, as described in Section 41.1:

**Code Example – C# paired t-test**

```csharp
Console.WriteLine("t-statistic = " + test.Statistic);
Console.WriteLine("deg of freedom = " + test.DegreesOfFreedom);
Console.WriteLine("p-value = " + test.P);
Console.WriteLine("reject the null hypothesis? " + test.Reject);`
Code Example – VB paired t-test

```vbnet
Console.WriteLine("t-statistic = " & Test.Statistic)
Console.WriteLine("deg of freedom = " & Test.DegreesOfFreedom)
Console.WriteLine("p-value = " & Test.P)
Console.WriteLine("reject the null hypothesis? " & Test.Reject)
```

The output is:

- t-statistic = 5.4
- deg of freedom = 9
- p-value = 0.000433006432003502
- reject the null hypothesis? True

This indicates that we can reject the null hypotheses ($H_0: \mu_d = 0$). We can conclude that the true mean thickness of plaque after two years treatment with Vitamin E is significantly different than before treatment.

Finally, remember that the `ToString()` method returns a formatted string representation of the complete test results:

```
Two Sample t Test (Paired)
--------------------------
Mean of differences between pairs = 0.045
Standard deviation of differences between pairs = 0.0263523138347365
Sample size (number of pairs) = 10
Computed t statistic: 5.4, df = 9

Hypothesis type: two-sided
Null hypothesis: true mean of differences between pairs = 0
Alt hypothesis: true mean of differences between pairs != 0
P-value: 0.000433006432003502
REJECT the null hypothesis for alpha = 0.01
0.99 confidence interval: 0.0179180371533991 0.0720819628466008
```

41.5 Two Sample Unpaired T-Test

Class `TwoSampleUnpairedTTest` tests whether two samples from a normal distribution could have the same mean when the standard deviations are unknown but assumed to be equal, allowing for a pooled estimate of the variance.

Class `TwoSampleUnpairedUnequalTTest` assumes that the samples may come from populations with unequal variances, and the Welch-Satterthwaite approximation to the degrees of freedom is used. Unlike `TwoSampleUnpairedTTest`, a pooled estimate of the variance is not used.
For example, suppose we work for a company that makes plastic widgets and we want to compare plastic samples from two suppliers for strength. We record the breaking strength in psi (pounds per square inch) for random samples from each supplier and obtain the following data: 11 samples from the first supplier having a mean strength of 4.2 psi and a standard deviation of 4.68; 8 samples from the second supplier have a mean strength of 5.6 and a standard deviation of 3.92.

As described in Section 41.1, all hypothesis test classes provide two paths for constructing instances of that type: a parameter-based method and a data-based method. Thus, you can construct a TwoSampleUnpairedTTest object by explicitly specifying the mean (\(\bar{x} \)), standard deviation (\(s \)), and size (\(n \)) of each sample, like so:

Code Example – C# unpaired t-test

```csharp
double xbar1 = 4.2;
double s1 = 4.68;
int n1 = 11;

double xbar2 = 5.6;
double s2 = 3.92;
int n2 = 8;

var test = new TwoSampleUnpairedTTest( xbar1, s1, n1, xbar2, s2, n2 );
```

Code Example – VB unpaired t-test

```vb
Dim XBar1 As Double = 4.2
Dim S1 As Double = 4.68
Dim N1 As Integer = 11

Dim XBar2 As Double = 5.6
Dim S2 As Double = 3.92
Dim N2 As Integer = 8

Dim Test As New TwoSampleUnpairedTTest(XBar1, S1, N1, XBar2, S2, N2)
```

Or by supplying two sets of sample data. For instance, if the sample data is in two vectors supplier1 and supplier2:

Code Example – C# unpaired t-test

```csharp
var test =
    new TwoSampleUnpairedTTest( supplier1, supplier2 );
```

Code Example – VB unpaired t-test

```vb
Dim Test As New TwoSampleUnpairedTTest(Supplier1, Supplier2)
```
The sample means, standard deviations, and sizes are calculated from the given data.

In addition to the properties common to all hypothesis test objects (Section 41.1), a **TwoSampleUnpairedTTest** object provides the following read-only properties:

- **Xbar1** and **Xbar2** get the means of the samples.
- **S1** and **S2** get the standard deviations of the samples.
- **SPooled** gets the pooled estimate of the standard deviation.
- **N1** and **N2** get the sizes of the samples.
- **DegreesOfFreedom** gets the degrees of freedom.

By default, a **TwoSampleUnpairedTTest** object performs a two-sided hypothesis test ($H_1: \mu_1 - \mu_2 \neq 0$) with $\alpha = 0.01$. Non-default test parameters can be specified at the time of construction using constructor overloads, or after construction using the provided **Type** and **Alpha** properties.

Once you’ve constructed and configured a **TwoSampleUnpairedTTest** object, you can access the various test results using the provided properties, as described in Section 41.1:

Code Example – C# unpaired t-test

```csharp
Console.WriteLine( "t-statistic = " + test.Statistic );
Console.WriteLine( "pooled standard deviation = " + test.SPooled );
Console.WriteLine( "deg of freedom = " + test.DegreesOfFreedom );
Console.WriteLine( "p-value = " + test.P );
Console.WriteLine( "reject the null hypothesis? " + test.Reject );
```

Code Example – VB unpaired t-test

```vbnet
Console.WriteLine("t-statistic = " & Test.Statistic)
Console.WriteLine("pooled standard deviation = " & Test.SPooled)
Console.WriteLine("deg of freedom = " & Test.DegreesOfFreedom)
Console.WriteLine("p-value = " & Test.P)
Console.WriteLine("reject the null hypothesis? " & Test.Reject)
```

The output is:

```
t-statistic = -0.687410859118054
pooled standard deviation = 4.38304755647859
degrees of freedom = 17
p-value = 0.501095386120306
reject the null hypothesis? False
```

This indicates that we cannot reject the null hypotheses ($H_0: \mu_1 - \mu_2 = 0$).

Finally, remember that the **ToString()** method returns a formatted string representation of the complete test results:
Two Sample t Test (Unpaired)

Sample means = 4.2 and 5.6
Sample standard deviations = 4.68 and 3.92
Sample sizes = 11 and 8
Difference in means = -1.4
Pooled standard deviation = 4.38304755647859
Computed t statistic: -0.687410859118054, df = 17

Hypothesis type: two-sided
Null hypothesis: true difference in means = 0
Alt hypothesis: true difference in means != 0
P-value: 0.501095386120306
Decision: RETAIN the null hypothesis for alpha = 0.05
0.95 confidence interval: -5.6969085703539 2.896908570354

41.6 Two Sample F-Test

Class TwoSampleFTest tests whether the variances of two populations are equal. For example, suppose random samples from two normal populations are taken. The first sample consists of 10 observations with a standard deviation of 5.203; the second sample consists of 25 observations with a standard deviation of 2.623. At the 0.10 significance level, is there sufficient evidence to suggest that the populations from which these samples were drawn have equal variances?

As described Section 41.1, all hypothesis test classes provide two paths for constructing instances of that type: a parameter-based method and a data-based method. Thus, you can construct a TwoSampleFTest object by explicitly specifying the standard deviation (s) and size (n) of each sample, like so:

Code Example – C# F-test

double s1 = 5.203;
int n1 = 10;

double s2 = 2.623;
int n2 = 25;

var test = new TwoSampleFTest(s1, n1, s2, n2);

Code Example – VB F-test

Dim S1 As Double = 5.203
Dim N1 As Integer = 10

Dim S2 As Double = 2.623
Dim N2 As Integer = 25
Dim Test As New TwoSampleFTest(S1, N1, S2, N2)

Or by supplying two sets of sample data. For instance, if the sample data is in two vectors \(v_1\) and \(v_2\):

Code Example – C# F-test
```csharp
var test = new TwoSampleFTest( v1, v2 );
```

Code Example – VB F-test
```vbnet
Dim Test As New TwoSampleFTest(V1, V2)
```

The sample standard deviations and sizes are calculated from the given data.

In addition to the properties common to all hypothesis test objects (Section 41.1), a `TwoSampleFTest` object provides the following read-only properties:

- \(S_1\) and \(S_2\) get the standard deviations of the samples.
- \(N_1\) and \(N_2\) get the sizes of the samples.
- \(\text{DegreesOfFreedom}_1\) gets the numerator degrees of freedom.
- \(\text{DegreesOfFreedom}_2\) gets the denominator degrees of freedom.

By default, a `TwoSampleFTest` object performs a two-sided hypothesis test \(H_1:\sigma_1^2 / \sigma_2^2 \neq 1\) with \(\alpha = 0.01\). Non-default test parameters can be specified at the time of construction using constructor overloads, or after construction using the provided `Type` and `Alpha` properties.

Once you’ve constructed and configured a `TwoSampleFTest` object, you can access the various test results using the provided properties, as described in Section 41.1:

Code Example – C# F-test
```csharp
Console.WriteLine( "t-statistic = " + test.Statistic );
Console.WriteLine( "numerator df = " + test.DegreesOfFreedom1 );
Console.WriteLine( "denominator df = " + test.DegreesOfFreedom2 );
Console.WriteLine( "p-value = " + test.P );
Console.WriteLine( "reject the null hypothesis? " + test.Reject );
```

Code Example – VB F-test
```vbnet
Console.WriteLine("t-statistic = " & Test.Statistic)
Console.WriteLine("numerator df = " & Test.DegreesOfFreedom1)
Console.WriteLine("denominator df = " & Test.DegreesOfFreedom2)
Console.WriteLine("p-value = " & Test.P)
Console.WriteLine("reject the null hypothesis? " & Test.Reject)
```
The output is:

\[
\begin{align*}
\text{F-statistic} & = 3.93469497446923 \\
\text{numerator df} & = 9 \\
\text{denominator df} & = 24 \\
p-value & = 0.00693561186501657 \\
\text{reject the null hypothesis?} & \text{ True}
\end{align*}
\]

This indicates that we cannot reject the null hypotheses \(H_0: s_1^2/s_2^2 = 1 \).

Finally, remember that the \text{ToString()} method returns a formatted string representation of the complete test results:

Two Sample F Test

Sample Sizes = 10 and 25
Standard Deviations = 5.203 and 2.623
Variances = 27.071209 and 6.880129
Computed F statistic: 3.93469497446923, num df = 9, denom df = 24
Hypothesis type: two-sided
Null hypothesis: true ratio of variances = 1
Alt hypothesis: true ratio of variances != 1
P-value: 0.00693561186501657
REJECT the null hypothesis for alpha = 0.01
0.99 confidence interval: 1.06490202325594 22.5425454339445

\subsection{41.7 Pearson’s Chi-Square Test}

\textbf{NMath Stats} provides class \texttt{PearsonsChiSquareTest} for performing Pearson’s chi-square test. Pearson’s chi-square test is the most well-known of the chi-square tests, which are statistical procedures whose results are evaluated by reference to the chi-square distribution. It tests the null hypothesis that the frequency distribution of experimental outcomes are consistent with a particular theoretical distribution. The event outcomes considered must be mutually exclusive and have a total probability of 1.

Instances of \texttt{PearsonsChiSquareTest} are constructed either from raw data or tables of counts. For example, this code constructs a \texttt{PearsonsChiSquareTest} using outcomes from a series of experiment runs, along with the expected frequencies:

Code Example – C# chi-square test

\begin{verbatim}
int[] outcomes = { 59, 20, 11, 10 };
var probs = new DoubleVector(0.5625, 0.1875, 0.1875, 0.0625);
var test = new PearsonsChiSquareTest(outcomes, probs);
\end{verbatim}
This code uses a contingency table (or cross tabulation) to store the relation between two or more categorical variables:

The Yates’ correction for continuity may optionally be applied.

Once you’ve constructed and configured a `PearsonsChiSquareTest` object, you can access the various test results using the provided properties, as described in Section 41.1:

The output is:

`chi-square statistic = 147.761248704421`
numerator df = 1
p-value = 0
reject the null hypothesis? True

Again, the ToString() method returns a formatted string representation of the complete test results:

Pearson chi-square test

Sample size = 12844
Yates corrected = True
Computed chi-square statistic: 147.761248704421, df = 1

P-value: 0
REJECT the null hypothesis for alpha = 0.01

41.8 Fisher’s Exact Test

StatsFunctions provides the FisherExactTest() method for performing a Fisher’s Exact Test for a specified 2 x 2 contingency table. Fisher’s Exact Test is a useful alternative to the chi-square test in cases where sample sizes are small.

Fisher's Exact Test is so-called because the significance of the deviation from a null hypothesis can be calculated exactly, rather than relying on an approximation. The usual rule of thumb for deciding whether the chi-squared approximation is good enough is whether the expected values in all cells of the contingency table is greater than or equal to 5.

You can perform a Fisher’s Exact Test by providing the cell values directly, plus an HypothesisType specifying the form of the alternative hypothesis:

Code Example – C# Fisher’s exact test

```csharp
int a = 12, b = 17, c = 4, d = 25;
double pvalue = StatsFunctions.FishersExactTest(a, b, c, d,
        HypothesisType.TwoSided);
```

Code Example – VB Fisher’s exact test

```vbnet
Dim A As Integer = 12
Dim B As Integer = 17
Dim C As Integer = 4
Dim D As Integer = 25
Dim PValue As Double = StatsFunctions.FishersExactTest(A, B, C, D,
        HypothesisType.TwoSided)
```

Values a, b, c and d are cell counts for contingency table:
If no hypothesis type is specified, \texttt{FisherExactTest()} returns the lesser of the right and left tail \(p \)-value.

Overloads are also provided for data in an \texttt{int[,]} array or \texttt{DataFrame} containing two \texttt{DFIntColumn}.

Chapter 42.
Linear Regression

Class **LinearRegression** computes a multiple linear regression from an input matrix of independent variable values (the *predictor matrix* or *regression matrix*) and a vector of dependent variable values (the *observation vector*).

In a linear model, a quantity y depends on one or more independent variables a_1, a_2, \ldots, a_n such that $y = x_0 + x_1 a_1 + \ldots + x_n a_n$. (Parameter x_0 is called the *intercept parameter*.) Several observations of the independent values a_i are recorded, along with the corresponding values of the dependent variable y. If m observations are performed, and for the ith observation we denote the values of the independent variables $a_{i1}, a_{i2}, \ldots, a_{in}$ and the corresponding dependent value of y as y_i, then we form the linear system $Ax = y$, where matrix $A = (a_{ij})$ and vector $y = (y_i)$. The regression solution is the value of x that minimizes $\|Ax - y\|$. This chapter describes how to use the **LinearRegression** class, and related supporting classes.

42.1 Creating Linear Regressions

A **LinearRegression** instance is constructed from a predictor matrix and observation vector, like so:

Code Example – C# linear regression

```csharp
var predictors =
    new DoubleMatrix( " 8x4 [ 1 1450 .50 70
1 1600 .50 70
1 1450 .70 70
1 1600 .70 70
1 1450 .50 120
1 1600 .50 120
1 1450 .70 120
1 1600 .70 120 ]" );

var obs =
    new DoubleVector( "[ 67 79 61 75 59 90 52 87 ]" );

var lr = new LinearRegression( predictors, obs );
```
Code Example – VB linear regression

Dim Predictors As New DoubleMatrix(" 8x4 [1 1450 .50 70
1 1600 .50 70
1 1450 .70 70
1 1600 .70 70
1 1450 .50 120
1 1600 .50 120
1 1450 .70 120
1 1600 .70 120]")

Dim Obs As New DoubleVector("[67 79 61 75 59 90 52 87]")

Dim LR As New LinearRegression(Predictors, Obs)

A MismatchedSizeException is raised if the number of rows in the matrix A is not equal to the length of the vector obs.

You can also construct a LinearRegression instance from data in a DataFrame, by indicating which column contains the observations. Non-numeric columns are ignored. For instance, if column 8 contains the dependent variable, this code constructs a regression from the data:

Code Example – C# linear regression

var lr = new LinearRegression(df, 8);

Code Example – VB linear regression

Dim LR As New LinearRegression(DF, 8)

Parameter Calculation by Least Squares Minimization

By default, class LinearRegression computes the model parameter values by the method of least squares using a QR factorization, but you may elect to use a complete orthogonal factorization or singular value decomposition instead.

IRegressionCalculation is the interface for classes used by LinearRegression to calculate regression parameters. NMath Stats includes three regression calculator classes:

- Class QRRegressionCalculation (the default) solves the regression problem using a QR decomposition.
- Class SVDRegressionCalculation solves the regression problem using a singular value decomposition.
- Class CORegressionCalculation solves least squares problems using a complete orthogonal decomposition.

You can specify a non-default regression calculation object in the constructor. For example:
Code Example – C# linear regression

var calcObj = new CORegressionCalculation();
calcObj.Tolerance = 1e-8;
var lr = new LinearRegression(predictors, obs, calcObj);

Code Example – VB linear regression

Dim CalcObj As New CORegressionCalculation()
CalcObj.Tolerance = 0.00000001
Dim LR As New LinearRegression(Predictors, Obs, CalcObj)

The Tolerance property is used for computing numerical rank. Values with less than the specified tolerance are considered zero when computing the effective rank.

After construction, the regression calculator used by a LinearRegression instance can be changed using the RegressionCalculator property.

Intercept Parameters

If the linear model $Ax = y$ contains a non-zero intercept parameter, then the first column of matrix A must be all ones. Some of the LinearRegression constructors allow you to specify whether a column of ones should be prepended to the data in the input regression matrix, or whether the regression matrix should be used as it is given. Thus, this code prepends a column of ones:

Code Example – C# linear regression

var lr = new LinearRegression(predictors, obs, true);

Code Example – VB linear regression

Dim LR As New LinearRegression(Predictors, Obs, True)

This code does not:

Code Example – C# linear regression

var lr = new LinearRegression(predictors, obs, false);

Code Example – VB linear regression

Dim LR As New LinearRegression(Predictors, Obs, False)

42.2 Regression Results

Class LinearRegression provides the following properties for accessing the regression results:
• **IsGood** gets a boolean value indicating whether or not the model parameters were successfully computed.

• **ParameterCalculationErrorMessage** gets any error message produced by the regression calculation object.

• **Parameters** gets the vector of computed model parameters.

• **ParameterEstimates** gets an array of **LinearRegressionParameter** objects suitable for performing hypothesis testing on individual parameters (see Section 42.5).

• **Residuals** gets the vector of residuals. This is the difference between the vector of observed values and the values predicted by the model.

• **Variance** gets an estimate of the variance. This is the residual sum of squares divided by the degrees of freedom for the model. The degrees of freedom for the model is equal to the difference between the number of observations and the number of parameters.

• **CovarianceMatrix** gets the covariance matrix (sometimes called the dispersion matrix or variance-covariance matrix).

GetStandardizedResiduals() gets the standardized residuals (also known as the internally studentized residuals). The residuals are renormalized to have unit variance using an overall measure of error variance.

GetStudentizedResiduals() gets the (externally) studentized residuals, which renormalizes the residuals to have unit variance using a leave-one-out measure of error variance—that is, a vector of estimates of the residual variance obtained when the \(i \)-th case is dropped from the regression.

For more information about a linear regression fit, you can perform hypothesis tests on individual parameters (Section 42.5) or the overall model (Section 42.6).

You can also modify the model and recalculate the parameters, as described in Section 42.4.

Variance Inflation Factor

The variance inflation factor (VIF) quantifies the severity of multicollinearity in a least squares regression analysis—that is, how much the variance of a coefficient is increased because of collinearity. Class **LinearRegression** provides methods **VarianceInflationFactor()** and **VarianceInflationFactors()** for this purpose. For instance:

Code Example – C# linear regression

```csharp
DoubleVector vif = lr.VarianceInflationFactors();
```
42.3 Predictions

You can use a `LinearRegression` object to generate predictions. The `PredictedObservation()` method returns the response predicted by the model for a given set of predictor variable values. For example:

Code Example – C# linear regression

```csharp
var predictors =
    new DoubleVector(150.0, 33.5, 0.66, 80.0);
double predicted = lr.PredictedObservation(predictors);
```

Code Example – VB linear regression

```vb
Dim Predictors As New DoubleVector(150.0, 33.5, 0.66, 80.0)
Dim Predicted As Double = LR.PredictedObservation(Predictors)
```

A `MismatchedSizeException` is raised if the length of the given vector is not equal to the number of parameters in the model.

Similarly, the `PredictedObservations()` method returns the responses predicted by the model for a given collection of predictors:

Code Example – C# linear regression

```csharp
var predictors =
    new DoubleMatrix("3x4 [ 150.0 33.5 0.66 80.0
                        160.0 24.5 0.88 70.0
                        170.0 22.6 0.56 60.0 ]");
DoubleVector predicted = lr.PredictedObservations(predictors);
```

Code Example – VB linear regression

```vb
Dim Predictors As New DoubleMatrix("3x4 [ 150.0 33.5 0.66 80.0
                                           160.0 24.5 0.88 70.0
                                           170.0 22.6 0.56 60.0 ]")
Dim Predicted As DoubleVector = LR.PredictedObservations(Predictors)
```

In the returned vector of predicted observations, the \(i\)th element is the predicted response for the set of predictor variable values in the \(i\)th row of the given matrix.
42.4 Accessing and Modifying the Model

Class **LinearRegression** provides a variety of properties and member functions for accessing and modifying the predictors in the model, the observations, and the intercept option.

Accessing and Modifying Predictors

Class **LinearRegression** provides the following properties for accessing the predictors in the model:

- **RegressionMatrix** gets the regression matrix.
- **PredictorMatrix** gets the predictor matrix. If the model contains an intercept parameter, then the predictor matrix is obtained from the regression matrix by removing the leading column of ones. If the model does not have an intercept parameter then the predictor matrix is the same as the regression matrix.
- **NumberOfParameters** gets the number of parameters in the model.
- **NumberOfPredictors** gets the number of predictors in the model. If the model contains an intercept parameter then the number of predictors is equal to the number of parameters minus one. If the model does not contain an intercept parameter, then the number of predictors is equal to the number of parameters.

If you modify the data in the regression or predictor matrix using the reference returned by **RegressionMatrix** or **PredictorMatrix**, respectively, invoke method **RecalculateParameters()** to recalculate the regression parameters. For instance:

Code Example – C# linear regression

```csharp
lr.PredictorMatrix[2, 13] = 15.4;
lr.RecalculateParameters();
```

Code Example – VB linear regression

```vbnet
LR.PredictorMatrix(2, 13) = 15.4
LR.RecalculateParameters()
```

Member functions are also provided for adding and removing one or more predictors. The **AddPredictor()** method appends a given column of predictor values to the predictor matrix, and recalculates the parameters:

Code Example – C# linear regression

```csharp
var predictors = new DoubleVector( "[ 1.43 5.5 0.43 14.2 9.0 ]" );
lr.AddPredictor( predictors );
```
A MismatchedSizeException is thrown if the number of predictor values is not equal to the number of rows in the regression matrix (also equal to the length of the observation vector).

Similarly, `AddPredictors()` adds a matrix of predictors. Each column of the input matrix is a set of observed predictor values. This, this code adds three predictors:

```csharp
var predictors = 
    new DoubleMatrix(" 8x3 [ 1450 .50 70 
     1600 .50 70 
     1450 .70 70 
     1600 .70 70 
     1450 .50 120 
     1600 .50 120 
     1450 .70 120 
     1600 .70 120 ]" );

lr.AddPredictor( predictors );
```

The `RemovePredictor()` method removes the ith predictor from the model and recalculates the parameters. This code removes the predictor at (zero-based) index 4:

```csharp
lr.RemovePredictor( 4 );
```

If the model has an intercept parameter, removing the 0th predictor will not remove the intercept parameter. Use the `RemoveInterceptParameter()` method to remove the intercept parameter (see below).
RemovePredictors() removes the specified number of columns from the predictor matrix beginning with the specified column. Thus, this code removes the second, third, and fourth predictors:

Code Example – C# linear regression

```csharp
lr.RemovePredictors(1, 3);
```

Code Example – VB linear regression

```vbnet
LR.RemovePredictors(1, 3)
```

Accessing and Modifying Observations

The `Observations` property gets the vector of observations. If you use the returned reference to modify the observation vector, invoke method `RecalculateParameters()` to recalculate the regression parameters. For instance:

Code Example – C# linear regression

```csharp
lr.Observations[5] = 0.965;
lr.RecalculateParameters();
```

Code Example – VB linear regression

```vbnet
LR.Observations(5) = 0.965
LR.RecalculateParameters()
```

The `NumberOfObservations` property gets the number of observations, which is simply the length of the observation vector, and also the number of rows in the regression matrix.

Member functions are also provided for adding and removing one or more observations. The `AddObservation()` method appends a given row of predictor values to the predictor matrix and a given observation to the observation vector, and recalculates the parameters:

Code Example – C# linear regression

```csharp
var predictors = 
    new DoubleVector( "[ 1.43 5.5 0.43 14.2 9.0 ]" );
double obs = 2.5;

lr.AddObservation( predictors, obs );
```

Code Example – VB linear regression

```vbnet
Dim Predictors As New DoubleVector("[ 1.43 5.5 0.43 14.2 9.0 ]")
Dim Obs As Double = 2.5

LR.AddObservation(Predictors, Obs)
```
NOTE—If the model has an intercept parameter, do not include the leading one in the predictors vector. It will be accounted for in the model.

A MismatchedSizeException is thrown if the length of the predictors vector is not equal to the number of predictors in the model.

Similarly, AddObservations() adds a collection of observations:

Code Example – C# linear regression

```csharp
var predictors =
    new DoubleMatrix("3x4 [ 150.0 33.5 0.66 80.0
                       160.0 24.5 0.88 70.0
                       170.0 22.6 0.56 60.0 ]");
var obs = new DoubleVector("14.2, 15.5, 10.3");
lr.AddObservation(predictors, obs);
```

Code Example – VB linear regression

```vbnet
Dim Predictors As New DoubleMatrix("3x4 [ 150.0 33.5 0.66 80.0
                                          160.0 24.5 0.88 70.0
                                          170.0 22.6 0.56 60.0 ]")
Dim obs As New DoubleVector("14.2, 15.5, 10.3")
LR.AddObservation(Predictors, Obs)
```

RemoveObservation() removes the row at the indicated index from the predictor matrix and the corresponding element from the observation vector. This code removes the observation at (zero-based) index 3:

Code Example – C# linear regression

```csharp
lr.RemoveObservation(3);
```

Code Example – VB linear regression

```vbnet
LR.RemoveObservation(3)
```

RemoveObservations() removes the specified number of rows from the predictor matrix beginning with the specified row. Thus, this code removes the third, fourth, fifth, and sixth observations:

Code Example – C# linear regression

```csharp
lr.RemoveObservations(2, 4);
```

Code Example – VB linear regression

```vbnet
LR.RemoveObservations(2, 4)
```
Accessing and Modifying the Intercept Option

The HasInterceptParameter property gets a boolean value indicating whether or not the model already has an intercept parameter.

The AddInterceptParameter() method adds an intercept parameter to the model and recalculates the parameters. Thus, this code prepends a column of one to the regression matrix:

Code Example – C# linear regression

```csharp
lr.AddInterceptParameter();
```

Code Example – VB linear regression

```vbnet
LR.AddInterceptParameter();
```

NOTE—If the model already has an intercept parameter AddInterceptParameter() has no effect.

The RemoveInterceptParameter() method removes the intercept parameter.

Updating the Entire Model

Method SetRegressionData() updates the entire model by setting the regression matrix, the observation vector, and the intercept option to the specified values, and recalculating the model parameters. For instance:

Code Example – C# linear regression

```csharp
var A = new DoubleMatrix(" 8x4 
   [ 1 1450 .50 70  
   1 1600 .50 70  
   1 1450 .70 70  
   1 1600 .70 70  
   1 1450 .50 120  
   1 1600 .50 120  
   1 1450 .70 120  
   1 1600 .70 120 ]");

var obs =
   new DoubleVector("[ 67 79 61 75 59 90 52 87 ]");

lr.SetRegressionData( A, obs, true );
```

Code Example – VB linear regression

```vbnet
Dim A As New DoubleMatrix(" 8x4 
   [ 1 1450 .50 70  
   1 1600 .50 70  
   1 1450 .70 70  
   1 1600 .70 70  
   1 1450 .50 120  
   1 1600 .50 120  
   1 1450 .70 120  
   1 1600 .70 120 ]");

Dim obs As New DoubleVector("[ 67 79 61 75 59 90 52 87 ]");

lr.SetRegressionData( A, obs, True );
```
1 1450 .70 120
1 1600 .70 120]")
Dim Obs As New DoubleVector("[67 79 61 75 59 90 52 87]")
LR.SetRegressionData(A, Obs, True)

42.5 Significance of Parameters

Instances of class `LinearRegressionParameter` test statistical hypothesis about individual parameters in a `LinearRegression`.

Creating Linear Regression Parameter Objects

You can construct a `LinearRegressionParameter` from a `LinearRegression` object and the index of the parameter you wish to test. For instance, this code creates a test object for the third parameter:

Code Example – C# linear regression

```csharp
var param = new LinearRegressionParameter(lr, 2);
```

Code Example – VB linear regression

```vbnet
Dim Param As New LinearRegressionParameter(LR, 2)
```

Alternatively, you can get an array of test objects for all parameters in a linear regression using the `ParameterEstimates` property on `LinearRegression`:

Code Example – C# linear regression

```csharp
LinearRegressionParameter[] params = lr.ParameterEstimates;
```

Code Example – VB linear regression

```vbnet
Dim Params() As LinearRegressionParameter = LR.ParameterEstimates
```

Properties Linear Regression Parameters

Class `LinearRegressionParameter` provides the following properties:

- `Value` gets the value of the parameter.
- `StandardError` gets the standard error of the parameter.
- `ParameterIndex` gets the index of the parameter in the linear regression.
Hypothesis Tests

Class `LinearRegressionParameter` provides the following methods for testing statistical hypotheses regarding parameter values:

- `TStatisticPValue()` returns the p-value for a two-sided t test with the null hypothesis that the parameter is equal to a given test value, versus the alternative hypothesis that it is not.
- `TStatistic()` returns the value of the t statistic for the null hypothesis that the parameter value is equal to a given test value.
- `TStatisticCriticalValue()` gets the critical value for the t-statistic for a given alpha level.
- `ConfidenceInterval()` returns a $1 - \alpha$ confidence interval for the parameter for a given alpha level.

For example, this code tests whether the fifth parameter in a model is significantly different than zero:

Code Example – C# linear regression

```csharp
var param = new LinearRegressionParameter(lr, 4);
double tstat = param.TStatistic(0.0);
double pValue = param.TStatisticPValue(0.0);
double criticalValue = param.TStatisticCriticalValue(0.05);
Interval confidenceInterval = param.ConfidenceInterval(0.05);
```

Code Example – VB linear regression

```vbnet
Dim Param As New LinearRegressionParameter(LR, 4)
Dim TStat As Double = Param.TStatistic(0.0)
Dim PValue As Double = Param.TStatisticPValue(0.0)
Dim CriticalValue As Double = Param.TStatisticCriticalValue(0.05)
Dim ConfidenceInterval As Interval = Param.ConfidenceInterval(0.05)
```

Updating Linear Regression Parameters

The `SetRegression()` method updates the regression and parameter index in a parameter test object:

Code Example – C# linear regression

```csharp
param.SetRegression(lr, 6);
```

Code Example – VB linear regression

```vbnet
Param.SetRegression(LR, 6)
```
42.6 Significance of the Overall Model

Class `LinearRegressionAnova` tests the overall model significance for linear regressions. Simply construct a `LinearRegressionAnova` from a `LinearRegression` object:

Code Example – C# linear regression

```csharp
var lrAnova = new LinearRegressionAnova(lr);
```

Code Example – VB linear regression

```vbnet
Dim LRAnova As New LinearRegressionAnova(LR)
```

A variety of properties are provided for assessing the significance of the overall model:

- `RegressionSumOfSquares` gets the regression sum of squares. This quantity indicates the amount of variability explained by the model. It is the sum of the squares of the difference between the values predicted by the model and the mean.

- `ResidualSumOfSquares` gets the residual sum of squares. This is the sum of the squares of the differences between the predicted and actual observations.

- `ModelDegreesOfFreedom` gets the number of degrees of freedom for the model, which is equal to the number of predictors in the model.

- `ErrorDegreesOfFreedom` gets the number of degrees of freedom for the model error, which is equal to the number of observations minus the number of model parameters.

- `RSquared` gets the coefficient of determination.

- `AdjustedRsquared` gets the adjusted coefficient of determination.

- `MeanSquaredResidual` gets the mean squared residual. This quantity is the equal to \(\frac{\text{ResidualSumOfSquares}}{\text{ErrorDegreesOfFreedom}} \) (equals the number of observations minus the number of model parameters).

- `MeanSquaredRegression` gets the mean squared for the regression. This is equal to \(\frac{\text{RegressionSumOfSquares}}{\text{ModelDegreesOfFreedom}} \) (equals the number of predictors in the model).

- `FStatistic` gets the overall \(F \) statistic for the model. This is equal to the ratio of `MeanSquaredRegression` / `MeanSquaredResidual`. This is the statistic for the hypothesis test where the null hypothesis, \(H_0 \), is that all the parameters are equal to 0 and the alternative hypothesis is that at least one parameter is nonzero.
• **FStatisticPValue** gets the \(p \)-value for the \(F \) statistic.

For example:

Code Example – C# linear regression

```csharp
var lrAnova = new LinearRegressionAnova(lr);
double sse = lrAnova.ResidualSumOfSquares;
double r2 = lrAnova.RSquared;
double fstat = lrAnova.FStatistic;
double fstatPval = lrAnova.FStatisticPValue;
```

Code Example – VB linear regression

```vbnet
Dim LRAnova As New LinearRegressionAnova(LR)
Dim SSE As Double = LRAnova.ResidualSumOfSquares
Dim R2 As Double = LRAnova.RSquared
Dim FStat As Double = LRAnova.FStatistic
Dim FStatPVal As Double = LRAnova.FStatisticPValue
```

Lastly, the **FStatisticCriticalValue()** function computes the critical value for the \(F \) statistic at a given significance level:

Code Example – C# linear regression

```csharp
double critVal = lrAnova.FStatisticCriticalValue(.05);
```

Code Example – VB linear regression

```vbnet
Dim CritVal As Double = LRAnova.FStatisticCriticalValue(0.05)
```
Chapter 43.

Logistic Regression

Class **LogisticRegression** performs a binomial logistic regression.

Logistic regression is used to model the relationship between a binary response variable and one or more predictor variables, which may be either discrete or continuous. Binary outcome data is common in medical applications. For example, the binary response variable might indicate whether or not a patient is alive five years after treatment for cancer or whether the patient has an adverse reaction to a new drug. As in multiple linear regression (Chapter 42), we are interested in finding an appropriate combination of predictor variables to help explain the binary outcome.

This chapter describes how to use the **LogisticRegression** class, and related supporting classes.

43.1 Regression Calculators

Class **LogisticRegression** is templated on the **ILogisticRegressionCalc** calculator to use to calculate the parameters of the logistic regression model. Two implementations are provided:

- **NewtonRaphsonParameterCalc** computes the parameters to maximize the log likelihood function for the model using the Newton Raphson algorithm to compute the zeros of the first order partial derivatives of the log likelihood function. This algorithm is equivalent to, and sometimes referred to, as *iteratively reweighted least squares*. Each iteration involves solving a linear system of the form $X'WX = b$, where X is the regression matrix, X' is its transpose, and W is a diagonal matrix of weights.

The matrix $X'WX$ will be singular if the matrix X does not have full rank. **NewtonRaphsonParameterCalc** has property **FailIfNotFullRank** which, if true, fails in this case. If **FailIfNotFullRank** is false, the linear system is solved using a pseudo-inverse, and the calculation will not fail.
- **TrustRegionParameterCalc** computes the parameters to maximize the log likelihood function for the model, using a trust region optimization algorithm to compute the zeros of the first order partial derivative of the log likelihood function. This approach is more robust than Newton Raphson with design matrices of less than full rank.

The minimization is performed by an instance of **TrustRegionMinimizer**, and **TrustRegionParameterCalc** instances may be constructed with a given minimizer with the desired algorithm properties.

43.2 Creating Logistic Regressions

A **LogisticRegression** object is constructed from data in the following format: a matrix whose rows contain the predictor variable values, and an **IList<bool>** for the observed values.

Code Example – C# logistic regression

```csharp
DoubleMatrix A = ...
bool[] obs = ...
var lr = new LogisticRegression<NewtonRaphsonParameterCalc>(
    A, obs );
```

Code Example – VB logistic regression

```vbnet
Dim A As DoubleMatrix = ...
Dim Obs() As Boolean = ...
Dim LR As New LogisticRegression(Of NewtonRaphsonParameterCalc)(A, Obs)
```

A **MismatchedSizeException** is raised if the number of rows in the matrix `A` is not equal to the length of the vector `obs`.

If you want the model to have an intercept parameter, you can specify that as well:

Code Example – C# logistic regression

```csharp
bool addIntercept = true;
var lr = new LogisticRegression<NewtonRaphsonParameterCalc>(
    A, obs, addIntercept );
```

Code Example – VB logistic regression

```vbnet
Dim AddIntercept As Boolean = True
Dim LR As New LogisticRegression(Of NewtonRaphsonParameterCalc)(A, Obs, AddIntercept)
```
If `true`, a column of ones is prepended onto the data in the regression matrix `A`, thus adding an intercept to the model. If `false`, the data in the regression matrix is used as given.

You can also provide a regression calculator instance to use. For example, if you want regression to fail consistently when the regression matrix is rank deficient, you can construct a `NewtonRaphsonParameterCalc` object with the `FailIfNotFullRank` property set to `true` (see Section 43.1), then construct a `LogisticRegression` object with the resulting parameter calculation object:

Code Example – C# logistic regression

```csharp
var parameterCalc = new NewtonRaphsonParameterCalc()
    { FailIfNotFullRank = true };
var lr = new LogisticRegression<NewtonRaphsonParameterCalc>(
    A, obs, addIntercept, parameterCalc);
```

Code Example – VB logistic regression

```vbnet
Dim ParameterCalc As New NewtonRaphsonParameterCalc()
ParameterCalc.FailIfNotFullRank = True
Dim LR As New LogisticRegression(Of NewtonRaphsonParameterCalc)(A,
    Obs, AddIntercept, ParameterCalc)
```

Additional `LogisticRegression` constructors provide flexibility in how the observation values are specified. For example, you can provide a vector of floating point observation values, which is converted to dichotomous values using a supplied `Predicate<double>` function. This code uses a lambda expression to specify the predicate:

Code Example – C# logistic regression

```csharp
DoubleVector v = ...
var lr = new LogisticRegression<NewtonRaphsonParameterCalc>(
    A, v, x => x >= 110.0, addIntercept);
```

Code Example – VB logistic regression

```vbnet
Dim V As DoubleVector = ...
Dim LR As New LogisticRegression(Of NewtonRaphsonParameterCalc)(A,
    V, X = X >= 110.0, AddIntercept)
```

Similarly, you can provide the observation values as one of the columns of the regression matrix:

Code Example – C# logistic regression

```csharp
int observationColIndex = 0;
var lr = new LogisticRegression<NewtonRaphsonParameterCalc>(
    A, observationColIndex, x => x != 0, addIntercept);
```

Code Example – VB logistic regression

```vbnet
Dim ObservationColIndex As Integer = 0
```
Dim LR As New LogisticRegression(Of NewtonRaphsonParameterCalc)(A, ObservationColIndex, X = X <> 0, AddIntercept)

Design Variables

LogisticRegression provides static convenience method DesignVariables() for producing design, or dummy, variables using reference cell coding. If the categorical variable has \(k \) levels, there will be \(k - 1 \) design variables created. Reference cell coding involves setting all the design variable values to 0 for the reference group, and then setting a single design variable equal to 1 for each of the other groups.

For example, suppose we have a DataFrame \(df \) with a column of race values, which has three levels.

Code Example – C# logistic regression

```csharp
int raceColIndex = df.IndexOfColumn( "Race" );
DataFrame raceDesignVars =
    LogisticRegression<NewtonRaphsonParameterCalc>.DesignVariables( df[raceColIndex] );
```

Code Example – VB logistic regression

```vbnet
Dim RaceColIndex As Integer = DF.IndexOfColumn("Race")
Dim RaceDesignVars As DataFrame = LogisticRegression(Of NewtonRaphsonParameterCalc).DesignVariables(DF(RaceColIndex))
```

Since the race variable has three levels there will be two design variables. By default they will be named Race_0 and Race_1.

We then replace the original race column with the two design variable columns, and convert the data frame to a matrix of floating point values.

Code Example – C# logistic regression

```csharp
df.RemoveColumn( raceColIndex );
for ( int c = 0; c < raceDesignVars.Cols; c++ )
{
    df.InsertColumn( raceColIndex + c, raceDesignVars[c] );
}
DoubleMatrix matrixDat = data.ToDoubleMatrix();
```

Code Example – VB logistic regression

```vbnet
DF.RemoveColumn(RaceColIndex)
Dim C As Integer
For C = 0 To RaceDesignVars.Cols - 1
    DF.InsertColumn(RaceColIndex + C, RaceDesignVars(C))
Next
Dim MatrixDat As DoubleMatrix = DF.ToDoubleMatrix()
```
43.3 Checking for Convergence

After constructing a **LogisticRegression** object, first check that the parameter calculation was successful. For example, this code checks the `IsGood` property, and if the calculation failed, prints out some diagnostic information using the `ParameterCalculationErrorMessage` property.

Code Example – C# logistic regression

```csharp
if ( !lr.IsGood )
{
    Console.WriteLine(
        "Logistic regression parameter calculation failed:" );
    Console.WriteLine( lr.ParameterCalculationErrorMessage );

    var parameterCalc = lr.ParameterCalculator;
    Console.WriteLine( "Maximum iterations: " +
        parameterCalc.MaxIterations );
    Console.WriteLine( "Number of iterations: " +
        parameterCalc.Iterations );
    Console.WriteLine( "Converged? " + parameterCalc.Converged );
}
```

Code Example – VB logistic regression

```vbnet
If Not LR.IsGood Then
    Console.WriteLine("Logistic regression parameter calculation
    failed:")
    Console.WriteLine(LR.ParameterCalculationErrorMessage)

    Dim ParameterCalc As ParameterCalc = LR.ParameterCalculator
    Console.WriteLine("Maximum iterations: " &
        ParameterCalc.MaxIterations)
    Console.WriteLine("Number of iterations: " &
        ParameterCalc.Iterations)
    Console.WriteLine("Converged? " & ParameterCalc.Converged)
End If
```

43.4 Goodness of Fit

Class **LogisticRegressionFitAnalysis** calculates *goodness of fit* statistics for a logistic regression model.

Code Example – C# logistic regression

```csharp
var fit = new LogisticRegressionFitAnalysis<NewtonRaphsonParameterCalc>( lr );
```
Code Example – VB logistic regression

Dim Fit As New LogisticRegressionFitAnalysis(Of NewtonRaphsonParameterCalc)(LR)

Provided properties access the model statistics:

- **GStatistic** gets the G statistic for the model. The G statistic is

 \[G = -2\ln\left(\frac{\text{likelihood without the variables}}{\text{likelihood with the variables}}\right) \]

- **GStatisticPValue** gets the \(p\)-value for the G statistic.

- **LogLikelihood** gets the log likelihood for the model.

For instance:

Code Example – C# logistic regression

```csharp
Console.WriteLine( "Log likelihood: " + fit.LogLikelihood );
Console.WriteLine( "G-statistic: " + fit.GStatistic );
Console.WriteLine( "G-statistic P-value: " + fit.GStatisticPValue );
```

Code Example – VB logistic regression

```vbnet
Console.WriteLine("Log likelihood: " & Fit.LogLikelihood)
Console.WriteLine("G-statistic: " & Fit.GStatistic)
Console.WriteLine("G-statistic P-value: " & Fit.GStatisticPValue)
```

Two methods on **LogisticRegressionFitAnalysis** provide access to additional statistics:

- **PearsonStatistic()** computes the Pearson chi-square statistic, and related quantities from the Pearson residuals, to determine if two observations share the same covariate pattern.

- **HLStatistic()** calculates the Hosmer Lemeshow statistic for the model. This test assesses whether or not the observed event rates match expected event rates in subgroups of the model population.

For instance, this code calculates the Hosmer Lemeshow statistic using 10 groups.

Code Example – C# logistic regression

```csharp
var hosmerLemeshowStat = fit.HLStatistic(10);
Console.WriteLine(hosmerLemeshowStat);
```

Code Example – VB logistic regression

```vbnet
Dim HosmerLemeshowStat = Fit.HLStatistic(10)
Console.WriteLine(HosmerLemeshowStat)
```
43.5 Parameter Estimates

The `ParameterEstimates` property on `LogisticRegression` gets an array of `LogisticRegressionParameter` estimate objects. This class tests statistical hypotheses about estimated parameters in logistic regressions:

- **Value** gets the value of the parameter.
- **StandardError** gets the standard error of the parameter.
- **ParameterIndex** gets the index of the parameter in the linear regression.
- **Beta** gets the standardized beta coefficient. Beta coefficients are weighted by the ratio of the standard deviation of the independent variable over the standard deviation of the dependent variable.
- **ConfidenceInterval()** returns the $1 - \alpha$ confidence interval for the parameter.
- **TStatistic()** returns the t-statistic for the null hypothesis that the parameter is equal to a given test value.
- **TStatisticPValue()** returns the p-value for a t-test with the null hypothesis that the parameter is equal to a given test value versus the alternative hypothesis that it is not.
- **TStatisticCriticalValue()** gets the critical value of the t-statistic for the specified alpha level.

For instance, this code prints out the model parameter estimates and standard error.

Code Example – C# logistic regression

```csharp
var parameterEstimates = lr.ParameterEstimates;
for ( int i = 0; i < parameterEstimates.Length; i++ )
{
    var estimate = parameterEstimates[i];
    if ( i == 0 )
    {
        Console.WriteLine( "Constant term = {0}, SE = {1}",
                           estimate.Value, estimate.StandardError);
    }
    else
    {
        Console.WriteLine( "Coefficient for {0} = {1}, SE = {2}",
                           df[i].Name, estimate.Value, estimate.StandardError);
    }
}
```
Code Example – VB logistic regression

Dim ParameterEstimates = LR.ParameterEstimates
For I As Integer = 0 To ParameterEstimates.Length - 1
 Dim Estimate = ParameterEstimates(I)
 If (I = 0) Then
 Console.WriteLine("Constant term = {0}, SE = {1}",
 Estimate.Value, Estimate.StandardError)
 Else
 Console.WriteLine("Coefficient for {0} = {1}, SE = {2}",
 End If
Next

43.6 Predicted Probabilities

You can use a LogisticRegression object to generate predictions. The PredictedProbability() method returns the probability of a positive outcome predicted by the model for a given set of predictor values. For example:

Code Example – C# logistic regression

```csharp
var predictors =
    new DoubleVector( 150.0, 33.5, 0.66, 80.0 );
double predicted = lr.PredictedProbability( predictors );
```

Code Example – VB logistic regression

```vbnet
Dim Predictors As New DoubleVector(150.0, 33.5, 0.66, 80.0)
Dim Predicted As Double = LR.PredictedProbability(Predictors)
```

A MismatchedSizeException is raised if the length of the given vector is not equal to the number of parameters in the model.

Similarly, the PredictedProbabilities() method returns a vector of predicted probabilities of a positive outcome for the predictor variable values contained in the rows of an input matrix.

Code Example – C# logistic regression

```csharp
var predictors =
    new DoubleMatrix("3x4 [ 150.0 33.5 0.66 80.0
                         160.0 24.5 0.88 70.0
                         170.0 22.6 0.56 60.0 ]");
DoubleVector predicted = lr.PredictedProbabilities( predictors );
```
Code Example – VB logistic regression

Dim Predictors As New DoubleMatrix("3x4 [150.0 33.5 0.66 80.0 160.0 24.5 0.88 70.0 170.0 22.6 0.56 60.0]")

Dim Predicted As DoubleVector = LR.PredictedProbabilities(Predictors)

In the returned vector of predicted observations, the \(i \)th element is the predicted response for the set of predictor variable values in the \(i \)th row of the given matrix.

43.7 **Auxiliary Statistics**

Class **LogisticRegressionAuxiliaryStats** computes auxiliary statistics for logistic regressions, such as pseudo R-squared metrics and odds ratios for the computed coefficients.

Code Example – C# logistic regression auxiliary statistics

```csharp
var auxStats = new LogisticRegressionAuxiliaryStats<NewtonRaphsonParameterCalc>(lr);
```

Code Example – VB logistic regression auxiliary statistics

```vbnet
Dim AuxStats As New LogisticRegressionAuxiliaryStats(Of NewtonRaphsonParameterCalc)(LR)
```

Provided properties access the model statistics:

- **CoxSnell** gets the Cox and Snell pseudo R-squared statistic for the model.
- **Nagelkerke** gets the Nagelkerke pseudo R-squared statistic for the model.
- **LogLikelihoodFullModel** gets the log of the value of the likelihood function for the full model (estimated coefficients).
- **LogLikelihoodInterceptOnly** gets the log of the value of the likelihood function for the intercept-only model.
- **OddsRatios** gets the odds ratio values for the computed coefficients. The odds ratio for the intercept parameter, if there is one, is not computed.

Finally, property **LikelihoodRatioStat** gets the likelihood ratio statistic and related values for the logistic regression. The result is returns as an instance of **LikelihoodRatioStatistic**.
Code Example – C# logistic regression auxiliary statistics

```csharp
var lrs = auxStats.LikelihoodRatioStat;
Console.WriteLine( lrs.ChiSquareStatistic );
Console.WriteLine( lrs.RightTailProbability );
```

Code Example – VB logistic regression auxiliary statistics

```vbnet
Dim LRS = AuxStats.LikelihoodRatioStat
Console.WriteLine(LRS.ChiSquareStatistic)
Console.WriteLine(LRS.RightTailProbability)
```
Chapter 44.

Analysis of Variance

Analysis of variance (ANOVA) is the multigroup generalization of the t test (Chapter 41). Like the t test, ANOVA assumes that samples are randomly drawn from normally distributed populations with the same standard deviations. If differences between the observed means of the samples are larger than one would expect from the underlying population variability, estimated by the standard deviations within the samples, you can conclude that at least one of the samples has a different mean than the others.

NMath Stats provides classes for both one-way (or one-factor) and two-way (or two-factor) ANOVAs, for both balanced and unbalanced designs, and with or without repeated measures (RANOVA).

This chapter describes the analysis of variance classes.

44.1 One-Way ANOVA

Class OneWayAnova computes and summarizes a traditional one-way (single factor) analysis of variance.

Creating One-Way ANOVA Objects

A OneWayAnova instance is constructed from numeric data organized into different groups. The groups need not contain the same number of observations. For example, this code constructs a OneWayAnova from an array of DoubleVector objects. Each vector in the array contains data for a single group:

Code Example – C# ANOVA

```csharp
var data = new DoubleVector[5];

data[0] = new DoubleVector( "[24 15 21 27 33 23]" );
data[1] = new DoubleVector( "[14 7 12 17 14 16]" );
data[2] = new DoubleVector( "[11 9 7 13 12 18]" );
data[3] = new DoubleVector( "[7 7 4 7 12 18]" );
data[4] = new DoubleVector( "[19 24 19 15 10 20]" );

var anova = new OneWayAnova( data );
```
Code Example – VB ANOVA

Dim Data As New DoubleVector(5)

Data(0) = New DoubleVector("[24 15 21 27 33 23]")
Data(1) = New DoubleVector("[14 7 12 17 14 16]")
Data(2) = New DoubleVector("[11 9 7 13 12 18]")
Data(3) = New DoubleVector("[7 7 4 7 12 18]")
Data(4) = New DoubleVector("[19 24 19 15 10 20]")

Dim Anova As New OneWayAnova(Data)

This code constructs a OneWayAnova from a data frame df:

Code Example – C# ANOVA

var anova = new OneWayAnova(df, 1, 3);

Code Example – VB ANOVA

Dim Anova As New OneWayAnova(DF, 1, 3)

Two column indices are also provided: a group column and a data column. A Factor is constructed from the group column using the DataFrame method GetFactor(), which creates a sorted array of the unique values. The specified data column must be of type DFNumericColumn.

Lastly, you can also construct a OneWayAnova from a DoubleMatrix:

Code Example – C# ANOVA

var data = new DoubleMatrix("6 x 5
[24 14 11 7 19
 15 7 9 7 24
 21 12 7 7 19
 27 17 13 12 15
 33 14 12 12 10
 23 16 18 18 20]");

var anova = new OneWayAnova(data);

Code Example – VB ANOVA

Dim Data As New DoubleMatrix("6 x 5
[24 14 11 7 19
 15 7 9 7 24
 21 12 7 7 19
 27 17 13 12 15
 33 14 12 12 10
 23 16 18 18 20]")

Dim Anova As New OneWayAnova(Data)

Each column in the given matrix contains the data for a group. If your groups have different numbers of observations, you must pad the columns with Double.NaN values until they are all the same length, because a DoubleMatrix must be rectangular. Alternatively, use one of the other constructors described above.
The One-Way ANOVA Table

Once you’ve constructed a OneWayAnova, you can display the complete ANOVA table:

Code Example – C# ANOVA

```csharp
Console.WriteLine( anova );
```

Code Example – VB ANOVA

```vbnet
Console.WriteLine(Anova)
```

For example:

<table>
<thead>
<tr>
<th>Source</th>
<th>Deg of Freedom</th>
<th>Sum Of Sq</th>
<th>Mean Sq</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between groups</td>
<td>4</td>
<td>803.0000</td>
<td>200.7500</td>
<td>9.0076</td>
<td>0.0001</td>
</tr>
<tr>
<td>Within groups</td>
<td>25</td>
<td>557.1667</td>
<td>22.2867</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td>1360.1667</td>
<td>46.9023</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Class OneWayAnovaTable is provided for summarizing the information in a traditional one-way ANOVA table. Class OneWayAnovaTable derives from DataFrame. An instance of OneWayAnovaTable can be obtained from a OneWayAnova object using the AnovaTable property. For example:

Code Example – C# ANOVA

```csharp
OneWayAnovaTable myTable = anova.AnovaTable;
```

Code Example – VB ANOVA

```vbnet
Dim MyTable As OneWayAnovaTable = Anova.AnovaTable
```

Class OneWayAnovaTable provides the following read-only properties for accessing individual elements in the ANOVA table:

- **DegreesOfFreedomBetween** gets the between-groups degrees of freedom.
- **DegreesOfFreedomWithin** gets the within-groups degrees of freedom.
- **DegreesOfFreedomTotal** gets the total degrees of freedom.
- **SumOfSquaresBetween** gets the between-groups sum of squares.
- **SumOfSquaresWithin** gets the within-groups sum of squares.
- **SumOfSquaresTotal** gets the total sum of squares.
- **MeanSquareBetween** gets the between-groups mean square. The between-groups mean square is the between-groups sum of squares divided by the between-groups degrees of freedom.
- **MeanSquareWithin** gets the within-group mean square. The within-groups mean square is the within-group sum of squares divided by the within-group degrees of freedom.

- **MeanSquareTotal** gets the total mean square. The total mean square is the total sum of squares divided by the total degrees of freedom.

- **FStatistic** gets the F statistic.

- **FStatisticPValue** gets the p-value for the F statistic.

Grand Mean, Group Means, and Group Sizes

Class **OneWayAnova** provides properties and methods for retrieving the grand mean, group means, and group sizes:

- **GrandMean** gets the grand mean of the data. The grand mean is the mean of all of the data.

- **GroupMeans** gets a vector of group means.

- **GroupSizes** gets an array of group sizes.

- **GroupNames** gets an array of group names. If the anova was constructed from a data frame using a grouping column, the group names are the sorted, unique Factor levels created from the column values. If the anova object was constructed from a matrix or an array of vectors, the group names are simply Group_0, Group_1...Group_n.

- **GetGroupMean()** returns the mean for a specified group, identified either by group name or group number (a zero-based index into the **GroupMeans** vector).

- **GetGroupSize()** returns the mean for a specified group, identified either by group name or group number (a zero-based index into the **GroupSizes** array).

For example, if a **OneWayAnova** is constructed from a matrix, this code returns the mean for the group in the third column of the matrix:

Code Example – C# ANOVA

```csharp
double maleMean = anova.GetGroupMean( 2 );
```

Code Example – VB ANOVA

```vbnet
Dim MaleMean As Double = Anova.GetGroupMean(2)
```

If a **OneWayAnova** is constructed from a data frame using a grouping column with values **male** and **female**, this code returns the mean for the **male** group:
Critical Value of the F Statistic

Class **OneWayAnova** provides the convenience function `FStatisticCriticalValue()` which computes the critical value for the ANOVA F statistic at a given significance level. Thus:

Code Example – C# ANOVA

```csharp
double alpha = 0.05;
double critVal = anova.FStatisticCriticalValue(alpha);
```

Code Example – VB ANOVA

```vbnet
Dim Alpha As Double = 0.05
Dim CritVal As Double = Anova.FStatisticCriticalValue(Alpha)
```

Updating One-Way ANOVA Objects

Method `SetData()` updates an entire analysis of variance object with new data. As with the class constructors (see above), you can supply data as an array of group vectors, a matrix, or as a data frame. For instance, this code updates an ANOVA with data from `DataFrame df`, using column 2 as the group column and column 5 as the data column:

Code Example – C# ANOVA

```csharp
anova.SetData(df, 2, 5);
```

Code Example – VB ANOVA

```vbnet
Anova.SetData(DF, 2, 5)
```

44.2 One-Way Repeated Measures ANOVA

Class **OneWayRanova** calculates and summarizes the information of a one-way repeated measures analysis of variance (RANOVA).
Creating One-Way RANOVA Objects

A OneWayRanova instance is constructed from numeric data for multiple treatments applied to each experimental subject. For example, this code constructs a OneWayRanova from a DoubleMatrix:

Code Example – C# RANOVA

```csharp
var data = new DoubleMatrix( "8x4 
  [ 180 200 160 200
      230 250 200 220
      280 310 260 270
      180 200 160 200
      190 210 170 210
      140 160 120 110
      270 300 250 260
      110 130 100 100 ]"
  );

var ranova = new OneWayRanova( data );
```

Code Example – VB RANOVA

```vbnet
Dim Data As New DoubleMatrix("8x4 
  [ 180 200 160 200
      230 250 200 220
      280 310 260 270
      180 200 160 200
      190 210 170 210
      140 160 120 110
      270 300 250 260
      110 130 100 100 ]")

Dim Ranova As New OneWayRanova(Data)
```

Each row of the matrix contains the data for an individual subject. There should be one column for each treatment. The example above shows 4 different measurements for each of 8 subjects.

NOTE—Data rows containing missing values (NaNs) are ignored by class OneWayRanova.

Similarly, you can also construct a OneWayRanova from a DataFrame:

Code Example – C# RANOVA

```csharp
var ranova = new OneWayRanova( df );
```

Code Example – VB RANOVA

```vbnet
Dim Ranova As New OneWayRanova(DF)
```

Each row in the DataFrame contains the data for an individual subject. There should be one column for each treatment.

Note that all numeric columns in the given DataFrame are interpreted as treatments; only non-numeric columns are ignored. If you have numeric columns
in the data frame that you also wish to ignore, apply the appropriate `Subset` first. For instance:

Code Example – C# RANOVA

```csharp
var colIndices = new Subset(new int[] { 3, 14, 5, 8, 4 });
var ranova = new OneWayRanova(df.GetColumns(colIndices));
```

Code Example – VB RANOVA

```vbnet
Dim ColIndices As New Subset(New Integer() {3, 14, 5, 8, 4})
Dim Ranova As New OneWayRanova(DF.GetColumns(ColIndices))
```

The One-Way RANOVA Table

Once you’ve constructed a `OneWayRanova`, you can display the complete RANOVA table:

Code Example – C# RANOVA

```csharp
Console.WriteLine( ranova );
```

Code Example – VB RANOVA

```vbnet
Console.WriteLine(Ranova)
```

For example:

<table>
<thead>
<tr>
<th>Source</th>
<th>Deg of Freedom</th>
<th>Sum Of Sq</th>
<th>Mean Square</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects</td>
<td>9</td>
<td>102822.5000</td>
<td>11424.7222</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Treatment</td>
<td>3</td>
<td>9247.5000</td>
<td>3082.5000</td>
<td>31.6755</td>
<td>0.0000</td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>2627.5000</td>
<td>97.3148</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>114697.5000</td>
<td>2940.9615</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

Class `OneWayRanovaTable` is provided for summarizing the information in a traditional one-way RANOVA table. Class `OneWayRanovaTable` derives from `DataFrame`. An instance of `OneWayRanovaTable` can be obtained from a `OneWayRanova` object using the `RanovaTable` property. For example:

Code Example – C# RANOVA

```csharp
OneWayRanovaTable myTable = ranova.RanovaTable;
```

Code Example – VB RANOVA

```vbnet
Dim MyTable As OneWayRanovaTable = Ranova.RanovaTable
```

Class `OneWayRanovaTable` provides the following read-only properties for accessing individual elements in the RANOVA table:

- `DegreesOfFreedomTreatment` gets the treatment degrees of freedom.
- DegreesOfFreedomWithinSubject gets the within-subject degrees of freedom.
- DegreesOfFreedomError gets the error degrees of freedom.
- DegreesOfFreedomTotal gets the total degrees of freedom.
- SumOfSquaresTreatment gets the treatment sum of squares.
- SumOfSquaresWithinSubject gets the within-subject sum of squares.
- SumOfSquaresTotal gets the total sum of squares.
- SumOfSquaresError gets the error sum of squares.
- MeanSquareTreatment gets the treatment mean square.
- MeanSquareWithinSubject gets the within-subject mean square.
- MeanSquareError gets the error mean square.
- MeanSquareTotal gets the total mean square.
- FStatistic gets the F statistic for the RANOVA.
- FStatisticPValue gets the p-value for the F statistic.

Grand Mean, Subject Means, and Treatment Means

Class OneWayRanova provides properties for retrieving the grand mean, subject means, and treatment means:

- GrandMean gets the grand mean of the data. The grand mean is the mean of all of the data.
- SubjectMeans gets a vector of means for each subject.
- TreatmentMeans gets a vector of means for each treatment.

Critical Value of the F Statistic

Class OneWayRanova provides the convenience function FStatisticCriticalValue() which computes the critical value for the RANOVA F statistic at a given significance level. Thus:

Code Example – C# RANOVA

```csharp
double alpha = 0.01;
double critVal = ranova.FStatisticCriticalValue( alpha );
```
44.3 Two-Way Balanced ANOVA

Class TwoWayAnova performs a balanced two-way analysis of variance. Two-way analysis of variance is a direct extension of one-way analysis of variance (Section 44.1). In this case, data are grouped according to two factors—for example, sex and age group—rather than a single factor. The total variability is partitioned into components associated with each of the two factors, their interaction, and the residual (or error).

Creating Two-Way ANOVA Objects

A TwoWayAnova instance is constructed from data in a data frame. Three column indices are specified in the data frame: the column containing the first factor, the column containing the second factor, and the column containing the numeric data. For example, this code groups the numeric data in column 3 of DataFrame df by factors constructed from columns 0 and 4:

Code Example – C# ANOVA

```csharp
var anova = new TwoWayAnova( df, 0, 4, 3 );
```

Code Example – VB ANOVA

```vbnet
Dim Anova As New TwoWayAnova(DF, 0, 4, 3)
```

Factor objects are constructed from the factor columns using the DataFrame method GetFactor(), which creates a sorted array of the unique values.
(Section 37.10). The indicated data column must be of type \texttt{DFNumericColumn}.

\textbf{NOTE—}Class \texttt{TwoWayAnova} throws an \texttt{InvalidArgumentException} if the data contains missing values (NaNs).

\section*{The Two-Way ANOVA Table}

Once you’ve constructed a \texttt{TwoWayAnova}, you can display the complete ANOVA table:

Code Example – C# ANOVA

```csharp
Console.WriteLine( anova );
```

Code Example – VB ANOVA

```vbnet
Console.WriteLine(Anova)
```

For example:

<table>
<thead>
<tr>
<th>Source</th>
<th>Deg of Freedom</th>
<th>SumOfSq</th>
<th>Mean Square</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>FactorA</td>
<td>1</td>
<td>1782.0450</td>
<td>1782.0450</td>
<td>14.2121</td>
<td>0.0008</td>
</tr>
<tr>
<td>FactorB</td>
<td>1</td>
<td>2838.8113</td>
<td>2838.8113</td>
<td>22.6399</td>
<td>0.0001</td>
</tr>
<tr>
<td>Interaction</td>
<td>1</td>
<td>108.0450</td>
<td>108.0450</td>
<td>0.8617</td>
<td>0.3612</td>
</tr>
<tr>
<td>Error</td>
<td>28</td>
<td>3510.9075</td>
<td>125.3896</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Total</td>
<td>31</td>
<td>8239.8088</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

Class \texttt{TwoWayAnovaTable} is provided for summarizing the information in a traditional two-way ANOVA table. Class \texttt{TwoWayAnovaTable} derives from \texttt{DataFrame}. An instance of \texttt{TwoWayAnovaTable} can be obtained from a \texttt{TwoWayAnova} object using the \texttt{AnovaTable} property. For example:

Code Example – C# ANOVA

```csharp
TwoWayAnovaTable myTable = anova.AnovaTable;
```

Code Example – VB ANOVA

```vbnet
Dim MyTable As TwoWayAnovaTable = Anova.AnovaTable
```

Class \texttt{TwoWayAnovaTable} provides the following member functions and read-only properties for accessing individual elements in the ANOVA table:

- \texttt{DegreesOfFreedom()} gets the degrees of freedom for a specified factor.
- \texttt{ErrorDegreesOfFreedom} gets the number of degrees of freedom for the error.
- \texttt{InteractionDegreesOfFreedom} gets the number of degrees of freedom for the interactions.
- \texttt{TotalDegreesOfFreedom} gets the total number of degrees of freedom.
- `SumOfSquares()` gets the sum of squares for a specified factor.
- `InteractionSumOfSquares` gets the sum of squares for the interaction.
- `ErrorSumOfSquares` gets the sum of squares for the error.
- `TotalSumOfSquares` gets the total sum of squares.
- `MeanSquare()` gets the mean square for a specified factor.
- `InteractionMeanSquare` gets the mean square for the interaction.
- `ErrorMeanSquare` gets the mean square for the error.
- `Fstatistic()` gets the F statistic for a specified factor.
- `InteractionFstatistic` gets the F statistic for the interaction.
- `FstatisticPvalue()` gets the p-value for the F statistic for a specified factor.
- `InteractionFstatisticPvalue` gets the p-value for the F statistic for the interaction.

Factors are identified to accessor methods by name, which corresponds to the name of the column in the original data frame that was used to create the `Factor`. For instance, if one factor in the ANOVA is named `Dosage`, this code gets the F statistic and p-value for that factor:

Code Example – C# ANOVA

```csharp
double Fstatistic = anova.AnovaTable.Fstatistic( "Dosage" );
double Pvalue = anova.AnovaTable.FstatisticPvalue( "Dosage" );
```

Code Example – VB ANOVA

```vbnet
Dim FStatistic As Double = Anova.AnovaTable.FStatistic("Dosage")
Dim PValue As Double = Anova.AnovaTable.FStatisticPValue("Dosage")
```

Cell Data

Class `TwoWayAnova` provides the `GetCellData()` method for accessing the data in a cell, as defined by a specified level of each of the factors in the ANOVA. For example, if `anova` has factor `Sex` with levels `Male` and `Female`, and factor `AgeGroup` with levels `Child`, `Adult`, and `Senior`, this code gets the data for adult females:

Code Example – C# ANOVA

```csharp
DFNumericColumn data =
anova.GetCellData( "Sex", "Female", "AgeGroup", "Adult" );
```
Code Example – VB ANOVA

Dim Data As DFNumericColumn =
 Anova.GetCellData("Sex", "Female", "AgeGroup", "Adult")

A copy of the data is returned as a DFNumericColumn object.

Grand Mean, Cell Means, and Group Means

Class **TwoWayAnova** provides the following properties and member functions for accessing the grand mean, cell means, and group means:

- **GrandMean** gets the grand mean. The grand mean is the mean of all the data.
- **GetMeanForCell()** returns the mean for a specified cell.
- **GetMeanForFactorLevel()** returns the mean for a specified factor level.

Again, factors and factor levels are identified to accessor methods by name. For example, if anova has factor **Sex** with levels Male and Female, and factor **AgeGroup** with levels Child, Adult, and Senior, this code gets the mean for all males:

Code Example – C# ANOVA

```csharp
double meanM = anova.GetMeanForFactorLevel( "Sex", "Male" );
```

Code Example – VB ANOVA

```vbnet
Dim MeanM As Double = Anova.GetMeanForFactorLevel("Sex", "Male")
```

This code gets the mean for male children:

Code Example – C# ANOVA

```csharp
double meanMChild =
    anova.GetMeanForCell( "Sex", "Male", "AgeGroup", "Child" );
```

Code Example – VB ANOVA

```vbnet
Dim MeanMChild As Double =
    Anova.GetMeanForCell("Sex", "Male", "AgeGroup", "Child")
```

ANOVA Regression Parameters

NMath Stats solves the two-way ANOVA problem using multiple linear regression. If all you wish to know is the information in the standard ANOVA table, you can safely ignore the regression details, but properties and member functions are provided for retrieving information about the underlying regression parameters.
To solve the two-way ANOVA problem using multiple linear regression, \textbf{NMath Stats} creates a series of dummy variables to encode the different levels of each of the two factors. The specific encoding used, known as effects encoding, encodes dummy variables so that the coefficients of the dummy variables in the regression model quantify deviations of each group from the grand mean.\(^1\)

In the effects encoding, \(k - 1\) dummy variables are defined to encode the \(k\) levels of a factor, like so:

\[
E_1 = \begin{cases}
1 & \text{if group 1} \\
-1 & \text{if group } k \\
0 & \text{otherwise}
\end{cases}
\]

and so on, up to \(E_{k-1}\) for group \(k - 1\).

For example, suppose we have an experimental design with two factors: \textbf{FactorA} and \textbf{FactorB}. \textbf{FactorA} has two levels, labelled \(A_1\) and \(A_2\). Effects encoding defines one dummy variable for \textbf{FactorA}:

\[
A = \begin{cases}
1 & \text{if group } A_1 \\
-1 & \text{if group } A_2
\end{cases}
\]

\textbf{FactorB} has three levels, labelled \(B_1, B_2, \) and \(B_3\). Effects encoding defines two dummy variable for \textbf{FactorB}:

\[
B_1 = \begin{cases}
1 & \text{if group } B_1 \\
0 & \text{if group } B_2 \\
-1 & \text{if group } B_3
\end{cases}
\]

\[
B_2 = \begin{cases}
0 & \text{if group } B_1 \\
1 & \text{if group } B_2 \\
-1 & \text{if group } B_3
\end{cases}
\]

Combined, these three dummy variables completely identify all the combinations of FactorA and FactorB. The multiple regression model is then:

\[
\hat{A} = b_0 + b_A A + b_{B_1} B_1 + b_{B_2} B_2 + b_{AB_1} AB_1 + b_{AB_2} AB_2
\]

where

- the intercept \(b_0 \) is an estimate of the grand mean
- \(b_A \) estimates the difference between the grand mean and the mean of \(A_1 \)
- \(-b_A\) is the difference between the grand mean and the mean of \(A_2 \)
- \(b_{B_1} \) estimates the difference between the grand mean and the mean of \(B_1 \)
- \(b_{B_2} \) estimates the difference between the grand mean and the mean of \(B_2 \)
- \(-b_{B_1} + b_{B_2}\) estimates the difference between the grand mean and the mean of \(B_3 \)

NMath Stats includes several classes that derive from LinearRegressionParameter, and provide access to the dummy variable regression parameters in an ANOVA analysis of variance:

- Class AnovaRegressionParameter provides a SumOfSquares property that gets the sum of squares due to a parameter.

- Class AnovaRegressionFactorParam derives from AnovaRegressionParameter and provides the additional properties FactorName, which gets the name of the ANOVA factor encoded by a dummy variable, FactorLevel, which gets the level of the ANOVA factor encoded by a dummy variable, and Encoding, which gets the actual encoding. The encoding is the value the dummy variable assumes when an ANOVA observation is made with the factor at that level.

- Class AnovaRegressionInteractionParam also derives from AnovaRegressionParameter and provides the additional properties FactorAName and FactorALevel, which get the name and level of the first factor in the interaction, and FactorBName and FactorBLevel, which get the name and level of the second factor in the interaction.

Of course, these classes also inherit from LinearRegressionParameter methods such as TStatisticPValue(), TStatistic(), TStatisticCriticalValue(), and ConfidenceInterval() for testing statistical hypotheses regarding parameter values in a linear regression (Section 42.5).

Instances of these classes cannot be constructed independently. Instead, they are returned by properties and member functions on class TwoWayAnova:

- RegressionInterceptParameter gets the intercept parameter in the linear regression as an AnovaRegressionParameter.
• GetRegressionFactorParameter() returns the AnovaRegressionFactorParam associated with a specified factor level.

• RegressionFactorParameters gets a complete array of AnovaRegressionFactorParam estimates for the different factor levels.

• GetRegressionInteractionParameter() returns the AnovaRegressionInteractionParam associated with the specified interaction.

• RegressionInteractionParameters gets a complete array of AnovaRegressionInteractionParam estimates for the interactions.

For example, this code gets the regression parameter for FactorA at level A1:

Code Example – C# ANOVA

AnovaRegressionFactorParam param =
 anova.GetRegressionFactorParameter("FactorA", "A1");
Console.WriteLine(param);

Code Example – VB ANOVA

Dim Param As AnovaRegressionFactorParam =
 Anova.GetRegressionFactorParameter("FactorA", "A1")
Console.WriteLine(Param)

Example output:

Value : 4.375
Standard Error : 1.63741694728596
t-Statistic for parameter = 0 : 2.67189124141632
p-value for t-Statistic : 0.0155516784650136
0.05 confidence interval : [9.3491E-001, 7.8151E+000]

Note that method GetRegressionFactorParameter() may return null. In the effects encoding method, there are \(k-1 \) dummy variables defined to encode the \(k \) levels of a factor. Hence, one level does not have a dummy variable associated with it in the linear regression, and a null reference may be returned even though a valid factor level is specified. Thus:

Code Example – C# ANOVA

AnovaRegressionFactorParam param =
 anova.GetRegressionFactorParameter("FactorA", "A2");
 // param == null

Code Example – VB ANOVA

Dim Param As AnovaRegressionFactorParam =
 Anova.GetRegressionFactorParameter("FactorA", "A2")
 ' param == null
Similarly, method `GetRegressionInteractionParameter()` may return `null`. If there are \(j \) different levels for the first factor and \(k \) different levels for the second factor, there are \((j-1)(k-1) \) dummy variables corresponding to the interactions. Hence, some interactions do not have a dummy variable associated with them in the linear regression, and a null reference may be returned even though valid interactions are specified.

This code prints out the intercept regression parameter, all factor regression parameters, and all interaction regression parameters:

Code Example – C# ANOVA

```csharp
Console.WriteLine( "Intercept" );
Console.WriteLine( anova.RegressionInterceptParameter );
Console.WriteLine();

AnovaRegressionFactorParam[] factorParams =
    anova.RegressionFactorParameters;
for ( int i = 0; i < factorParams.Length; i++ )
{
    Console.WriteLine( factorParams[i].FactorLevel );
    Console.WriteLine( factorParams[i] );
    Console.WriteLine();
}

AnovaRegressionInteractionParam[] interactionParams =
    anova.RegressionInteractionParameters;
for ( int i = 0; i < interactionParams.Length; i++ )
{
    Console.WriteLine( interactionParams[i].FactorALevel + " x " +
                       interactionParams[i].FactorBLevel );
    Console.WriteLine( interactionParams[i] );
    Console.WriteLine();
}
```

Code Example – VB ANOVA

```vbnet
Console.WriteLine("Intercept")
Console.WriteLine(Anova.RegressionInterceptParameter)
Console.WriteLine()
Dim FactorParams As AnovaRegressionFactorParam() =
    Anova.RegressionFactorParameters
For I As Integer = 0 To FactorParams.Length - 1
    Console.WriteLine(FactorParams(I).FactorLevel)
    Console.WriteLine(FactorParams(I))
    Console.WriteLine()
Next

Dim InteractionParams As AnovaRegressionInteractionParam() =
    Anova.RegressionInteractionParameters
```
For I As Integer = 0 To InteractionParams.Length - 1
 Console.WriteLine(InteractionParams(I).FactorALevel & " x " & InteractionParams(I).FactorBLevel)
 Console.WriteLine(InteractionParams(I))
 Console.WriteLine()
Next

Example output:

Intercept
Value : 28.875
Standard Error : 1.63741694728596
\text{t-Statistic for parameter} = 0: 17.634821933477
p-value for \text{t-Statistic} : 8.35997937542743E-13
\text{0.05 confidence interval} : [2.5435E+001, 3.2315E+001]

A1
Value : 4.375
Standard Error : 1.63741694728596
\text{t-Statistic for parameter} = 0: 2.67189124141632
p-value for \text{t-Statistic} : 0.0155516784650136
\text{0.05 confidence interval} : [9.3491E-001, 7.8151E+000]

B1
Value : 25.5
Standard Error : 2.31565725411135
\text{t-Statistic for parameter} = 0: 11.0119923640365
p-value for \text{t-Statistic} : 1.98637151171965E-09
\text{0.05 confidence interval} : [2.0635E+001, 3.0365E+001]

B2
Value : -7.25
Standard Error : 2.31565725411135
\text{t-Statistic for parameter} = 0: -3.13086057408882
p-value for \text{t-Statistic} : 0.0057756347693
\text{0.05 confidence interval} : [-1.2115E+001, -2.3850E+000]

A1 x B1
Value : 6
Standard Error : 2.31565725411135
\text{t-Statistic for parameter} = 0: 2.59105702683213
p-value for \text{t-Statistic} : 0.0184427158909004
\text{0.05 confidence interval} : [1.1350E+001, 1.0865E+001]

A1 x B2
Value : -0.999999999999999
Standard Error : 2.31565725411135
\text{t-Statistic for parameter} = 0: -0.431842837805354
p-value for \text{t-Statistic} : 0.670984111233603
\text{0.05 confidence interval} : [-5.8650E+000, 3.8650E+000]
44.4 Two-Way Unbalanced ANOVA

Class TwoWayAnovaUnbalanced is the base class for performing a two-way ANOVA when the number of observations in each cell is not the same—an unbalanced design. Three derived classes are provided:

- **TwoWayAnovaTypeI** performs a Type I ANOVA on unbalanced data. Type I, also called *sequential* sum of squares, tests the main effect of factor A, followed by the main effect of factor B after the main effect of A, followed by the interaction effect AB after the main effects.

- **TwoWayAnovaTypeII** performs a Type II ANOVA on unbalanced data. This type tests for each main effect after the other main effect. No significant interaction is assumed.

- **TwoWayAnovaTypeIII** performs a Type III ANOVA on unbalanced data. This type tests for the presence of a main effect after the other main effect and interaction.

Creating Unbalanced Two-Way ANOVA Objects

Unbalanced two-way ANOVA instances are constructed in the same manner as balanced TwoWayAnova objects (Section 44.3). For example, this code groups the numeric data in column 3 of DataFrame df by factors constructed from columns 0 and 1:

Code Example – C# Unbalanced ANOVA

```csharp
var type1anova = new TwoWayAnovaTypeI( df, 0, 1, 2 );
```

Code Example – VB Unbalanced ANOVA

```vbnet
Dim Type1Anova As New TwoWayAnovaType(DF, 0, 1, 2)
```

Unbalanced Two-Way ANOVA Tables and Regression Parameters

Using an unbalanced two-way ANOVA object is similar to using a balanced TwoWayAnova object (Section 44.3). For instance, this code prints the ANOVA table.

Code Example – C# Unbalanced ANOVA

```csharp
Console.WriteLine( type1anova.AnovaTable );
```

Code Example – VB Unbalanced ANOVA

```vbnet
Console.WriteLine(Type1Anova.AnovaTable)
```
This code prints the regression parameters.

Code Example – C# Unbalanced ANOVA

```csharp
Console.WriteLine( "FACTOR A ANOVA --------" );
var fa = type1anova.FactorARegressionFactorParameters;
for ( int i = 0; i < fa.Length; i++ )
{
    Console.WriteLine( fa[i] );
    Console.WriteLine();
}

Console.WriteLine( "\nFACTOR B ANOVA --------" );
var fb = type1anova.FactorBRegressionFactorParameters;
for ( int i = 0; i < fb.Length; i++ )
{
    Console.WriteLine( fb[i] );
    Console.WriteLine();
}

Console.WriteLine( "\nINTERACTION FACTOR ANOVA --------" );
var fi = type2anova.InteractionRegressionFactorParameters;
for ( int i = 0; i < fi.Length; i++ )
{
    Console.WriteLine( fi[i] );
    Console.WriteLine();
}
```

Code Example – VB Unbalanced ANOVA

```vbnet
Console.WriteLine("FACTOR A ANOVA --------")
Dim FA As AnovaRegressionFactorParam() = Type1Anova.FactorARegressionFactorParameters
For I As Integer = 0 To FA.Length - 1
    Console.WriteLine(FA(I))
    Console.WriteLine()
Next

Console.WriteLine("\nFACTOR B ANOVA --------")
Dim FB As AnovaRegressionFactorParam() = Type1Anova.FactorBRegressionFactorParameters
For I As Integer = 0 To FB.Length - 1
    Console.WriteLine(FB(I))
    Console.WriteLine()
Next

Console.WriteLine("\nINTERACTION FACTOR ANOVA --------")
Dim FI As AnovaRegressionInteractionParam() = Type2Anova.InteractionRegressionFactorParameters
For I As Integer = 0 To FI.Length - 1
    Console.WriteLine(FI(I))
```

Chapter 44. Analysis of Variance 155
44.5 Two-Way Repeated Measures ANOVA

NMATH Stats provides two classes for calculating a two-way analysis of variance with repeated measures (RANOVA):

- Class TwoWayRanova performs a balanced two-way analysis of variance with repeated measures on one factor.
- Class TwoWayRanovaTwo performs a balanced two-way analysis of variance with repeated measures on both factors.

Both classes extend TwoWayAnova, and so inherit the methods and properties described in Section 44.3. Like TwoWayAnova, both TwoWayRanova and TwoWayRanovaTwo use multiple linear regression to compute the RANOVA values.

Creating Two-Way RANOVA Objects

Instances of both TwoWayRanova and TwoWayRanovaTwo are constructed from data in a data frame. Three column indices are specified in the data frame: the column containing the first factor, the column containing the second factor, and the column containing the numeric data. For TwoWayRanova, the first factor is the repeated factor; for TwoWayRanovaTwo, both factors are repeated.

For example, this code groups the numeric data in column 3 of DataFrame df by factors constructed from columns 0 and 4:

Code Example – C# RANOVA

```csharp
var ranova = new TwoWayRanova( df, 0, 4, 3 );
```

Code Example – VB RANOVA

```vbnet
Dim Ranova As New TwoWayRanova(DF, 0, 4, 3)
```

The factor constructed from column 0 is the repeated factor. In the following example, both factors are repeated:

Code Example – C# RANOVA

```csharp
var ranova2 = new TwoWayRanovaTwo( df, 0, 4, 3 );
```

Code Example – VB RANOVA

```vbnet
Dim Ranova2 As New TwoWayRanovaTwo(DF, 0, 4, 3)
```
NOTE—Both TwoWayRanova and TwoWayRanovaTwo throw an InvalidArgumentException exception if the data contains missing values (NaNs).

Two-Way RANOVA Tables

Once you’ve constructed a TwoWayRanova, you can display the complete RANOVA table:

Code Example – C# RANOVA

```csharp
var ranova = new TwoWayRanova(df, 0, 4, 3);
Console.WriteLine( ranova );
```

Code Example – VB RANOVA

```vbnet
Dim Ranova As New TwoWayRanova(DF, 0, 4, 3)
Console.WriteLine(Ranova)
```

For instance:

```
Source    Deg of Freedom  SumOfSquares  Mean Square   F         P
FactorA    1              0.2032       0.2032       29.2322   0.0001
Subjects   14             1.7559       0.1254       .         .
FactorB    1              0.0205       0.0205       0.1635    0.6921
Interaction 1  0.0830     0.0830       11.9442     0.0039
Error      14             0.0973       0.0070       .         .
Total      31             2.1599       .            .         .
```

Class TwoWayRanovaTable summarizes the information in a traditional two-way RANOVA table with repeated measures on one factor. An instance of TwoWayRanovaTable can be obtained from a TwoWayRanova object using the RanovaTable property. For example:

Code Example – C# RANOVA

```csharp
TwoWayRanovaTable myTable = ranova.RanovaTable;
```

Code Example – VB RANOVA

```vbnet
Dim MyTable As TwoWayRanovaTable = Ranova.RanovaTable
```

Class TwoWayRanovaTable derives from TwoWayAnovaTable, and so inherits the properties described in Section 44.3. In addition, TwoWayRanovaTable provides the following properties for accessing the new row in the RANOVA table for repeated measures on one factor:

- **SubjectsDegreesOfFreedom** gets the subjects degrees of freedom.
- **SubjectsSumOfSquares** gets the sum of squares for the subjects.
- **SubjectsMeanSquare** gets the mean square for the subjects.
Similarly, once you’ve constructed a **TwoWayRanovaTwo**, you can display the RANOVA table:

Code Example – C# RANOVA

```csharp
var ranova2 = new TwoWayRanovaTwo( df, 0, 4, 3 );
Console.WriteLine( ranova2 );
```

Code Example – VB RANOVA

```vb
Dim Ranova2 As New TwoWayRanovaTwo(DF, 0, 4, 3)
Console.WriteLine(Ranova2)
```

For example:

<table>
<thead>
<tr>
<th>Source</th>
<th>Deg of Freedom</th>
<th>SumOfSq</th>
<th>Mean Square</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>FactorA</td>
<td>1</td>
<td>1.4700</td>
<td>1.4700</td>
<td>88.2000</td>
<td>0.0000</td>
</tr>
<tr>
<td>FactorB</td>
<td>2</td>
<td>14.5654</td>
<td>7.2827</td>
<td>59.2348</td>
<td>0.0000</td>
</tr>
<tr>
<td>Interaction</td>
<td>2</td>
<td>3.3387</td>
<td>1.6694</td>
<td>18.9305</td>
<td>0.0001</td>
</tr>
<tr>
<td>A x Subject</td>
<td>14</td>
<td>1.7213</td>
<td>0.1229</td>
<td></td>
<td>.</td>
</tr>
<tr>
<td>B x Subject</td>
<td>7</td>
<td>0.1167</td>
<td>0.0167</td>
<td></td>
<td>.</td>
</tr>
<tr>
<td>Error</td>
<td>14</td>
<td>1.2346</td>
<td>0.0882</td>
<td></td>
<td>.</td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td>29.3592</td>
<td></td>
<td></td>
<td>.</td>
</tr>
</tbody>
</table>

An instance of **TwoWayRanovaTwoTable** can be obtained from a **TwoWayRanovaTwo** object using the RunovaTable property. For example:

Code Example – C# RANOVA

```csharp
TwoWayRanovaTwoTable myTable = ranova2.RanovaTable;
```

Code Example – VB RANOVA

```vb
Dim MyTable As TwoWayRanovaTwoTable = Ranova2.RanovaTable
```

Class **TwoWayRanovaTwoTable** also derives from **TwoWayAnovaTable**, and provides the following methods for accessing the additional rows in the RANOVA table with repeated measures on both factors:

- `SubjectInteractionDegreesOfFreedom()` returns the degrees of freedom for the interaction between subjects and the specified factor.
- `SubjectInteractionSumOfSquares()` returns the sum of squares for the interaction between subjects and the specified factor.
- `SubjectInteractionMeanSquare` returns the mean square for the interaction between subjects and the specified factor.
CHAPTER 45.
NON-PARAMETRIC TESTS

Non-parametric (or distribution-free) tests make no assumptions about the probability distributions of the variables being assessed. NMath Stats provides classes for several common non-parametric tests:

- Class **OneSampleKSTest** performs a Kolmogorov-Smirnov test of the distribution of one sample.
- Class **TwoSampleKSTest** performs a two-sample Kolmogorov-Smirnov test to compare the distributions of values in two data sets.
- Class **ShapiroWilkTest** tests the null hypothesis that the sample comes from a normally distributed population.
- Class **OneSampleAndersonDarlingTest** performs an Anderson-Darling test of the distribution of one sample.
- Class **KruskalWallisTest** performs a Kruskal-Wallis rank sum test.
- Class **WilcoxonSignedRankTest** performs a Wilcoxon signed-rank test for comparing the means between two paired samples, or repeated measurements on a single sample.

This chapter describes the non-parametric test classes.

See Section 38.9 for Spearman’s rank correlation coefficient, commonly known as *Spearman’s rho*.

45.1 One Sample Kolmogorov-Smirnov Test

Class **OneSampleKSTest** performs a Kolmogorov-Smirnov test of the distribution of one sample. This class compares the distribution of a given sample to the hypothesized distribution defined by a specified cumulative distribution function (CDF). For each potential value \(x \), the Kolmogorov-Smirnov test compares the proportion of values less than \(x \) with the expected number predicted by the specified CDF. The null hypothesis is that the given sample data follow the specified distribution. The alternative hypothesis is that the data do not have that distribution.

Sample data can be passed to the constructor as a vector, numeric column in a data frame, or an array of doubles. The hypothesized distribution can be specified.
either by using an instance of `ProbabilityDistribution` or by supplying a delegate that encapsulates the CDF of the hypothesized distribution. For example, this code creates a `OneSampleKSTest` instance that compares the distribution of `data` to a standard normal distribution:

Code Example – C# Kolmogorov-Smirnov test

```csharp
var norm = new NormalDistribution();
var ks = new OneSampleKSTest( data, norm );
```

Code Example – VB Kolmogorov-Smirnov test

```vbnet
Dim Norm As New NormalDistribution()
Dim KS As New OneSampleKSTest(Data, Norm)
```

If `myDist.CDF()` is the CDF for some distribution, this code creates a `OneSampleKSTest` instance that compares the distribution of the data in column 3 of `DataFrame` `df` to the hypothesized distribution:

Code Example – C# Kolmogorov-Smirnov test

```csharp
var ks = new OneSampleKSTest( df[3],
    new Func<double, double>(myDist.CDF) );
```

Code Example – VB Kolmogorov-Smirnov test

```vbnet
Dim KS As New OneSampleKSTest(DF(3), New Func(Of Double, Double)(AddressOf MyDist.CDF))
```

By default, a `OneSampleKSTest` object performs the Kolmogorov-Smirnov test with $\alpha = 0.01$. A different alpha level can be specified at the time of construction using constructor overloads, or after construction using the provided `Alpha` property.

Once you’ve constructed and configured a `OneSampleKSTest` object, you can access the various test results using the provided properties:

Code Example – C# Kolmogorov-Smirnov test

```csharp
Console.WriteLine( "statistic = " + test.Statistic );
Console.WriteLine( "p-value = " + test.P );
Console.WriteLine( "alpha = " + test.Alpha );
Console.WriteLine( "reject the null hypothesis? " + test.Reject );
```

Code Example – VB Kolmogorov-Smirnov test

```vbnet
Console.WriteLine("statistic = " & Test.Statistic)
Console.WriteLine("p-value = " & Test.P)
Console.WriteLine("alpha = " & Test.Alpha)
Console.WriteLine("reject the null hypothesis? " & Test.Reject)
```
45.2 Two Sample Kolmogorov-Smirnov Test

Class `TwoSampleKSTest` performs a two-sample Kolmogorov-Smirnov test to compare the distributions of values in two data sets. For each potential value x, the Kolmogorov-Smirnov test compares the proportion of values in the first sample less than x with the proportion of values in the second sample less than x. The null hypothesis is that the two samples have the same continuous distribution. The alternative hypothesis is that they have different continuous distributions.

Sample data can be passed to the constructor as vectors, numeric columns in a data frame, or arrays of doubles. Thus:

Code Example – C# Kolmogorov-Smirnov test

```csharp
var ks = new TwoSampleKSTest(data1, data2);
```

Code Example – VB Kolmogorov-Smirnov test

```vb
Dim KS As New TwoSampleKSTest(Data1, Data2)
```

By default, a `TwoSampleKSTest` object performs the Kolmogorov-Smirnov test with $\alpha = 0.01$. A different alpha level can be specified at the time of construction using constructor overloads, or after construction using the provided `Alpha` property.

Once you’ve constructed and configured a `TwoSampleKSTest` object, you can access the various test results using the provided properties:

Code Example – C# Kolmogorov-Smirnov test

```csharp
Console.WriteLine("statistic = " + test.Statistic);
Console.WriteLine("p-value = " + test.P);
Console.WriteLine("alpha = " + test.Alpha);
Console.WriteLine("reject the null hypothesis? " + test.Reject);
```

Code Example – VB Kolmogorov-Smirnov test

```vb
Console.WriteLine("statistic = " & Test.Statistic)
Console.WriteLine("p-value = " & Test.P)
Console.WriteLine("alpha = " & Test.Alpha)
Console.WriteLine("reject the null hypothesis? " & Test.Reject)
```

45.3 Shapiro-Wilk Test

Class `ShapiroWilkTest` tests the null hypothesis that a sample comes from a normally distributed population. The sample data provided must be of size between 3 and 5000. If the size becomes too large, then the test begins to perform poorly.
Code Example – C# Shapiro-Wilk test

```csharp
var data = new DoubleVector(
    "4.6057571  5.0352571  2.5780990  3.8300667  3.9096730  0.3203129 " +
    "0.7165054  9.8681061  3.8967762  9.4639023  6.4092569  2.9835816 " +
    "8.1763496  8.5650066 10.2810477  7.7123572  2.6411587  2.5043797 " +
    "7.5617508 11.2223571"
);

double alpha = 0.1;
var test = new ShapiroWilkTest(data, alpha);
```

Code Example – VB Shapiro-Wilk test

```vbnet
Dim Data As New DoubleVector(
    "4.6057571  5.0352571  2.5780990  3.8300667  3.9096730  0.3203129 " &
    "0.7165054  9.8681061  3.8967762  9.4639023  6.4092569  2.9835816 " &
    "8.1763496  8.5650066 10.2810477  7.7123572  2.6411587  2.5043797 " &
    "7.5617508 11.2223571")

Dim Alpha As Double = 0.1
Dim Test As New ShapiroWilkTest(Data, Alpha)
```

Once you’ve constructed and configured a **TwoSampleKSTest** object, you can access the various test results using the provided properties:

Code Example – C# Shapiro-Wilk test

```csharp
Console.WriteLine( "statistic = " + test.Statistic );
Console.WriteLine( "p-value = " + test.P );
Console.WriteLine( "alpha = " + test.Alpha );
Console.WriteLine( "reject the null hypothesis? " + test.Reject);
```

Code Example – VB Shapiro-Wilk test

```vbnet
Console.WriteLine("statistic = " & Test.Statistic)
Console.WriteLine("p-value = " & Test.P)
Console.WriteLine("alpha = " & Test.Alpha)
Console.WriteLine("reject the null hypothesis? " & Test.Reject)
```

45.4 One Sample Anderson-Darling Test

Class **OneSampleAndersonDarlingTest** performs a Anderson-Darling test of the distribution of one sample. An Anderson-Darling test compares the distribution of a given sample to normal distribution function (CDF). The alternative hypothesis that the data do not have a normal distribution.

Code Example – C# Anderson-Darling test

```csharp
int n = 100;
var data = new DoubleVector( n, new RandGenGamma( 23.0 ) );
```
45.5 Kruskal-Wallis Test

Class KruskalWallisTest performs a Kruskal-Wallis rank sum test. The Kruskal-Wallis test is a non-parametric test for equality of population medians among groups. It is a non-parametric version of the classical one-way ANOVA. The interface for KruskalWallisTest is nearly identical to OneWayAnova.

Creating Kruskal-Wallis Objects

A KruskalWallisTest instance is constructed from numeric data organized into different groups. The groups need not contain the same number of observations. For example, this code constructs a KruskalWallisTest from an array of DoubleVector objects. Each vector in the array contains data for a single group:

Code Example – C# Kruskal-Wallis test

```csharp
var a =
    new DoubleVector(6.4, 6.8, 7.2, 8.3, 8.4, 9.1, 9.4, 9.7);
var b =
    new DoubleVector(2.5, 3.7, 4.9, 5.4, 5.9, 8.1, 8.2);
var c =
    new DoubleVector(1.3, 4.1, 4.9, 5.2, 5.5, 8.2);

var data_ = new DoubleVector[] { a, b, c };
var test = new KruskalWallisTest(data_);
```
Code Example – VB Kruskal-Wallis test

```vbnet
Dim A As New DoubleVector(6.4, 6.8, 7.2, 8.3, 8.4, 9.1, 9.4, 9.7)
Dim B As New DoubleVector(2.5, 3.7, 4.9, 5.4, 5.9, 8.1, 8.2)
Dim C As New DoubleVector(1.3, 4.1, 4.9, 5.2, 5.5, 8.2)

Dim Data_() As DoubleVector = {A, B, C}

Dim Test As New KruskalWallisTest(Data )
```

An optional boolean parameter may also be supplied to the constructor. If `true`, a standard correction for ties is applied.

Code Example – C# Kruskal-Wallis test

```csharp
bool correct_for_ties = true;
var test = new KruskalWallisTest( data, correct_for_ties_);
```

Code Example – VB Kruskal-Wallis test

```vbnet
Dim CorrectForTies As Boolean = True
Dim Test As New KruskalWallisTest(Data, CorrectForTies)
```

This correction usually makes little difference in the value of the test statistic, unless there are a large number of ties.

This code constructs a `KruskalWallisTest` from a data frame `df`:

Code Example – C# Kruskal-Wallis test

```csharp
var test = new KruskalWallisTest( df, 1, 3 );
```

Code Example – VB Kruskal-Wallis test

```vbnet
Dim Test As New KruskalWallisTest(DF, 1, 3)
```

Two column indices are also provided: a `group` column and a `data` column. A `Factor` is constructed from the group column using the `DataFrame` method `GetFactor()`, which creates a sorted array of the unique values. The specified data column must be of type `DFNumericColumn`.

Lastly, you can also construct a `KruskalWallisTest` from a `DoubleMatrix`:

Code Example – C# Kruskal-Wallis test

```csharp
var data = new DoubleMatrix( "6 x 5 [ 24 14 11 7 19
15 7 9 7 24
21 12 7 7 19
27 17 13 12 15
33 14 12 12 10
23 16 18 18 20 ]" );

bool correct_for_ties = true;
var test = new KruskalWallisTest( data, correct_for_ties );
```
The Kruskal-Wallis Table

Once you’ve constructed a `KruskalWallisTest`, you can display the complete results table:

Code Example – C# Kruskal-Wallis test

```csharp
Console.WriteLine( test );
```

Code Example – VB Kruskal-Wallis test

```vbnet
Console.WriteLine( Test )
```

For example:

<table>
<thead>
<tr>
<th>Source</th>
<th>Deg of Freedom</th>
<th>Sum Of Sq</th>
<th>Mean Sq</th>
<th>Chi-sq</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between groups</td>
<td>2</td>
<td>13.5000</td>
<td>6.7500</td>
<td>0.7714</td>
<td>0.6800</td>
</tr>
<tr>
<td>Within groups</td>
<td>11</td>
<td>214</td>
<td>19.4545</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>227.5000</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

Class `KruskalWallisTable` is provided for summarizing the information in the results table. Class `KruskalWallisTable` derives from `DataFrame`. An instance of `KruskalWallisTable` can be obtained from a `KruskalWallisTest` object using the `Table` property. For example:

Code Example – C# Kruskal-Wallis test

```csharp
KruskalWallisTable table = test.Table;
```

Code Example – VB Kruskal-Wallis test

```vbnet
Dim Table As KruskalWallisTable = Test.Table
```
Class **KruskalWallisTable** provides the following read-only properties for accessing individual elements in the results table:

- **DegreesOfFreedomBetween** gets the between-groups degrees of freedom.
- **DegreesOfFreedomWithin** gets the within-groups degrees of freedom.
- **DegreesOfFreedomTotal** gets the total degrees of freedom.
- **SumOfSquaresBetween** gets the between-groups sum of squares.
- **SumOfSquaresWithin** gets the within-groups sum of squares.
- **SumOfSquaresTotal** gets the total sum of squares.
- **MeanSquareBetween** gets the between-groups mean square. The between-groups mean square is the between-groups sum of squares divided by the between-groups degrees of freedom.
- **MeanSquareWithin** gets the within-group mean square. The within-groups mean square is the within-group sum of squares divided by the within-group degrees of freedom.
- **MeanSquareTotal** gets the total mean square. The total mean square is the total sum of squares divided by the total degrees of freedom.
- **Statistic** gets the test statistic.
- **PValue** gets the p-value for the test statistic.

Ranks, Grand Mean Ranks, Group Means Ranks, and Group Sizes

Class **KruskalWallisTest** provides properties and methods for retrieving the ranks, grand mean ranks, group means ranks, and group sizes:

- **Ranks** gets an array of vectors containing the ranks of the data.
- **GrandMeanRank** gets the grand mean rank of the data. The grand mean rank is the mean of all of the data ranks.
- **GroupMeanRanks** gets a vector of group mean ranks.
- **GroupSizes** gets an array of group sizes.
- **GroupNames** gets an array of group names. If the test was constructed from a data frame using a grouping column, the group names are the sorted, unique **Factor** levels created from the column values. If the test object was constructed from a matrix or an array of vectors, the group names are simply **Group_0, Group_1…Group_n**.
• GetGroupRanks() returns the ranks for a specified group, identified either by group name or group number (a zero-based index into the Ranks array).

• GetGroupMeanRank() returns the mean rank for a specified group, identified either by group name or group number (a zero-based index into the GroupMeanRanks vector).

• GetGroupSize() returns the mean for a specified group, identified either by group name or group number (a zero-based index into the GroupSizes array).

For example, if a KruskalWallisTest is constructed from a matrix, this code returns the mean rank for the group in the third column of the matrix:

Code Example – C# Kruskal-Wallis test
```csharp
double mean = test.GetGroupMeanRank( 2 );
```

Code Example – VB Kruskal-Wallis test
```vbnet
Dim Mean As Double = Test.GetGroupMeanRank(2)
```

If a KruskalWallisTest is constructed from a data frame using a grouping column with values male and female, this code returns the mean rank for the male group:

Code Example – C# Kruskal-Wallis test
```csharp
double maleMean = test.GetGroupMeanRank( "male" );
```

Code Example – VB Kruskal-Wallis test
```vbnet
Dim MaleMean As Double = Test.GetGroupMeanRank("male")
```

Critical Value of the Test Statistic

Class KruskalWallisTest provides the convenience function StatisticCriticalValue() which computes the critical value for the test statistic at a given significance level. Thus:

Code Example – C# Kruskal-Wallis test
```csharp
double alpha = 0.05;
double critVal = test.StatisticCriticalValue( alpha );
```

Code Example – VB Kruskal-Wallis test
```vbnet
Dim Alpha As Double = 0.05
Dim CritVal As Double = Test.StatisticCriticalValue(Alpha)
```
Updating Kruskal-Wallis Test Objects

Method `SetData()` updates an entire test object with new data. As with the class constructors (see above), you can supply data as an array of group vectors, a matrix, or as a data frame. For instance, this code updates a test with data from `DataFrame df`, using column 2 as the group column and column 5 as the data column:

Code Example – C# Kruskal-Wallis test

```csharp
test.SetData( df, 2, 5 );
```

Code Example – VB Kruskal-Wallis test

```vb
Test.SetData(DF, 2, 5)
```

45.6 Wilcoxon Signed-Rank Test

The Wilcoxon signed-rank test is a non-parametric statistical hypothesis test for comparing the means between two paired samples, or repeated measurements on a single sample. It can be used as an alternative to `TwoSamplePairedTTest` when the population cannot be assumed to be normally distributed.

Class `WilcoxonSignedRankTest` tests if two paired sets of observed values differ from each other in a significant way. The null hypothesis is that the distribution $x - y$ is symmetric about 0.

Creating Wilcoxon Signed-Rank Objects

A `WilcoxonSignedRankTest` instance is constructed from paired vectors of sample data.

Code Example – C# Wilcoxon signed-rank test

```csharp
var a = new DoubleVector(78, 24, 64, 45, 64, 52, 30, 50, 64, 50, 78, 22, 84, 40, 90, 72);
var b = new DoubleVector(78, 24, 62, 48, 68, 56, 25, 44, 56, 40, 68, 36, 68, 20, 58, 32);

double alpha = 0.05;
var type = HypothesisType.TwoSided;
bool exactPValue = false;
var test =
    new WilcoxonSignedRankTest( a, b, alpha, type, exactPValue );
```
Note that paired observations where either value is missing, or where the difference between values is zero, are ignored. In the example above, a normal approximation is used to compute p-value. For $n > 10$, the sampling distribution of the test statistic converges to a normal distribution. For smaller sample sizes, an exact p-value can be calculated by enumerating all possible combinations of the test statistic given n.

An `InvalidArgumentException` is raised if the given data contains zero valid pairs (valid pairs are non-NaN and unequal), or if an exact p-value is specified for $n > 30$.
Multivariate statistical analysis techniques are useful when you need a concise understanding of large amounts of data. **NMath Stats** provides classes for dimension reduction using principal component analysis or factor analysis, and case reduction using hierarchical cluster analysis and k-means clustering.

This chapter describes the multivariate statistical analysis classes.

46.1 Principal Component Analysis

Principal component analysis (PCA) finds a smaller set of synthetic variables that capture the variance in an original data set. The first principal component accounts for as much of the variability in the data as possible, and each succeeding orthogonal component accounts for as much of the remaining variability as possible. In **NMath Stats**, classes **DoublePCA** and **FloatPCA** perform principal component analyses.

Creating Principal Component Analyses

A **DoublePCA** or **FloatPCA** instance is constructed from a matrix or a dataframe containing numeric data. Each column represents a variable, and each row represents an observation:

Code Example – C# principal component analysis (PCA)

```csharp
var pca = new DoublePCA( data );
```

Code Example – VB principal component analysis (PCA)

```vbnet
Dim PCA As New DoublePCA(Data)
```

The data may optionally be zero-centered and scaled to have unit variance:

Code Example – C# principal component analysis (PCA)

```csharp
bool center = true;
bool scale = true;
var pca = new DoublePCA( data, center, scale );
```

Code Example – VB principal component analysis (PCA)

```vbnet
Dim Center As Boolean = True
```
Dim Scale As Boolean = True
Dim PCA As New DoublePCA(Data, Center, Scale)

By default, variables are centered but not scaled.

After construction, you can retrieve information about the data set using the provided read-only properties:

- **Data** gets the data matrix. If centering or scaling were specified at construction time, the returned matrix may not match the original data.
- **NumberOfObservations** gets the number of observations in the data matrix.
- **NumberOfVariables** gets the number of variables in the data matrix.
- **IsCentered** returns true if the data supplied at construction time was shifted to be zero-centered.
- **IsScaled** returns true if the data supplied at construction time was scaled to have unit variance.
- **Means** gets the column means of the data matrix. If centering is specified, the column means are subtracted from the column values before analysis takes place.
- **Norms** gets the column norms (1-norm). If scaling is specified, column values are scaled to have unit variance before analysis by dividing by the column norm.

Principal Component Analysis Results

The **Loadings** property gets the complete loading matrix. Each column in the loading matrix is a principal component. The first principal component accounts for as much of the variability in the data as possible, and each succeeding orthogonal component accounts for as much of the remaining variability as possible.

Code Example – C# principal component analysis (PCA)

```csharp
Console.WriteLine( "Loading Martrix = " + pca.Loadings );
```

Code Example – VB principal component analysis (PCA)

```vbnet
Console.WriteLine("Loading Matrix = " & PCA.Loadings)
```

The provided indexer also gets a specified principal component, referenced by zero-based index. For example:

Code Example – C# principal component analysis (PCA)

```csharp
Console.WriteLine( "First principal component = " + pca[0] );
```
Console.WriteLine("Second principal component = " + pca[1]);

Code Example – VB principal component analysis (PCA)

```vbnet
Console.WriteLine( "First principal component = " & PCA(0))
Console.WriteLine( "Second principal component = " & PCA(1))
```

The `VarianceProportions` property gets an ordered vector containing the proportion of the total variance accounted for by each principal component. `CumulativeVarianceProportions` gets the cumulative variance proportions. Thus:

Code Example – C# principal component analysis (PCA)

```csharp
Console.WriteLine( "Variance Proportions = " +
                    pca.VarianceProportions );
Console.WriteLine( "Cumulative Variance Proportions = " +
                    pca.CumulativeVarianceProportions );
```

Code Example – VB principal component analysis (PCA)

```vbnet
Console.WriteLine( "Variance Proportions = " &
                   PCA.VarianceProportions)
Console.WriteLine( "Cumulative Variance Proportions = " &
                   PCA.CumulativeVarianceProportions)
```

The `Threshold()` method calculates the number of principal components required to account for a given proportion of the total variance:

Code Example – C# principal component analysis (PCA)

```csharp
Console.WriteLine( "PCs that account for 99% of the variance = " +
                    pca.Threshold( .99 ) );
```

Code Example – VB principal component analysis (PCA)

```vbnet
Console.WriteLine("PCs that account for 99% of the variance = " &
                   PCA.Threshold(0.99))
```

The `StandardDeviations` property gets the standard deviations of the principal components. `Eigenvalues` gets the eigenvalues of the covariance/correlation matrix, though the calculation is actually performed using the singular values of the data matrix. The eigenvalues of the covariance/correlation matrix are equal to the squares of the standard deviations of the principal components.

Lastly, the `Scores` property gets the score matrix. The scores are the data formed by transforming the original data into the space of the principal components:

Code Example – C# principal component analysis (PCA)

```csharp
Console.WriteLine( "Scores = " + pca.Scores );
```

Code Example – VB principal component analysis (PCA)

```vbnet
Console.WriteLine("Scores = " & PCA.Scores)
```
This code displays the data in the minimal synthetic dimensions required to account for 99% of the variance:

Code Example – C# principal component analysis (PCA)

```csharp
Slice rowSlice = Slice.All;
var colSlice = new Slice( 0, pca.Threshold( .99 ) );
Console.WriteLine( pca.Scores[ rowSlice, colSlice ] );
```

Code Example – VB principal component analysis (PCA)

```vbnet
Dim RowSlice As Slice = Slice.All
Dim ColSlice As New Slice(0, PCA.Threshold(0.99))
Console.WriteLine(PCA.Scores(RowSlice, ColSlice))
```

46.2 Factor Analysis

Factor analysis describes the variability among observed, correlated variables in terms of a potentially lower number of unobserved variables, called *factors*.

In general, factor analysis consists of two steps:

- **In the extraction step**, factors are extracted from the data.

 In *NMath Stats*, *IFactorExtraction* is the interface for factor extraction algorithms. Class *PCFactorExtraction* implements the principle component (PC) algorithm for factor extraction.

- **In the rotation step**, the factors are rotated in order to maximize the relationship between the variables and the factors.

 In *NMath Stats*, *IFactorRotation* is the interface for factor rotation algorithms. Class *VarimaxRotation* computes the varimax rotation of the factors. Factors are rotated to maximize the sum of the variances of the squared loadings. Kaiser normalization is optionally performed. Class *NoRotation* can be used when no rotation is desired.

Creating Factor Analyses

NMath Stats provides three classes for performing factor analysis:

- **FactorAnalysisCorrelation** performs a factor analysis on given case data by forming the correlation matrix for the variables.

- **FactorAnalysisCovariance** performs a factor analysis on given case data using the covariance matrix.
- **DoubleFactorAnalysis** performs a factor analysis on a symmetric matrix of data, assumed to be either a correlation or covariance matrix, if you don’t have access to the original case data.

When case data is used, the data should provided in matrix form—the variable values in columns and each row representing a case.

All factor analysis are templated on the extraction and rotation algorithm to use. For example:

Code Example – C# factor analysis

```csharp
var fa = new FactorAnalysisCorrelation<PCFactorExtraction,
    VarimaxRotation>(data);
```

Code Example – VB factor analysis

```vbnet
Dim FA As New FactorAnalysisCorrelation(Of PCFactorExtraction,
    VarimaxRotation)(Data)
```

For greater control, construct the extraction and rotation objects explicitly. For example, a **PCFactorExtraction** instance can be constructed from a delegate for determining the number of factors to extract. The type of this argument is `Func<DoubleVector, DoubleMatrix, int>`. It takes as arguments the vector of eigenvalues and the matrix of eigenvectors, and returns the number of factors to extract. Class **NumberOfFactors** contains static methods for creating functors for several common strategies. This code extracts factors whose eigenvalues are greater than 1.2 times the mean of the eigenvalues:

Code Example – C# factor analysis

```csharp
var factorExtraction = new PCFactorExtraction(
    NumberOfFactors.EigenvaluesGreaterThanMean(1.2));
```

Code Example – VB factor analysis

```vbnet
Dim FactorExtraction As New PCFactorExtraction(
    NumberOfFactors.EigenvaluesGreaterThanMean(1.2))
```

The following code constructs a **VarimaxRotation** instance with a specified tolerance. Iteration stops when the relative change in the sum of the singular values is less than this number. We also specify that we do not want Kaiser normalization to be performed.

Code Example – C# factor analysis

```csharp
var factorRotation = new VarimaxRotation
{
    Tolerance = 1e-6,
    Normalize = false
};
```
Code Example – VB factor analysis

Dim FactorRotation As New VarimaxRotation()
FactorRotation.Tolerance = 0.000001
FactorRotation.Normalize = False

Once you’ve constructed your extraction and rotation objects, you can construct the factor analysis instance:

Code Example – C# factor analysis

var fa = new FactorAnalysisCovariance<PCFactorExtraction,
 VarimaxRotation>(data, BiasType.Biased, factorExtraction,
 factorRotation);

Code Example – VB factor analysis

Dim FA As New FactorAnalysisCovariance(Of PCFactorExtraction,
 VarimaxRotation)(Data, BiasType.Biased, FactorExtraction,
 FactorRotation)

Factor Analysis Results

Once you’ve constructed a factor analysis instance, you can access the results using the following properties:

- **NumberOfFactors** get the number of factors extracted.
- **Factors** gets the extracted factors. Each column of the matrix is a factor.
- **RotatedFactors** gets the rotated factors. Each column of the matrix is a factor.
- **VarianceProportions** gets a vector of proportion of variance explained by each factor.
- **CumulativeVarianceProportions** gets the cumulative variance proportions.
- **ExtractedCommunalities** get the proportion of each variable's variance that can be explained by the extracted factors jointly.
- **InitialCommunalities** get the proportion of each variable's variance that can be explained by the factors jointly.
- **SumOfSquaredLoadings** gets the sum of squared loadings for each extracted factor.
- **RotatedSumOfSquaredLoadings** gets the sum of squared loadings for each rotated extracted factor.
For instance:

Code Example – C# factor analysis

```csharp
DoubleVector extractedCommunalities = fa.ExtractedCommunalities;
for ( int i = 0; i < data.Cols; i++ )
{
    Console.WriteLine( "{0}\t{i}", data[i].Name,
                      extractedCommunalities[i] );
}
Console.WriteLine();

for ( int i = 0; i < fa.VarianceProportions.Length; i++ )
{
    double varProportion = fa.VarianceProportions[i] * 100.0;
    double cummulativeVarProportion =
        fa.CumulativeVarianceProportions[i] * 100.0;
    double eigenValue = fa.FactorExtraction.Eigenvalues[i];
    Console.WriteLine( "{0}\t{1}\t{2}\t{3}", i, eigenValue,
                       varProportion, cummulativeVarProportion );
}
Console.WriteLine();

double eigenValueSum =
    NMathFunctions.Sum( fa.FactorExtraction.Eigenvalues );
DoubleVector RotatedSSLoadingsVarianceProportions =
    fa.RotatedSumOfSquaredLoadings / eigenValueSum;
Console.WriteLine( "\nRotated Extraction Sums of Squared Loadings - " );
Console.WriteLine( "factor\tTotal\t% of Variance\tCumulative %" );
Console.WriteLine( "-----------------------------------------------" );
double cummulative = 0;
for ( int i = 0; i < fa.NumberOfFactors; i++ )
{
    double varProportion =
        RotatedSSLoadingsVarianceProportions[i] * 100.0;
    cummulative += RotatedSSLoadingsVarianceProportions[i];
    double cumulativeVarProportion = cummulative * 100.0;
    Console.WriteLine( "{0}\t{1}\t{2}\t{3}", i,
                       sumSquaredLoading, varProportion, cumulativeVarProportion );
}
Console.WriteLine();
```

Chapter 46. Multivariate Techniques 177
DoubleMatrix rotatedComponentMatrix = fa.RotatedFactors;
for (int i = 0; i < data.Cols; i++)
{
 var formatString = "{0}\t{1}\t{2}\t{3}"
 double comp0 = rotatedComponentMatrix.Row(i)[0];
 double comp1 = rotatedComponentMatrix.Row(i)[1];
 double comp2 = rotatedComponentMatrix.Row(i)[2];
 Console.WriteLine("{0}\t{1}\t{2}\t{3}", data[i].Name,
 comp0, comp1, comp2);
}

Code Example – VB factor analysis

Dim ExtractedCommunalities As DoubleVector =
 FA.ExtractedCommunalities
For I As Integer = 0 To Data.Cols - 1
 Console.WriteLine("{0}\t{1}", Data(I).Name,
 ExtractedCommunalities(I))
Next
Console.WriteLine()
For I As Integer = 0 To FA.VarianceProportions.Length - 1
 Dim VarProportion As Double = FA.VarianceProportions(I) * 100.0
 Dim CumulativeVarProportion = FA.CumulativeVarianceProportions(I) * 100.0
 Dim EigenValue As Double = FA.FactorExtraction.Eigenvalues(I)
 Console.WriteLine("{0}\t{1}\t{2}\t{3}", I, EigenValue,
 VarProportion, CumulativeVarProportion)
Next
Console.WriteLine()
Dim EigenValueSum As Double =
 NMathFunctions.Sum(FA.FactorExtraction.Eigenvalues)
Dim RotatedSSLoadingsVarianceProportions As DoubleVector =
 FA.RotatedSumOfSquaredLoadings / EigenValueSum
Console.WriteLine("
\nRotated Extraction Sums of Squared Loadings - ")
Console.WriteLine("factor\tTotal\t% of Variance\tCumulative %")
Console.WriteLine("\n--")
Dim Cumulative As Double = 0
For I As Integer = 0 To FA.NumberOfFactors - 1
 Dim VarProportion As Double =
 RotatedSSLoadingsVarianceProportions(I) * 100.0;
 Cumulative += RotatedSSLoadingsVarianceProportions(I)
 Dim CumulativeVarProportion As Double = Cumulative * 100.0
 Dim SumSquaredLoading As Double =
 FA.RotatedSumOfSquaredLoadings(I)
 Console.WriteLine("{0}\t{1}\t{2}\t{3}", I, SumSquaredLoading,
VarProportion, CumulativeVarProportion)
Next

Console.WriteLine()

Dim RotatedComponentMatrix As DoubleMatrix = FA.RotatedFactors
For I As Integer = 0 To Data.Cols - 1
 Dim formatString As String = "\{0\}\t\{1\}\t\{2\}\t\{3\}"
 Dim Comp0 As Double = RotatedComponentMatrix.Row(I)(0)
 Dim Comp1 As Double = RotatedComponentMatrix.Row(I)(1)
 Dim Comp2 As Double = RotatedComponentMatrix.Row(I)(2)
 Console.WriteLine("\{0\}\t\{1\}\t\{2\}\t\{3\}", Data(I).Name, Comp0, Comp1, Comp2)
Next

Factor Scores

The case data values for new factor variables are contained in the *factor scores* matrix. The score for a given factor is a linear combination of all of the measures, weighted by the corresponding factor loading.

There are different algorithms for producing the factors scores. The FactorScores() method can be passed an object implementing the *IFactorScores* interface, specifying the algorithm to be used. If no argument is passed, the regression algorithm for computing factor scores is used, implemented in class *RegressionFactorScores*.

For example, this code print the factor scores for the first three cases. Data is normalized.

Code Example – C# factor analysis

```csharp
var rowSlice = new Slice( 0, 3 );
Console.WriteLine(
    fa.FactorScores() [rowSlice, Slice.All].ToTabDelimited() );
```

Code Example – VB factor analysis

```vbnet
Dim RowSlice As New Slice(0, 3)
Console.WriteLine(FA.FactorScores() (RowSlice, Slice.All).ToTabDelimited())
```

Factor scores are a linear combination of the original variable values. The coefficients used for the linear combination are found in the *factor score coefficients matrix*. This matrix may be obtained from the FactorScoreCoefficients() method on the factor analysis class. Like factor scores, the algorithm to use may be specified by passing an object implementing the *IFactorScores* interface to this method. By default, the regression algorithm is used.
The factor score coefficients can be used to compute scores for novel case data. For instance:

Code Example – C# factor analysis

```csharp
DoubleMatrix scoreCoefficients = fa.FactorScoreCoefficients();
var newCaseData = new DoubleMatrix(
    "2x10 [0.0 38.9 3.8 196.0 115.4 71.9 177.0 3.972 17.5 27.8 
    1.0 46.0 2.5 220.0 101.6 73.4 168.6 3.75  19.0 20.0] ");
Console.WriteLine(
    NMathFunctions.Product( newCaseData, scoreCoefficients ) );
```

Code Example – VB factor analysis

```vbnet
Dim ScoreCoefficients As DoubleMatrix = FA.FactorScoreCoefficients()
Dim NewCaseData As New DoubleMatrix(
    "2x10 [0.0 38.9 3.8 196.0 115.4 71.9 177.0 3.972 17.5 27.8 
    1.0 46.0 2.5 220.0 101.6 73.4 168.6 3.75  19.0 20.0] ")
Console.WriteLine(NMathFunctions.Product(NewCaseData, 
    ScoreCoefficients))
```

46.3 Hierarchical Cluster Analysis

Cluster analysis detects natural groupings in data. In hierarchical cluster analysis, each object is initially assigned to its own singleton cluster. The analysis then proceeds iteratively, at each stage joining the two most similar clusters into a new cluster, continuing until there is one overall cluster. In **NMath Stats**, class **ClusterAnalysis** performs hierarchical cluster analyses.

Distance Functions

During clustering, the distance between individual objects is computed using a distance function. The distance function is encapsulated in a **Distance.Function** delegate, which takes two vectors and returns a measure of the distance (similarity) between them:

Code Example – C# hierarchical cluster analysis

```csharp
public delegate double Function( DoubleVector data1, 
    DoubleVector data2 );
```

Code Example – VB hierarchical cluster analysis

```vbnet
Delegate Function(Data1 As DoubleVector, Data2 As DoubleVector) As 
    Double
```
Delegates are provided as static variables on class `Distance` for many common distance functions:

- **Distance.EuclideanFunction** computes the Euclidean distance between two data vectors (2 norm):
 \[d_{xy} = \sqrt{\sum (x_i - y_i)^2} \]
 Euclidean distance is simply the geometric distance in the multidimensional space.

- **Distance.SquaredEuclideanFunction** computes the squared Euclidean distance between two vectors:
 \[d_{xy} = \sum (x_i - y_i)^2 \]
 Squaring the simple Euclidean distance places progressively greater weight on objects that are further apart.

- **Distance.CityBlockFunction** computes the city-block (Manhattan) distance between two vectors (1 norm):
 \[d_{xy} = \sum |x_i - y_i| \]
 In most cases, the city-block distance measure yields results similar to the simple Euclidean distance. Note, however, that the effect of outliers is dampened, since they are not squared.

- **Distance.MaximumFunction** computes the maximum (Chebychev) distance between two vectors:
 \[d_{xy} = \text{maximum} |x_i - y_i| \]
 This distance measure may be appropriate in cases when you want to define two objects as different if they differ on any one of the dimensions.

- **Distance.PowerFunction(double p, double r)** computes the power distance between two vectors:
 \[d_{xy} = \left(\sum |x_i - y_i|^p \right)^{1/r} \]
 where \(p \) and \(r \) are user-defined parameters. Parameter \(p \) controls the progressive weight that is placed on differences on individual dimensions;
parameter \(r \) controls the progressive weight that is placed on larger differences between objects. Appropriate selections of \(p \) and \(r \) yield Euclidean, squared Euclidean, Minkowski, city-block, and many other distance metrics. For example, if \(p \) and \(r \) are equal to \(2 \), the power distance is equal to the Euclidean distance.

All provided distance functions allow missing values. Pairs of elements are excluded from the distance measure when their comparison returns \(\text{NaN} \). If all pairs are excluded, \(\text{NaN} \) is returned for the distance measure.

You can also define your own \texttt{Distance.Function} delegate and use it to cluster your data. For example, if you have function \texttt{MyDistance()} that computes the distance between two vectors:

Code Example – C# hierarchical cluster analysis

```csharp
public double MyDistance( DoubleVector x, DoubleVector y );
```

Code Example – VB hierarchical cluster analysis

```vbnet
Public Function MyDistance(X As DoubleVector, Y As DoubleVector) As Double
```

You can define a \texttt{Distance.Function} delegate like so:

Code Example – C# hierarchical cluster analysis

```csharp
var MyDistanceFunction = new Distance.Function( MyDistance );
```

Code Example – VB hierarchical cluster analysis

```vbnet
Dim MyDistanceFunction As New Distance.Function(AddressOf MyDistance)
```

Linkage Functions

During clustering, the distances between clusters of objects are computed using a linkage function. The linkage function is encapsulated in a \texttt{Linkage.Function} delegate. When two groups \(P \) and \(Q \) are united, a linkage function computes the distance between the new combined group \(P + Q \) and another group \(R \).
The parameters to the `Linkage.Function`—which may not necessarily all be used to calculate the result—are the distance between R and P, the distance between R and Q, the distance between P and Q, and the sizes (n) of all three groups:

Code Example – C# hierarchical cluster analysis

```csharp
public delegate double Function( double Drp, double Drq,
                                 double Dpq, double Nr, double Np, double Nq );
```

Code Example – VB hierarchical cluster analysis

```vbnet
Delegate Function(DRP As Double, DRQ As Double,
                  DPQ As Double, NR As Double, NP As Double, NQ As Double) As Double
```

Delegates are provided as static variables on class `Linkage` for many common linkage functions:

- `Linkage.SingleFunction` computes the distance between two clusters as the distance of the two closest objects (nearest neighbors) in the clusters. Adopting a friends-of-friends clustering strategy closely related to the minimal spanning tree, the single linkage method tends to result in long chains of clusters.

- `Linkage.CompleteFunction` computes the distance between two clusters as the greatest distance between any two objects in the different clusters (furthest neighbors). The complete linkage method tends to work well in cases where objects form naturally distinct clumps.

- `Linkage.UnweightedAverageFunction` computes the distance between two clusters as the average distance between all pairs of objects in the two different clusters. This method is sometimes referred to as *unweighted pair-group method using arithmetic averages*, and abbreviated UPGMA.

- `Linkage.WeightedAverageFunction` computes the distance between two clusters as the average distance between all pairs of objects in the two different clusters, using the size of each cluster as a weighting factor. This method is sometimes referred to as *weighted pair-group method using arithmetic averages*, and abbreviated WPGMA.
• **Linkage.CentroidFunction** computes the distance between two clusters as the difference between centroids. The centroid of a cluster is the average point in the multidimensional space. The centroid method is sometimes referred to as *unweighted pair-group method using the centroid average*, and abbreviated UPGMC.

• **Linkage.MedianFunction** computes the distance between two clusters as the difference between centroids, using the size of each cluster as a weighting factor. This is sometimes referred to as *weighted pair-group method using the centroid average*, and abbreviated WPGMC.

• **Linkage.WardFunction** computes the distance between two clusters using Ward’s method. Ward’s method uses an analysis of variance approach to evaluate the distances between clusters. The smaller the increase in the total within-group sum of squares as a result of joining two clusters, the closer they are. The within-group sum of squares of a cluster is defined as the sum of the squares of the distance between all objects in the cluster and the centroid of the cluster. Ward’s method tends to produce compact groups of well-distributed size.

You can also define your own **Linkage.Function** delegate and use it to cluster your data. For example, if you have function **MyLinkage()** that computes the distance between two clusters:

Code Example – C# hierarchical cluster analysis

```csharp
public double MyLinkage( double Drp, double Drq, double Dpq,
                         double Nr, double Np, double Nq );
```

Code Example – VB hierarchical cluster analysis

```vbnet
Public Function MyLinkage(DRP As Double, DRQ As Double, DPQ As Double,
                         NR As Double, NP As Double, NQ As Double) As Double
```

You can define a **Linkage.Function** delegate like so:

Code Example – C# hierarchical cluster analysis

```csharp
var MyLinkageFunction = new Linkage.Function( MyLinkage );
```

Code Example – VB hierarchical cluster analysis

```vbnet
Dim MyLinkageFunction As New Linkage.Function(AddressOf MyLinkage)
```

Creating Cluster Analyses

A **ClusterAnalysis** instance is constructed from a matrix or a dataframe containing numeric data. Each row in the data set represents an object to be clustered.
Code Example – C# hierarchical cluster analysis

var ca = new ClusterAnalysis(data);

Code Example – VB hierarchical cluster analysis

Dim CA As New ClusterAnalysis(Data)

The current default distance and linkage delegates are used. The default distance and linkage delegates are `Distance.EuclideanFunction` and `Linkage.SingleFunction`, unless the defaults have been changed using the static `DefaultDistanceFunction` and `DefaultLinkageFunction` properties. For example:

Code Example – C# hierarchical cluster analysis

ClusterAnalysis.DefaultDistanceFunction = Distance.MaximumFunction; ClusterAnalysis.DefaultLinkageFunction = Linkage.CentroidFunction;

Code Example – VB hierarchical cluster analysis

This changes the default distance and linkage functions for all subsequently constructed `ClusterAnalysis` objects.

You can also specify non-default distance and linkage functions in the constructor:

Code Example – C# hierarchical cluster analysis

var ca = new ClusterAnalysis(data,
 Distance.PowerFunction(1.25, 2.0), Linkage.CompleteFunction);

Code Example – VB hierarchical cluster analysis

Dim CA As New ClusterAnalysis(Data,
 Distance.PowerFunction(1.25, 2.0), Linkage.CompleteFunction)

After construction, you can retrieve information about the `ClusterAnalysis` configuration using the provided properties:

- `N` gets the total number of objects being clustered.
- `DistanceFunction` gets and sets the distance function delegate used to measure the distance between individual objects. Setting the distance function using the `DistanceFunction` property has no effect until `Update()` is called with new data. (See below.)
- `LinkageFunction` gets and sets the linkage function used to measure the distance between clusters of objects. Setting the linkage delegate using the `LinkageFunction` property has no effect until `Update()` is called with new data. (See below.)
Cluster Analysis Results

The **Distances** property gets the vector of distances between all possible object pairs, computed using the current distance delegate. For \(n \) objects, the distance vector is of length \((n-1)(n/2)\), with distances arranged in the order:

\[(1,2), (1,3), \ldots, (1,n), (2,3), \ldots, (2,n), \ldots, \ldots, (n-1,n)\]

Linkages gets an \((n-1) \times 3\) matrix containing the complete hierarchical linkage tree, computed from **Distances** using the current linkage delegate. At each level in the tree, columns 1 and 2 contain the indices of the clusters linked to form the next cluster. Column 3 contains the distances between the clusters. For example, this code clusters 8 random vectors of length 3, then shows a sample output of the hierarchical cluster tree:

Code Example – C# hierarchical cluster analysis

```csharp
var data = new DoubleMatrix( 8, 3, new RandGenUniform() );
var ca = new ClusterAnalysis( data );
Console.WriteLine( ca.Linkages );
```

Code Example – VB hierarchical cluster analysis

```vbnet
Dim Data As New DoubleMatrix(8, 3, New RandGenUniform())
Dim CA As New ClusterAnalysis(Data)
Console.WriteLine(ca.Linkages)
```

Sample output:

\[
7 \times 3
\begin{bmatrix}
4 & 7 & 0.194409151975696 \\
3 & 5 & 0.290431894003636 \\
2 & 9 & 0.495557235783239 \\
1 & 6 & 0.508966210536187 \\
0 & 11 & 0.522321103698264 \\
8 & 10 & 0.590187697768796 \\
12 & 13 & 0.621675638177606
\end{bmatrix}
\]

Each object is initially assigned to its own singleton cluster, numbered 0 to 7. The analysis then proceeds iteratively, at each stage joining the two most similar clusters into a new cluster, continuing until there is one overall cluster. The first new cluster formed by the linkage function is assigned index 8, the second is assigned index 9, and so forth. When these indices appear later in the tree, the clusters are being combined again into a still larger cluster.

The **CutTree()** method constructs a set of clusters by cutting the hierarchical linkage tree either at the specified height, or into the specified number of clusters. For example, this code cuts the linkage tree to form 3 clusters:
This code cuts the linkage tree at a height of 0.75:

Code Example – C# hierarchical cluster analysis

ca.CutTree(0.75);

Code Example – VB hierarchical cluster analysis

CA.CutTree(0.75)

The `CutTree()` method returns a `ClusterSet` object, which represents a collection of objects assigned to a finite number of clusters. The `NumberOfClusters` property gets the number of clusters into which objects are grouped; `N` gets the number of objects. The `Clusters` property returns an array of integers that identifies the cluster into which each object was grouped. Cluster numbers are arbitrary, and range from 0 to `NumberOfClusters - 1`. The indexer gets the cluster to which a given object is assigned. The `Cluster()` method returns the objects assigned to a given cluster as an array of integers. For instance:

Code Example – C# hierarchical cluster analysis

```csharp
// Cluster 10 random vectors of length 4:
var data = new DoubleMatrix( 10, 4, new RandGenUniform() );
var ca = new ClusterAnalysis( data );

// Cut the tree into 5 clusters
ClusterSet cut = ca.CutTree( 5 );

Console.WriteLine( "ClusterSet = " + cut );
Console.WriteLine( "Object 0 is in cluster: " + cut[0] );
Console.WriteLine( "Object 3 is in cluster: " + cut[3] );
Console.WriteLine( "Object 8 is in cluster: " + cut[8] );
int[] objects = cut.Cluster( 1 );
Console.WriteLine( "Objects in cluster 1: " );
for (int i = 0; i < objects.Length; i++)
{  
    Console.Write( objects[i] + " " );
}
Console.WriteLine();
```

Code Example – VB hierarchical cluster analysis

```vbnet
' Cluster 10 random vectors of length 4:
Dim Data As New DoubleMatrix(10, 4, New RandGenUniform())
Dim ca As New ClusterAnalysis(Data)
```
' Cut the tree into 5 clusters
Dim Cut As ClusterSet = CA.CutTree(5)

Console.WriteLine("ClusterSet = " & cut)
Console.WriteLine("Object 0 is in cluster: " & Cut(0))
Console.WriteLine("Object 3 is in cluster: " & Cut(3))
Console.WriteLine("Object 8 is in cluster: " & Cut(8))
Dim Objects() As Integer = Cut.Cluster(1)
Console.Write("Objects in cluster 1: ")
For I As Integer = 0 To Objects.Length - 1
 Console.Write(Objects(I) & " ")
Next
Console.WriteLine()

Sample output:

ClusterSet = 0,1,2,1,1,1,3,1,4,1
Object 0 is in cluster: 0
Object 3 is in cluster: 1
Object 8 is in cluster: 4
Objects in cluster 1: 1 3 4 5 7 9

Lastly, the `CopheneticDistances` property on class `ClusterAnalysis` gets the vector of cophenetic distances between all possible object pairs. The cophenetic distance between two objects is defined to be the intergroup distance when the objects are first combined into a single cluster in the linkage tree. The format is the same as the distance vector returned by `Distances`.

The correlation between the original `Distances` and the `CopheneticDistances` is sometimes taken as a measure of the appropriateness of a cluster analysis relative to the original data:

Code Example – C# hierarchical cluster analysis

```csharp
var ca = new ClusterAnalysis( data );
double r = StatsFunctions.Correlation( ca.Distances,
                                       ca.CopheneticDistances );
```

Code Example – VB hierarchical cluster analysis

```vbnet
Dim CA As New ClusterAnalysis(Data)
Dim R As Double = StatsFunctions.Correlation(CA.Distances,
                                            CA.CopheneticDistances)
```

Reusing Cluster Analysis Objects

Method `Update()` updates an existing `ClusterAnalysis` instance with new data, and optionally with new distance and linkage functions. For example:
46.4 **K-Means Clustering**

The k-means clustering method assigns data points into k groups such that the sum of squares from points to the computed cluster centers is minimized. In NMath Stats, class `KMeansClustering` performs k-means clustering.

1. For each point, move it to another cluster if that would lower the sum of squares from points to the computed cluster centers.
2. If a point is moved, immediately update the cluster centers of the two affected clusters.
3. Repeat until no points are moved, or the specified maximum number of iterations is reached.

Creating KMeansClustering Objects

A `KMeansClustering` instance is constructed from a matrix or a dataframe containing numeric data. Each row in the data set represents an object to be clustered.

Code Example – C# k-means clustering

```csharp
var km = new KMeansClustering( data );
```

Code Example – VB k-means clustering

```vbnet
Dim KM As New KMeansClustering(Data)
```
After construction, you can retrieve information about the \texttt{KMeansClustering} data using the provided properties:

- \texttt{N} gets the total number of objects being clustered.
- \texttt{Data} gets and set the data matrix

Stopping Criteria

Iteration stops when either clustering stabilizes, or the maximum number of iterations is reached. You can specify the maximum number of iterations in several ways:

- The static \texttt{DefaultMaxIterations} property gets and sets the default maximum number of iterations for instances of \texttt{KMeansClustering}. (Initially set to 1000.)
- You can specify a non-default maximum in the \texttt{KMeansClustering} constructor. For instance:
  ```csharp
  var km = new KMeansClustering( data, 100 );
  ```
- The \texttt{MaxIterations} property gets and sets the maximum number of iterations on an existing \texttt{KMeansClustering} instance.

Clustering

The \texttt{Cluster()} method clusters the data into the specified number of clusters. The method accepts either \textit{k}, the number of clusters, or a matrix of initial cluster centers:

- If \textit{k} is given, a set of distinct rows in the data matrix are chosen as the initial centers using the algorithm specified by a \texttt{KMeanClustering.Start} enumerated value. By default, rows are chosen at random.
- If a matrix of initial cluster centers is given, \textit{k} is inferred from the number of rows.

For example, this code clusters eight random vectors of length three into two clusters, using random starting cluster centers:

\textbf{Code Example – C# k-means clustering}

```csharp
var data = new DoubleMatrix( 8, 3, new RandGenUniform() );
var cl = new KMeansClustering( data );
ClusterSet clusters = cl.Cluster( 2 );
```
Code Example – VB k-means clustering

Dim Data As New DoubleMatrix(8, 3, New RandGenUniform())
Dim CL As New KMeansClustering(Data)
Dim Clusters As ClusterSet = CL.Cluster(2)

This code specifies the two starting centers:

Code Example – C# k-means clustering

var centers = new DoubleMatrix("2x3 [0 0 0 1 1 1]");
ClusterSet clusters = cl.Cluster(centers);

Code Example – VB k-means clustering

Dim Centers As New DoubleMatrix("2x3 [0 0 0 1 1 1]")
Dim Clusters As ClusterSet = CL.Cluster(Centers)

Cluster Analysis Results

The Cluster() method returns a ClusterSet object, which represents a collection of objects assigned to a finite number of clusters. Properties on the KMeansClustering instance give additional information about the clustering just performed:

- K gets the number of clusters.
- InitialCenters gets the matrix of initial cluster centers.
- FinalCenters gets the matrix of final cluster centers.
- Clusters gets the cluster assignments.
- WithinSumOfSquares gets the within-cluster sum of squares for each cluster.
- Sizes gets the number of points in each cluster.
- Iterations gets the number of iterations performed.
- MaxIterationsMet returns true if the clustering stopped because the maximum number of iterations was reached; otherwise, false.

For instance, this code clusters 30 random vectors of length three into three clusters, and prints out the results:

Code Example – C# k-means clustering

var data = new DoubleMatrix(30, 3, new RandGenUniform());
var km = new KMeansClustering(data);
km.Cluster(3);

Console.WriteLine("k = {0}", km.K);
Console.WriteLine("Initial cluster centers:");
Console.WriteLine(km.InitialCenters.ToTabDelimited());
Console.WriteLine("{0} iterations", km.Iterations);
Console.WriteLine("Stopped because max iterations of {0} met? {1}",
 km.MaxIterations, km.MaxIterationsMet);
Console.WriteLine("Final cluster centers:");
Console.WriteLine(km.FinalCenters.ToTabDelimited());
Console.WriteLine("Clustering assignments:");
Console.WriteLine(km.Clusters);
for (int i = 0; i < km.K; i++) {
 Console.WriteLine("Cluster {0} has {1} items", i, km.Sizes[i]);
}

Code Example – VB k-means clustering

Dim Data As New DoubleMatrix(30, 3, New RandGenUniform())
Dim KM As New KMeansClustering(Data)
KM.Cluster(3)

Console.WriteLine("k = {0}", KM.K)
Console.WriteLine("Initial cluster centers:")
Console.WriteLine(KM.InitialCenters.ToTabDelimited())
Console.WriteLine("{0} iterations", KM.Iterations)
Console.WriteLine("Stopped because max iterations of {0} met? {1}",
 KM.MaxIterations, KM.MaxIterationsMet)
Console.WriteLine("Final cluster centers:")
Console.WriteLine(KM.FinalCenters.ToTabDelimited())
Console.WriteLine("Clustering assignments:")
Console.WriteLine(KM.Clusters)
For I As Integer = 0 To KM.K - 1
 Console.WriteLine("Cluster {0} has {1} items", I, KM.Sizes(I))
Next
Nonnegative matrix factorization (NMF) approximately factors a matrix \(V \) into two matrices, \(W \) and \(H \):

\[V \approx WH \]

NMF differs from many other factorizations by enforcing the constraint that the factors \(W \) and \(H \) must be non-negative—that is, all elements must be equal to or greater than zero.

If a set of \(m \) \(n\)-dimensional data vectors are placed in an \(n \times m \) matrix \(V \), then NMF can be used to approximately factor \(V \) into an \(n \times r \) matrix \(W \) and an \(r \times m \) matrix \(H \). Usually \(r \) is chosen to be much smaller than either \(m \) or \(n \), so that \(W \) and \(H \) are smaller than the original matrix \(V \). Thus, each column \(v \) of \(V \) is approximated by a linear combination of the columns of \(W \), with the coefficients being the corresponding column \(h \) of \(H \), \(v \approx Wh \). This extracts underlying features of the data as basis vectors in \(W \), which can then be used for identification, classification, and compression. By not allowing negative entries in \(W \) and \(H \), NMF enables a non-subtractive combination of the parts to form a whole.

\textbf{NMath Stats} provides classes for basic NMF, and for data clustering using NMF. This chapter describes how to use the NMF classes.

47.1 Nonnegative Matrix Factorization

\textbf{NMath Stats} provides class \textbf{NMFact} for performing basic nonnegative matrix factorization (NMF). \textbf{NMFact} uses an iterative algorithm with the goal of minimizing a cost function. The cost function is usually \(\| V - WH \| \), where \(\| \| \) denotes the Frobenius matrix norm.

\textbf{NMFact} objects can factor data contained in either a \textbf{DoubleMatrix} or a \textbf{DataFrame} object. The factors \(W \) and \(H \) are then accessed through properties:

\textbf{Code Example – C# nonnegative matrix factorization (NMF)}

```csharp
DataFrame data; // data to be factored
int k; // number of columns in W

var fact = new NMFact();
fact.Factor(data, k);
Console.WriteLine("W = " + fact.W);
```
Console.WriteLine("H = " + fact.H);

Code Example – VB nonnegative matrix factorization (NMF)

Dim Data As DataFrame '' data to be factored
Dim K As Integer '' number of columns in W

Dim Fact As New NMFact()
Fact.Factor(Data, K)
Console.WriteLine("W = " & Fact.W)
Console.WriteLine("H = " & Fact.H)

Parameters governing aspects of the computation are set through properties or passed as constructor arguments. *ComputeCostAtEachStep* determines whether or not the cost is computed at each step of the iteration. This can be an expensive calculation and so should generally be done only when you want to investigate convergence properties, such as the convergence rate. If *ComputeCostAtEachStep* is *true*, the *DoubleVector* of costs can be accessed through the *StepCost* property.

NumIterations specifies the number of iterations performed in the computing of the factorization.

For example:

Code Example – C# nonnegative matrix factorization (NMF)

```csharp
fact.ComputeCostAtEachStep = true;  
fact.NumIterations = numIterations;
```

Code Example – VB nonnegative matrix factorization (NMF)

```vbnet
Fact.ComputeCostAtEachStep = True  
Fact.NumIterations = NumIterations
```

Update Algorithms

The iterative update step and cost function are specified in a class implementing the *INMFUpdateAlgorithm* interface. *NMath Stats* provides four such implementations. All matrices of uniform \((0,1)\) random deviants as the initial values for \(W\) and \(H\).

- Class *NMFAlsUpdate* uses the Alternating Least Squares (ALS) update algorithm. ALS takes advantage of the fact that while the optimization problem is not simultaneously convex in \(W\) and \(H\), it is convex in either \(W\) or \(H\). Thus, given one matrix, the other can be found with a simple least squares computation:
 1. Solve for \(H\) in matrix equation \(W^T WH = W^T V\).
 2. Set all negative elements of \(H\) to 0.
3. Solve for W in the matrix equation $HH^TWT = HV^T$.

4. Set all negative elements of W to 0.

- **Class NMFDivergenceUpdate** minimizes a divergence functional. The functional is related to the Poisson likelihood of generating V from W and H:

$$D = \sum_{i,j} V_{i,j} \log \left(\frac{V_{i,j}}{(WH)_{i,j}} \right) - V_{i,j} + (WH)_{i,j}$$

For more information, see Brunet, Jean-Philippe et al., “Metagenes and Molecular Pattern Discovery Using Matrix Factorization”, *Proceedings of the National Academy of Sciences* 101, no. 12 (March 23, 2004): 4164-4169.

- **Class NMFGdClsUpdate** uses the Gradient Descent - Constrained Least Squares (GDCLS) algorithm. In some cases it may be desirable to enforce a statistical sparsity constraint on the H matrix. As the sparsity of H increases, the basis vectors become more localized—that is, the parts-based representation of the data in W becomes more and more enhanced. The GDCLS algorithm enforces sparsity in H using a scheme that penalizes the number of non-zero entries in H. It is a hybrid algorithm that uses the multiplicative update rule for updating W, while H is calculated using a constrained least squares model as the metric. The algorithm follows:

$$W_{ic} \leftarrow W_{ic} \left(\frac{(VH^T)_{ic}}{(WH^T)_{ic}} \right)$$

Solve for H in the constrained least squares problem

$$(W^T W + \lambda I)H = W^TV$$

Rephrase the constrained least squares step for finding H as

$$\text{Min}_H \{ \| V - WH \|^2 + \lambda \| H \|^2 \}$$

From this it is seen that the parameter λ is a regularization value that is used to balance the reduction of the metric

$$\| V - WH \|$$

with the enforcement of smoothness and sparsity of H.

- **Class NMFMultiplicativeUpdate** uses a multiplicative update rule for W and H, as proposed by Lee and Seung.

$$H_{cj} \leftarrow H_{cj} \left(\frac{(W^TV)_{cj}}{(W^TWH)_{cj}} \right)$$

$$W_{ic} \leftarrow W_{ic} \left(\frac{(VH^T)_{ic}}{(WH^T)_{ic}} \right)$$
This multiplicative method can be classified as a diagonally-scaled gradient descent method.

The update algorithm can be specified either as a constructor argument, or using the `UpdateAlgorithm` property. For instance:

Code Example – C# nonnegative matrix factorization (NMF)

```csharp
var alg = new NMFAlsUpdate();
var fact = new NMFact( alg );
fact.Factor( data, k );
Console.WriteLine( "ALS W = " + fact.W );
Console.WriteLine( "ALS H = " + fact.H );

fact.UpdateAlgorithm = new NMFGdClsUpdate();
fact.Factor( data, k );
Console.WriteLine( "GDCLS W = " + fact.W );
Console.WriteLine( "GDCLS H = " + fact.H );
```

Code Example – VB nonnegative matrix factorization (NMF)

```vbnet
Dim Alg As New NMFAlsUpdate()
Dim Fact As New NMFact(Alg)
Fact.Factor(Data, K)
Console.WriteLine("ALS W = " & Fact.W)
Console.WriteLine("ALS H = " & Fact.H)

Fact.UpdateAlgorithm = New NMFGdClsUpdate()
Fact.Factor(Data, K)
Console.WriteLine("GDCLS W = " & Fact.W)
Console.WriteLine("GDCLS H = " & Fact.H)
```

47.2 Data Clustering Using NMF

NMath Stats provides class `NMFClustering` for performing data clustering using iterative nonnegative matrix factorization (NMF), where each iteration step produces a new W and H. At each iteration, each column v of V is placed into a cluster corresponding to the column w of W which has the largest coefficient in H. That is, column v of V is placed in cluster i if the entry h_{ij} in H is the largest entry in column h_j of H. Results are returned as an adjacency matrix whose i,jth value is 1 if columns i and j of V are in the same cluster, and 0 if they are not.

Iteration stops when the clustering of the columns of the matrix V stabilizes. There are three parameters that control iteration:

- the maximum number of iterations to perform
the stopping adjacency, which is the number of consecutive times the adjacency matrix remains unchanged before it is considered stabilized

the convergence check period. Computing the adjacency matrix can be a somewhat expensive operation, so you may want to perform this operation only every nth iteration.

For example, running a `NMFClustering` instance with maximum iterations 2000, stopping adjacency 40, and convergence check period 10, computes a new adjacency matrix every 10 iterations, and checks it against the previous adjacency matrix. If they are the same, a count is incremented. The iteration stops when 40 consecutive unchanged adjacency matrices are recorded, or the maximum 2000 iterations are reached.

Creating NMFClustering Instances

Class `NMFClustering` is parameterized on the NMF update algorithm to use (Section 47.1). For instance:

Code Example – C# nonnegative matrix factorization (NMF)

```csharp
var nmfClustering = new NMFClustering<NMFDivergenceUpdate>();
```

Code Example – VB nonnegative matrix factorization (NMF)

```vbnet
Dim NMFClustering As New NMFClustering(Of NMFDivergenceUpdate)()
```

The update algorithm can be changed post-construction using the `Updater` property.

Code Example – C# nonnegative matrix factorization (NMF)

```csharp
nmfClustering.Updater = new NMFGdClsUpdate();
```

Code Example – VB nonnegative matrix factorization (NMF)

```vbnet
NMFClustering.Updater = New NMFGdClsUpdate()
```

The maximum iterations, stopping adjacency, and convergence check period can be specified either as constructor parameters, or post-construction using the `MaxFactorizationIterations`, `StoppingAdjacency`, and `ConvergenceCheckPeriod` properties, respectively. The default maximum number of iterations is 2000, the default stopping adjacency is 40, and the default convergence check period is 10.

Performing the Factorization

The `Factor()` method performs the actual iterative factorization:
Cluster Results

After clustering, the `Converged` property checks if the iterative factorization converged before hitting the default maximum number of iterations. `Iterations` gets the total number of iterations performed in the most recent calculation. For example:

Code Example – C# nonnegative matrix factorization (NMF)

```csharp
if ( nmfClustering.Converged ) {
    Console.WriteLine( "Factorization converged in {0} iterations.",
                      nmfClustering.Iterations );
} else {
    Console.WriteLine( "Factorization failed to converge in {0} iterations.",
                      nmfClustering.MaxFactorizationIterations );
}
```

Code Example – VB nonnegative matrix factorization (NMF)

```vbnet
If (NMFClustering.Converged) Then
    Console.WriteLine("Factorization converged in {0} iterations.",
                    NMFClustering.Iterations)
Else
    Console.WriteLine("Factorization failed to converge in {0} iterations.",
                    NMFClustering.MaxFactorizationIterations)
End If
```

If clustering converged, the final factors W and H are accessed through properties W and H:

Code Example – C# nonnegative matrix factorization (NMF)

```csharp
Console.WriteLine( "W = " + nmfClustering.W );
Console.WriteLine( "H = " + nmfClustering.H );
```

Code Example – VB nonnegative matrix factorization (NMF)

```vbnet
Console.WriteLine( "W = " + NMFClustering.W )
Console.WriteLine( "H = " + NMFClustering.H )
```
Chapter 47. Nonnegative Matrix Factorization 199

Code Example – VB nonnegative matrix factorization (NMF)

Console.WriteLine("W = " & NMFClustering.W)
Console.WriteLine("H = " & NMFClustering.H)

The Connectivity property returns the final adjacency matrix as an instance of ConnectivityMatrix. The connectivity matrix is an adjacency matrix, A, such that columns of the factored matrix are in the same cluster if $A[i,j] == 1$, and are in different clusters if $A[i,j] == 0$. For instance:

Code Example – C# nonnegative matrix factorization (NMF)

ConnectivityMatrix connectivity = nmfClustering.Connectivity;
Console.WriteLine("Connectivity Matrix: ");
Console.WriteLine(connectivity.ToTabDelimited());

Code Example – VB nonnegative matrix factorization (NMF)

Dim Connectivity As ConnectivityMatrix = NMFClustering.Connectivity
Console.WriteLine("Connectivity Matrix: ");
Console.WriteLine(Connectivity.ToTabDelimited())

The ClusterSet property returns a ClusterSet (Section 46.3) describing the final clusters:

Code Example – C# nonnegative matrix factorization (NMF)

ClusterSet cs = nmfClustering.ClusterSet;

 // Print out the cluster each column belongs to
 for (int i = 0; i < cs.N; i++) {
 Console.WriteLine("Column {0} belongs to cluster {1}",
 i, cs[i]);
 }

 // Print out the the members of each cluster
 for (int i = 0; i < cs.NumberOfClusters; i++) {
 int[] members = cs.Cluster(i);
 Console.Write("Cluster number {0} contains: ", i);
 for (int j = 0; j < members.Length; j++) {
 Console.Write("{0} ", j);
 }
 Console.WriteLine();
 }

Code Example – VB nonnegative matrix factorization (NMF)

Dim CS As ClusterSet = NMFClustering.ClusterSet

' ' Print out the cluster each column belongs to
For I As Integer = 0 To CS.N - 1
 Console.WriteLine("Column {0} belongs to cluster {1}", I, CS(I))
Next
' Print out the members of each cluster
For I As Integer = 0 To CS.NumberOfClusters - 1
 Dim Members() As Integer = CS.Cluster(I)
 Console.Write("Cluster number {0} contains: ", I)
 For J As Integer = 0 To Members.Length - 1
 Console.Write("{0} ", J)
 Next
 Console.WriteLine()
Next

Lastly, the Cost property gets the value of the cost function for the factorization.

Code Example – C# nonnegative matrix factorization (NMF)
double cost = nmfClustering.Cost;

Code Example – VB nonnegative matrix factorization (NMF)
Dim Cost As Double = NMFClustering.Cost

The cost function is the function that is minimized by the NMF update algorithm.

Computing a Consensus Matrix

NMF uses an iterative algorithm with random starting values for W and H. This, coupled with the fact that the factorization is not unique, means that if you cluster the columns of V multiple times, you may get different final clusterings. The consensus matrix is a way to average multiple clusterings, to produce a probability estimate that any pair of columns will be clustered together.

To compute the consensus matrix, the columns of V are clustered using NMF n times. Each clustering yields a connectivity matrix. Recall that the connectivity matrix is a symmetric matrix whose i, jth entry is 1 if columns i and j of V are clustered together, and 0 if they are not. The consensus matrix is also a symmetric matrix, whose i, jth entry is formed by taking the average of the i, jth entries of the n connectivity matrices.

Thus, each i, jth entry of the consensus matrix is a value between 0, when columns i and j are not clustered together on any of the runs, and 1, when columns i and j were clustered together on all runs. The i, jth entry of a consensus matrix may be considered, in some sense, a “probability” that columns i and j belong to the same cluster.

NMath Stats provides class NMFConsensusMatrix for compute a consensus matrix. NMFConsensusMatrix is parameterized on the NMF update algorithm to use (Section 47.1). Additional constructor parameters specify the matrix to factor, the order k of the NMF factorization (the number of columns in W), and the number of clustering runs. For example:
Code Example – C# nonnegative matrix factorization (NMF)

```csharp
DoubleMatrix data;  // data to be factored
int k;               // number of columns in W
int numberOfRuns = 70;

var consensusMatrix =
    new NMFConsensusMatrix<NMFDivergenceUpdate>(data, k,
                                                numberOfRuns);
```

Code Example – VB nonnegative matrix factorization (NMF)

```vbnet
Dim Data As DoubleMatrix...   '' data to be factored
Dim K As Integer...   '' number of columns in W
Dim NumberOfRuns As Integer = 70

Dim ConsensusMatrix As New NMFC consensusMatrix(Of
        NMFDivergenceUpdate)(Data, K, NumberOfRuns)
```

The consensus matrix is computed at construction time, so be aware that this may be an expensive operation. Post-construction, the `NumberOfConvergedRuns` property gets the number of clustering runs where the NMF computation converged:

Code Example – C# nonnegative matrix factorization (NMF)

```csharp
Console.WriteLine( "{0} runs out of {1} converged.",
                    consensusMatrix.NumberOfConvergedRuns, numberOfRuns );
```

Code Example – VB nonnegative matrix factorization (NMF)

```vbnet
Console.WriteLine("{0} runs out of {1} converged.",
                   ConsensusMatrix.NumberOfConvergedRuns, NumberOfRuns)
```

`NMFConsensusMatrix` provides a standard indexer for getting the element value at a specified row and column in the consensus matrix. For example, this code gets the probability that columns 2 and 7 will be clustered together:

Code Example – C# nonnegative matrix factorization (NMF)

```csharp
double p = consensusMatrix[2, 7];
```

Code Example – VB nonnegative matrix factorization (NMF)

```vbnet
Dim P As Double = ConsensusMatrix(2, 7)
```

This code prints the entire consensus matrix:

Code Example – C# nonnegative matrix factorization (NMF)

```csharp
Console.WriteLine( "Consensus Matrix:");
Console.WriteLine( consensusMatrix.ToTabDelimited() );
```
A consensus matrix, C, can also be used to perform a hierarchical clustering of the columns of V (Section 46.3), using the distance function:

$$distance_{i,j} = 1.0 - C_{i,j}$$

A `ClusterAnalysis` instance is constructed from a matrix containing numeric data. Each row in the data set represents an object to be clustered. In this case, you’re simply clustering the column numbers of V, so construct a matrix with one column containing the numbers 0 to $n-1$, where n is the number of columns of V (and the order of the consensus matrix):

Code Example – C# nonnegative matrix factorization (NMF)

```csharp
var colNumbers =
    new DoubleMatrix( consensusMatrix.Order, 1, 0, 1 );

Distance.Function distance =
    delegate( DoubleVector data1, DoubleVector data2 ) {
        int i = (int)data1[0];
        int j = (int)data2[0];
        return 1.0 - consensusMatrix[i, j];
    };

var ca = new ClusterAnalysis( colNumbers, distance );
```

Code Example – VB nonnegative matrix factorization (NMF)

```vbnet
Dim ColNumbers As New DoubleMatrix(ConsensusMatrix.Order, 1, 0, 1)

Dim distance As Distance.Function = Function(Data1 As DoubleVector, Data2 As DoubleVector)
    Dim I As Integer = CType(Data1(0), Integer)
    Dim J As Integer = CType(Data2(0), Integer)
    Return 1.0 - ConsensusMatrix(I, J)
End Function

Dim CA As New ClusterAnalysis(ColNumbers, distance)
```

After you’ve created a `ClusterAnalysis` object, the `CutTree()` method constructs a set of clusters by cutting the hierarchical linkage tree either at the specified height, or into the specified number of clusters. For example, this code cuts the linkage tree to form three clusters:

Code Example – C# nonnegative matrix factorization (NMF)

```csharp
ClusterSet clusters = ca.CutTree( 3 );
```

Code Example – VB nonnegative matrix factorization (NMF)

```vbnet
Dim clusters As New ClusterSet(CA)
```

A consensus matrix can also be used to perform a hierarchical clustering of the columns of V (Section 46.3), using the distance function: $distance_{i,j} = 1.0 - C_{i,j}$.
for (int i = 0; i < clusters.NumberOfClusters; i++) {
 int[] members = clusters.Cluster(i);
 Console.Write("Cluster {0} contains: ", i);
 for (int j = 0; j < members.Length; j++) {
 Console.Write("{0} ", members[j]);
 }
 Console.WriteLine();
}

Code Example – VB nonnegative matrix factorization (NMF)

Dim Clusters As ClusterSet = CA.CutTree(3)

For I As Integer = 0 To Clusters.NumberOfClusters - 1
 Dim Members() As Integer = Clusters.Cluster(I)
 Console.Write("Cluster {0} contains: ", I)
 For J As Integer = 0 To Members.Length - 1
 Console.Write("{0} ", Members(J))
 Next
 Console.WriteLine()
Next
Partial Least Squares (PLS) is a technique that generalizes and combines features from principal component analysis (Section 46.1) and multiple linear regression (Chapter 42). It is particularly useful when you need to predict a set of response (dependent) variables from a large set of predictor (independent variables).

As in multiple linear regression, the goal of PLS regression is to construct a linear model

$$ Y = XB + E $$

where Y is n cases by m variables response matrix, X is a n cases by p variables predictor matrix, B is a p by m regression coefficients matrix, and E is a noise term for the model which has the same dimensions as Y.

As in principal components regression, PLS regression produces factor scores as linear combinations of the original predictor variables, so that there is no correlation between the factor score variables used in the predictive regression model. For example, suppose that we have a matrix of response variables Y, and a large number of predictive variables X (in matrix form), some of which may be highly correlated. A regression using factor extraction for this data computes the score matrix $T=XW$ for an appropriate matrix of weights W, and then considers the linear regression model $Y=TQ+E$, where Q is a matrix of regression coefficients, called loadings, for T, and E is an error term. Once the loadings Q are computed, the above regression model is equivalent to $Y=XB+E$, with $B=WQ$, which can be used as a predictive model.

PLS regression differs from principal components regression in the methods used for extracting factor scores. While principal components regression computes the weight matrix W reflecting the covariance structure between predictor variables, PLS regression produces the weight matrix W reflecting the covariance structure between the predictor and response variables.

For establishing the model with c factors, or components, PLS regression produces a p by c weight matrix W for X such that $T=XW$. These weights are computed so that each of them maximizes the covariance between responses and the corresponding factor scores. Ordinary least squares regression of Y on T are then performed to produce Q, the loadings for Y (or weights for Y) such that $Y=TQ+E$. Once Q is computed, we have $Y=XB+E$, where $B=WQ$.
48.1 Computing a PLS Regression

NMath Stats provides two classes for performing partial least squares (PLS) regression, PLS1 and PLS2:

- **PLS1** is used when the responses, Y, in the model \(Y=XB+E \) consist of a single variable. In this case Y is a vector containing the \(n \) response values.

- **PLS2** is used when the responses are multivariate. In this case Y is a matrix composed of \(n \) rows with each row containing the \(m \) response variable values.

Computing a PLS regression is accomplished by simply constructing a PLS1 or PLS2 instance. The basic parameters are:

- the matrix of predictor variables values
- the response variable values (a vector for PLS1 and a matrix for PLS2)
- an integer specifying the number of factors or components

For example:

Code Example – C# partial least squares (PLS)

```csharp
DoubleMatrix A = ... 
DoubleVector y = ... 
int numComponents = 3;

var pls = new PLS1(A, y, numComponents);
```

Code Example – VB partial least squares (PLS)

```vbnet
Dim A As DoubleMatrix = ... 
Dim Y As DoubleVector = ... 
Dim NumComponents As Integer = 3

Dim PLS As New PLS1(A, Y, NumComponents)
```

You can also invoke the **Calculate()** function on PLS1 or PLS2 to calculate a regression on an existing instance:

Code Example – C# partial least squares (PLS)

```csharp
pls.Calculate(A, y, numComponents);
```

Code Example – VB partial least squares (PLS)

```vbnet
PLS.Calculate(A, Y, NumComponents)
```
48.2 Error Checking

After computing a PLS regression, always check the IsGood property to ensure that there were no errors in performing the calculation. If IsGood returns the false, the Message property will contain a message indicating the nature of the error. For example, the following code checks that the calculation succeeded, and if not, prints out the error message and returns:

```
if (pls.IsGood) {
    Console.WriteLine("Success");
} else {
    Console.WriteLine("PLS calculation failed: " + pls.Message);
    return;
}
```

One common source of calculation failure occurs when the number of components specified for the calculation is greater than the rank of X, the matrix of predictor variables. If this occurs, try decreasing the number of components for the regression until the calculation succeeds. You can also use Cross Validation (Section 48.6) to determine the optimal number of components.

If the calculation fails due to the non-convergence of the Iterative Power Method for computing dominant eigenvectors, you may want to adjust the maximum number of iterations and/or the tolerance for this method (Section 48.5).

48.3 Predicted Values

Once you’ve performed a PLS regression (Section 48.1), you can calculate the predicted value of the response variable for a given value of the predictor variable.

```
double plsYhat = pls.Predict(x);
```
48.4 Analysis of Variance

NMath Stats provides the classes PLS1Anova and PLS2Anova for performing a classic analysis of variance (ANOVA) for PLS1 and PLS2 regression models. These classes calculate the sum of squares total, sum of squares residual, mean square error for prediction, and the coefficient of determination. For instance:

Code Example – C# partial least squares (PLS)

```csharp
var plsAnova = new PLS2Anova(pls);
DoubleVector ssTotal = plsAnova.SumOfSquaresTotal;
DoubleVector ssResiduals = plsAnova.SumOfSquaresResiduals;
DoubleVector se = plsAnova.StandardError;
DoubleVector rms = plsAnova.RootMeanSqrErrorPrediction;
DoubleVector rSquared = plsAnova.CoefficientOfDetermination;
```

Code Example – VB partial least squares (PLS)

```vbnet
Dim PlsAnova As New PLS2Anova(PLS)
Dim SSTotal As DoubleVector = PlsAnova.SumOfSquaresTotal
Dim SSResiduals As DoubleVector = PlsAnova.SumOfSquaresResiduals
Dim SE As DoubleVector = PlsAnova.StandardError
Dim RMS As DoubleVector = PlsAnova.RootMeanSqrErrorPrediction
Dim RSquared As DoubleVector = PlsAnova.CoefficientOfDetermination
```

48.5 PLS Algorithms

NMath Stats provides classes PLS1NipalsAlgorithm and PLS2NipalsAlgorithm which implement the Nonlinear Iterative PArtial Least Squares (NIPALS) algorithm for PLS1 and PLS2 respectively, and class PLS2SimplsAlgorithm which implements the Straightforward IMplementation of PLS (SIMPLS) algorithm for PLS2.
The algorithm to use may be specified in the constructor for a PLS1 or PLS2 object, or set through the Calculator property:

Code Example – C# partial least squares (PLS)
```csharp
var calculator = new PLS2SimplsAlgorithm();
pls.Calculator = calculator;
```

Code Example – VB partial least squares (PLS)
```vbnet
Dim Calculator As New PLS2SimplsAlgorithm()
PLS.Calculator = Calculator
```

NOTE—Note that setting the calculator through the property forces a recalculation if data is present.

The SIMPLS algorithm for PLS2 uses the Iterative Power Method for computing dominant eigenvectors. This algorithm produces a candidate eigenvector during each iteration which is normalized with respect to the l-infinity norm. When the two-norm of the difference between the current eigenvector, e_i, and the eigenvector computed on the previous iteration, e_{i-1}, is less than a specified tolerance, the algorithm stops. The maximum number of iteration to perform as well as the tolerance may be specified on the algorithm object.

If your PLS2 with SIMPLS calculation fails because the power method failed to converge, you may want to adjust these values.(If the calculation failure is due to non-convergence of the power method, this will be indicated in the Message property of the PLS2 object.

48.6 Cross Validation

Cross validation is a model evaluation method which measures how well a model makes predictions for data that it has not already sees (as with residuals). To accomplish this, some of the data is removed before the model is constructed. Once the model is constructed, the data that was removed can be used to test the performance of the model on the “new” data. The following methods are typically used:

- The Holdout Method

The simplest kind of cross validation is the holdout method. The data set is separated into two sets, called the training set and the testing set. The PLS regression is constructed using the training set, then the regression model is asked to make predictions for the responses for the predictor data in the training set. The errors it makes are accumulated to give the mean square error.
• **K-fold Cross Validation**

In *k-fold cross validation*, the data set is divided into *k* subsets, and the hold-out method is repeated *k* times. Each time one of the *k* subsets is used as the test set and the other *k-1* subsets are put together to form a training set. The average mean square error is then computed across all *k* trials.

• **Leave-One-Out Cross Validation**

Leave-one-out cross validation is the result of taking *k*-fold cross validation to its logical extreme, with *k* equal to *n*, the number of data points in the set. That means that *n* separate times, the PLS model is computed using all the data except for one point and a prediction is made for that point. As before the average mean square error is computed and used to evaluate the model.

NMath Stats provides two classes for doing *k*-fold cross validation on PLS models. *PLS1CrossValidation* is used when the response data is univariate, and *PLS2CrossValidation* is used when the response data is multivariate. To perform a cross validation calculation, you need to specify the data (Section 48.1), a PLS calculation algorithm (Section 48.5), and an algorithm for dividing the data into subsets.

To specify how subsets for *k*-fold cross validation are generated from the data, you must provide the cross validation class with an object implementing the *ICrossValidationSubsets* interface. *NMath Stats* provides classes *LeaveOneOutSubsets*, which implement the leave-one-out strategy, and *KFoldSubsets*, which implements *k*-fold with arbitrary *k*.

The average mean square error for the cross validation calculation is available as a property on the cross validation object. Also available is an array of *PLS1CrossValidationResult* or *PLS2CrossValidationResult* objects. Each result object contains testing and training data that was used for each cross validation calculation and the associated mean square error.

Jackknifing of Regression Coefficients

NMath Stats also provides class *PLS2CrossValidationWithJackknife* for evaluation of multivariate PLS models with model coefficient variance estimates and confidence intervals.

The jackknife estimator of a parameter is found by systematically leaving out each observation from a dataset and calculating the estimate and then finding the average of these calculations. Given a sample of size *N*, the jackknife estimate is found by aggregating the estimates of each *N-1* estimate in the sample.

The original Tukey jackknife variance estimator is defined as
where \(g \) is the number of subsets used in cross validation, \(B_i \) is the estimated coefficients when subset \(i \) is left out (called the jackknife replicates), and \(\bar{B} \) is the mean of the \(B_i \).

However, Martens and Martens (2000) defined the estimator as

\[
\frac{(g-1)}{g} \sum (B_i - \hat{B})
\]

where \(\hat{B} \) is the coefficient estimate using the entire data set—that is, they use the original fitted coefficients instead of the mean of the jackknife replicates. This is the default for class `PLS2CrossValidationWithJackknife`, but you can set `UseMean` to `true` for the original Tukey definition. For example:

Code Example – C# PLS cross-validation with jackknife

```csharp
int numComponents = 2;

var cv = new PLS2CrossValidationWithJackknife
{
    Scale = false,
    UseMeans = true
};
cv.DoCrossValidation(X, Y, numComponents);
Console.WriteLine(cv.CoefficientVariance);
```

Code Example – VB PLS cross-validation with jackknife

```vbnet
Dim NumComponents As Integer = 2

Dim CV As New PLS2CrossValidationWithJackknife
CV.Scale = False
CV.UseMeans = True

CV.DoCrossValidation(X, Y, NumComponents)
Console.WriteLine(CV.CoefficientVariance)
```

48.7 Partial Least Squares Discriminant Analysis

Partial least squares Discriminant Analysis (PLS-DA) is a variant used when the response variable is categorical. Three classes are provided for performing PLS-DA:

- **SparsePlsDa** performs Discriminant Analysis (DA) using a classical sparse PLS regression (sPLS), but where the response variable is categorical. The response vector \(Y \) is qualitative and is recoded as a dummy block matrix.
where each of the response categories are coded via an indicator variable. PLS-DA is then run as if \(Y \) was a continuous matrix. \texttt{SparsePlsDa} inherits from \texttt{PLS2}.

- \texttt{SparsePls} performs a sparse PLS calculation with variable selection. The LASSO penalization is used on the pairs of loading vectors. \texttt{SparsePls} implements \texttt{IPLS2Calc}.

- \texttt{SparsePLSDACrossValidation} performs an evaluation of a PLS model. Evaluation consists of dividing the data into two subsets: a training subset and a testing subset. A PLS calculation is performed on the training subset and the resulting model is used to predict the values of the dependent variables in the testing set. The mean square error between the actual and predicted dependent values is then calculated. Usually, the data is divided up into several training and testing subsets and calculations are done on each of these. In this case the average mean square error over each PLS calculation is reported. (The individual mean square errors are available as well.)

The subsets to use in the cross validation are specified by providing an implementation of the \texttt{ICrossValidationSubsets} interface. Classes that implement this interface generate training and testing subsets from PLS data.

For example, if \(X \) is the predictor data and \(y \) the corresponding observed factor levels, this code calculates the sparse PLS-DA:

\textbf{Code Example – C# Partial Least Squares Discriminant Analysis (PLS-DA)}

```csharp
int ncomp = 3;
int numXvarsToKeep = (int) Math.Round( X.Cols * 0.66 );
int[] keepX = Enumerable.Repeat( numXvarsToKeep, ncomp ).ToArray();
var splsda = new SparsePlsDa( X, y, ncomp, keepX );
```

\textbf{Code Example – VB Partial Least Squares Discriminant Analysis (PLS-DA)}

```vbnet
Dim NComp As Integer = 3
Dim NumXvarsToKeep As Integer = CType(Math.Round(X.Cols * 0.66), Integer)
Dim KeepX As Integer() = Enumerable.Repeat(NumXvarsToKeep, NComp).ToArray()
Dim SPLSDA As New SparsePlsDa(X, Y, NComp, KeepX)
```

The number of components to keep in the model is specified, as well as the number of predictor variables to keep for each of the components (about two thirds, in this case).

Because \texttt{SparsePlsDa} is a \texttt{PLS2}, you can use the \texttt{PLS2Anova} class to perform an ANOVA (Section 48.4).
Code Example – C# Partial Least Squares Discriminant Analysis (PLS-DA)

```csharp
var anova = new PLS2Anova(splsda);
Console.WriteLine( "Rsqr: " + anova.CoefficientOfDetermination );
Console.WriteLine( "MSE Prediction: " +
    anova.RootMeanSqrErrorPrediction );
```

Code Example – VB Partial Least Squares Discriminant Analysis (PLS-DA)

```vbnet
Dim Anova As New PLS2Anova(SPLSDA)
Console.WriteLine("Rsqr: " & Anova.CoefficientOfDetermination)
Console.WriteLine("MSE Prediction: " &
    Anova.RootMeanSqrErrorPrediction)
```

You can also do cross validation using class `SparsePLSDACrossValidation`.

Code Example – C# Partial Least Squares Discriminant Analysis (PLS-DA)

```csharp
var subsetGenerator = new LeaveOneOutSubsets();
var crossValidation =
    new SparsePLSDACrossValidation( subsetGenerator );
crossValidation.DoCrossValidation( X, yFactor, ncomp, keepX );
Console.WriteLine( "Cross validation average MSE: " +
    crossValidation.AverageMeanSqrError );
```

Code Example – VB Partial Least Squares Discriminant Analysis (PLS-DA)

```vbnet
Dim SubsetGenerator As New LeaveOneOutSubsets()
Dim CrossValidation As New SparsePLSDACrossValidation(SubsetGenerator)
CrossValidation.DoCrossValidation(X, YFactor, NComp, KeepX)
Console.WriteLine("Cross validation average MSE: " &
    CrossValidation.AverageMeanSqrError)
```
NMath Stats provides classes GoodnessOfFit and GoodnessOfFitParameter for testing the goodness of fit of least squares model-fitting classes, such as LinearRegression, PolynomialLeastSquares, and OneVariableFunctionFitter:

Available statistics include the residual standard error, the coefficient of determination (R2 and "adjusted" R2), the F-statistic for the overall model with its numerator and denominator degrees of freedom, and standard errors, t-statistics, and corresponding (two-sided) p-values for the model parameters.

This chapter describes how to use the goodness of fit classes.

NOTE—GoodnessOfFit and GoodnessOfFitParameter are a generalization of classes LinearRegressionAnova and LinearRegressionParameter (Chapter 42), respectively. As such, they duplicate the functionality of those classes for testing the goodness of fit of a LinearRegression, with the exception of the beta coefficients.

49.1 Significance of the Overall Model

Class GoodnessOfFit tests the overall model significance for least squares model-fitting classes, such as LinearRegression, PolynomialLeastSquares, and OneVariableFunctionFitter.

GoodnessOfFit instances can be constructed from:

- A LinearRegression object.
- A PolynomialLeastSquares object, plus the vectors of x and y data.
- A OneVariableFunctionFitter object, plus the vectors of x and y data and the solution found by the fitter.

For example:

Code Example — C# goodness of fit

```csharp
var x = new DoubleVector(0.3330, 0.1670, 0.0833, 0.0416, 0.0208, 0.0104, 0.0052);
var y = new DoubleVector(3.636, 3.636, 3.236, 2.660, 2.114, 1.466, 0.866);
int degree = 2;
```
var pls =
 new PolynomialLeastSquares(degree, x, y);

var gof = new GoodnessOfFit(pls, x, y);

Code Example – VB goodness of fit

Dim X As New DoubleVector(0.333, 0.167, 0.0833, 0.0416, 0.0208, 0.0104, 0.0052)
Dim Y As New DoubleVector(3.636, 3.636, 3.236, 2.66, 2.114, 1.466, 0.866)

Dim Degree As Integer = 2
Dim PLS As New PolynomialLeastSquares(Degree, X, Y)

Dim GoF As New GoodnessOfFit(PLS, X, Y)

A variety of properties are provided for assessing the significance of the overall model:

- **RegressionSumOfSquares** gets the regression sum of squares. This quantity indicates the amount of variability explained by the model. It is the sum of the squares of the difference between the values predicted by the model and the mean.

- **ResidualSumOfSquares** gets the residual sum of squares. This is the sum of the squares of the differences between the predicted and actual observations.

- **ModelDegreesOfFreedom** gets the number of degrees of freedom for the model, which is equal to the number of predictors in the model.

- **ErrorDegreesOfFreedom** gets the number of degrees of freedom for the model error, which is equal to the number of observations minus the number of model parameters.

- **RSquared** gets the coefficient of determination.

- **AdjustedRSquared** gets the adjusted coefficient of determination.

- **MeanSquaredResidual** gets the mean squared residual. This quantity is equal to **ResidualSumOfSquares / ErrorDegreesOfFreedom** (equals the number of observations minus the number of model parameters).

- **MeanSquaredRegression** gets the mean squared for the regression. This is equal to **RegressionSumOfSquares / ModelDegreesOfFreedom** (equals the number of predictors in the model).

- **FStatistic** gets the overall F statistic for the model. This is equal to the ratio of **MeanSquaredRegression / MeanSquaredResidual**. This is the statistic for the hypothesis test where the null hypothesis, H_0, is that all the
parameters are equal to 0 and the alternative hypothesis is that at least one parameter is nonzero.

- `FStatisticPValue` gets the p-value for the F statistic.

For example, if `lr` is a `LinearRegression` object:

Code Example – C# goodness of fit

```csharp
var gof = new GoodnessOfFit(lr);
double sse = gof.ResidualSumOfSquares;
double r2 = gof.RSquared;
double fstat = gof.FStatistic;
double fstatPval = gof.FStatisticPValue;
```

Code Example – VB goodness of fit

```vb
Dim GoF As New GoodnessOfFit(LR)
Dim SSE As Double = GoF.ResidualSumOfSquares
Dim R2 As Double = GoF.RSquared
Dim FStat As Double = GoF.FStatistic
Dim FStatPval As Double = GoF.FStatisticPValue
```

Lastly, the `FStatisticCriticalValue()` function computes the critical value for the F statistic at a given significance level:

Code Example – C# goodness of fit

```csharp
double critVal = gof.FStatisticCriticalValue(.05);
```

Code Example – VB goodness of fit

```vb
Dim CritVal As Double = GoF.FStatisticCriticalValue(0.05)
```

49.2 Significance of Parameters

Instances of class `GoodnessOfFitParameter` test statistical hypothesis about individual parameters in a least squares model-fit.

Creating Goodness of Fit Parameter Objects

You can get an array of test objects for all parameters in a `GoodnessOfFit` using the `Parameters` property:

Code Example – C# goodness of fit

```csharp
GoodnessOfFitParameter[] params = gof.Parameters;
```
Properties of Goodness of Fit Parameters

Class `GoodnessOfFitParameter` provides the following properties:

- **Index** gets the index of the parameter in the overall model.
- **Value** gets the value of the parameter.
- **StandardError** gets the standard error of the parameter.
- **DegreesOfFreedom** gets the degrees of freedom of the parameter.

Hypothesis Tests

Class `GoodnessOfFitParameter` provides the following methods for testing statistical hypotheses regarding parameter values:

- **TStatisticPValue()** returns the p-value for a two-sided t test with the null hypothesis that the parameter is equal to a given test value, versus the alternative hypothesis that it is not.
- **TStatistic()** returns the value of the t statistic for the null hypothesis that the parameter value is equal to a given test value.
- **TStatisticCriticalValue()** gets the critical value for the t-statistic for a given alpha level.
- **ConfidenceInterval()** returns a $1 - \alpha$ confidence interval for the parameter for a given alpha level.

For example, this code tests whether a parameter in a model is significantly different than zero:

Code Example – C# goodness of fit

```csharp
double tstat = param.TStatistic( 0.0 );
double pValue = param.TStatisticPValue( 0.0 );
double criticalValue = param.TStatisticCriticalValue( 0.05 );
Interval confidenceInterval = param.ConfidenceInterval( 0.05 );
```

Code Example – VB goodness of fit

```vbnet
Dim TStat As Double = param.TStatistic(0.0)
Dim PValue As Double = param.TStatisticPValue(0.0)
Dim CriticalValue As Double = param.TStatisticCriticalValue(0.05)
Dim ConfidenceInterval As Interval = param.ConfidenceInterval(0.05)
```
CHAPTER 50.
PROCESS CONTROL

Statistical process control uses statistical measures to monitor and control a process. NMath provides classes for measuring process quality capability (Cp, Cpm, and Cpk), performance (Pp and Ppk), and Z bench.

50.1 Process Capability

Class ProcessCapability computes the process capability parameters Cp, Cpm, Cpk for normally distributed data. If the data are not normal, the BoxCox transform can be used.

Instance of ProcessCapability are constructed from a vector of input data measurements, a subgroup size (the data must laid out in continuous subgroups of equal size), lower and upper specification limits, and the control target process mean.

Code Example – C# process control

```csharp
DoubleVector data = ... 
int size = 5;
double LSL = 73.95;
double USL = 74.05;
double target = 74.0;
var pc = new ProcessCapability( data, size, LSL, USL, target );
```

Code Example – VB process control

```vbnet
Dim Data As DoubleVector = ...
Dim Size As Integer = 5
Dim LSL As Double = 73.95
Dim USL As Double = 74.05
Dim Target As Double = 74.0
Dim PC As New ProcessCapability(Data, Size, LSL, USL, Target)
```

If no target is given, the mean of the specification limits is used.

The standard deviation is computed using the mean of the ranges method, referred to as the UWAVE-R method in the R qcc package.

ProcessCapability provides the following properties:
• **CI95** gets the 95% confidence interval. 95% of the time the process mean will reside within this interval. The estimate is based on the t-distribution (t-score) if there are 30 or fewer samples; otherwise, the normal distribution is used (z-score).

• **Cp** gets the process capability.

• **Cpk** gets the process capability index.

• **Cpm** gets the Taguchi capability index.

• **ProcessSigma** gets the estimate of the process standard deviations used to compute Cp, Cpk, and Cpm. The standard deviation is estimated using the unweighted averages of the subgroup ranges.

• **IQR** gets the interquartile range using the Minitab interpolation method. This method uses interpolation to find the upper and lower quartiles before returning the IQR. Therefore, the IQR may be computed from points that do not exist in the data set.

50.2 Process Performance

Class **ProcessPerformance** computes the process performance indices Ppk and Pp for normally distributed data. If the data are not normal, the **BoxCox** transform can be used.

Instance of **ProcessPerformance** are constructed from a vector of input data measurements, and lower and upper specification limits.

ProcessPerformance provides the following properties:

• **Ppk** gets the process performance index.

• **Pp** gets the process performance.

For example:

Code Example – C# process control

```csharp
DoubleVector data = ... 
double LSL = 1.90;
double USL = 2.10;
var pp = new ProcessPerformance( data, LSL, USL );
Console.WriteLine( pp.Ppk );
```

Code Example – VB process control

```vbnet
DoubleVector Data = ... 
Dim LSL As Double = 1.9
```
50.3 **Z Bench**

Class **ZBench** computes the Z bench (the Z value that corresponds to the total probability of a defect,) the percent defective, and the parts per million defective.

Instance of **ZBench** are constructed from a vector of input data measurements, and lower and upper specification limits.

Code Example – C# process control

```csharp
DoubleVector data = ...  
double LSL = 1.90;  
double USL = 2.10;  
var zb = new ZBench( data, LSL, USL );
```

Code Example – VB process control

```vbnet
DoubleVector Data = ...  
Dim LSL As Double = 1.9  
Dim USL As Double = 2.1  
Dim ZB As New ZBench(Data, LSL, USL)
```

Alternatively, a single-sided test can be performed using only a lower or upper specification limit. The test type is specified using a value from the **ControlLimits** enumeration: DoubleEnded, LowerOnly, or UpperOnly. For example:

Code Example – C# process control

```csharp
DoubleVector data = ...  
double USL = 2.10;  
var zb = new ZBench( data, ControlLimits.UpperOnly, USL );
```

Code Example – VB process control

```vbnet
DoubleVector Data = ...  
Dim USL As Double = 2.1  
Dim ZB As New ZBench(Data, ControlLimits.UpperOnly, USL)
```

Class **ZBench** provides the following properties:

- **ZBench** gets the Z Bench.
- **PercentDefective** gets the percent defective.
- **PPMDefective** gets the parts per million defective.
PART VI - MISCELLANEOUS TOPICS
CHAPTER 51.
SERIALIZATION

NMath data classes are fully persistable using standard .NET mechanisms. All classes implement the ISerializerable interface to control their own serialization and deserialization. Common Language Runtime (CLR) serialization Formatter classes call the provided GetObjectData() methods at serialization time to populate SerializationInfo objects with all the data required to represent NMath objects.

This chapter describes how to persist NMath objects in binary, SOAP, and XML formats.

51.1 Binary Serialization

The System.Runtime.Serialization.Formatters.Binary.BinaryFormatter class provides Serialize() and Deserialize() methods for persisting an object in binary format to a given stream. For example, this code serializes two FloatComplexMatrix objects to a file:

Code Example – C# binary serialization

```csharp
using System.IO;

var A =
    new FloatComplexMatrix("2x2[ (5,9.8) (-6,.9) (7,-8) (8,8) ]");
var B = new FloatComplexMatrix(4, 4, .1F, .1F);

FileStream binStream = File.Create("myData.dat");
var binFormatter = new BinaryFormatter();

binFormatter.Serialize(binStream, A);
binFormatter.Serialize(binStream, B);

binStream.Close();
```

Code Example – VB binary serialization

```vbnet
Imports System.IO

Dim A As New FloatComplexMatrix("2x2[ (5,9.8) (-6,.9) (7,-8) (8,8) ]")
Dim B As New FloatComplexMatrix(4, 4, 0.1F, 0.1F)
```
Dim BinStream As FileStream = File.Create("myData.dat")
Dim BinFormatter As New BinaryFormatter()

BinFormatter.Serialize(BinStream, A)
BinFormatter.Serialize(BinStream, B)

BinStream.Close()

This code restores the objects from the file:

Code Example – C# binary serialization

binStream = File.OpenRead("myData.dat");

FloatComplexMatrix A2 =
 (FloatComplexMatrix)binFormatter.Deserialize(binStream);
FloatComplexMatrix B2 =
 (FloatComplexMatrix)binFormatter.Deserialize(binStream);

binStream.Close();
File.Delete("myData.dat");

Code Example – VB binary serialization

BinStream = File.OpenRead("myData.dat")

Dim A2 = CType(BinFormatter.Deserialize(BinStream),
 FloatComplexMatrix)
Dim B2 = CType(BinFormatter.Deserialize(BinStream),
 FloatComplexMatrix)

BinStream.Close()
File.Delete("myData.dat")

51.2 SOAP Serialization

The **System.Runtime.Serialization.Formatters.Soap.SoapFormatter** class provides **Serialize()** and **Deserialize()** methods for persisting an object in SOAP format to a given stream. For example, this code serializes a **FloatComplexTriDiagFact** object to a file:

Code Example – C# SOAP serialization

using System.IO;

int rows = 8, cols = 8;
FloatComplexVector data =
new FloatComplexVector(cols*3, new RandGenUniform(-1, 1));
var A =
 new FloatComplexTriDiagMatrix(data, rows, cols);
var F = new FloatComplexTriDiagFact(A);
FileStream xmlStream = File.Create("myData.xml");
var xmlFormatter = new SoapFormatter();
xmlFormatter.Serialize(xmlStream, F);
xmlStream.Close();

Code Example – VB SOAP serialization

Imports System.IO

Dim Rows As Integer = 8
Dim Cols As Integer = 8
Dim Data As New FloatComplexVector(Cols * 3,
 New RandGenUniform(-1.0, 1.0))
Dim A As New FloatComplexTriDiagMatrix(Data, Rows, Cols)
Dim F As New FloatComplexTriDiagFact(A)
Dim XMLStream As FileStream = File.Create("myData.xml")
Dim XMLFormatter As New SoapFormatter()
XMLFormatter.Serialize(XMLStream, F)
XMLStream.Close()

This code restores the objects from the file:

Code Example – C# SOAP serialization

xmlStream = File.OpenRead("myData.xml");
var F =
 (FloatComplexTriDiagFact)xmlFormatter.Deserialize(xmlStream);

xmlStream.Close();
File.Delete("myData.xml");

Code Example – VB SOAP serialization

XMLStream = File.OpenRead("myData.xml")
Dim F = CType(XMLFormatter.Deserialize(XMLStream),
 FloatComplexTriDiagMatrix)

XMLStream.Close()
File.Delete("myData.xml")
51.3 **XML Serialization**

XML serialization in .NET does not make use of CLR **Formatter** classes, as do binary serialization (Section 51.1) and SOAP serialization (Section 51.2). Instead, the framework provides the **System.Xml.Serialization.XmlSerializer** class for persisting to XML documents.

However, because **NMath** data classes implement the **IEnumerable** interface, **XmlSerializer** persists only the enumerated data. Thus, though a matrix or vector object can be serialized in XML, it cannot be restored.

If you want to serialize and deserialize **NMath** objects in XML format, you can easily overcome this limitation by writing a simple wrapper class that contains all the information necessary to restore the object, without implementing **IEnumerable**. For example, this code defines an **MyNameSpace.MyWrapper** class that wraps a **DoubleMatrix**:

Code Example – C# XML serialization

```csharp
using CenterSpace.NMath.Core;

namespace MyNamespace
{
    public class MyWrapper
    {
        public int Rows;
        public int Columns;
        public StorageType Storage = StorageType.ColumnMajor;
        public double[] Data;

        public MyWrapper() {}

        public MyWrapper( DoubleMatrix A )
        {
            Rows = A.Rows;
            Columns = A.Cols;
            DoubleMatrix B = (DoubleMatrix)A.Clone();
            Data = B.DataBlock.Data;
        }
    }
}
```

Code Example – XML binary serialization

```csharp
Imports CenterSpace.NMath.Core

Namespace MyNamespace
```
Public Class MyWrapper

 Public Rows As Integer
 Public Columns As Integer
 Public Storage As StorageType = StorageType.ColumnMajor
 Public Data() As Double

 Public Sub New()
 End Sub

 Public Sub New(A As DoubleMatrix)
 Rows = A.Rows
 Columns = A.Cols
 Dim B As DoubleMatrix = CType(A.Clone(), DoubleMatrix)
 Data = B.DataBlock.Data
 End Sub

End Class

End Namespace

Note that the constructor uses the `Clone()` method to ensure that the data is not referenced by any other objects, and that it is in contiguous storage.

You could then use the wrapper class to serialize a matrix object, as shown below:

Code Example – C# XML serialization

```csharp
using System.IO;
using System.Xml.Serialization;
using MyNamespace;

var A = new DoubleMatrix( "3x3\[1 2 3 4 5 6 7 8 9\]" );
var AWrap = new MyWrapper( A );

var x = new XmlSerializer( typeof( MyWrapper ) );
FileStream s = File.Create( "myData.xml" );
x.Serialize( s, A );
s.Close();
```

Code Example – VB XML serialization

```vbnet
Imports System.IO
Imports System.Xml.Serialization
Imports MyNamespace

Dim A As New DoubleMatrix("3x3\[1 2 3 4 5 6 7 8 9\]")
Dim AWrap As New MyWrapper(A)

Dim X As New XmlSerializer(GetType(MyWrapper))
Dim S As FileStream = File.Create("myData.xml")
X.Serialize(S, W)
X.Close()

To restore the object:

**Code Example – C# XML serialization**

```csharp
s = File.OpenRead("myData.xml");
MyWrapper AWrap = (MyWrapper)x.Deserialize(s);
var A = new DoubleMatrix(AWrap.Rows, AWrap.Columns,
 AWrap.Data, AWrap.Storage);
```

**Code Example – VB XML serialization**

```vbnet
S = File.OpenRead("myData.xml")
Dim AWrap As MyWrapper = CType(X.Deserialize(S), MyWrapper)
Dim A As New DoubleMatrix(AWrap.Rows, AWrap.Columns,
 AWrap.Data, AWrap.Storage)
```
CHAPTER 52.
DATABASE INTEGRATION

The .NET platform defines a number of types in the System.Data namespace—such as DataTable, DataRow, DataRowCollection, and DataView—that enable you to define and manipulate in-memory tables of data. NMath provides convenience methods for creating ADO.NET objects from vectors and general matrices, and for creating vectors and matrices from database objects.

52.1 Creating ADO.NET Objects from Vectors and Matrices

Real-value NMath vector and matrix classes provide ToDataTable() methods for creating ADO.NET DataTable objects. Complex number vector and matrix classes provide paired methods ToRealDataTable() and ToImagDataTable() for creating DataTable objects containing the real and imaginary parts, respectively.

NOTE—Values are copied by all methods that create data tables.

For example, this code creates a data table of one column containing the values in a vector:

Code Example – C#

```csharp
using System.Data;

var v = new FloatVector("45.4 -0.032 99 2.34");
DataTable table = v.ToDataTable();
```

Code Example – VB

```vbnet
Imports System.Data

Dim V As New FloatVector("45.4 -0.032 99 2.34")
Dim Table As DataTable = V.ToDataTable()
```

By default, the table is named Table. You can also pass a non-default table name to the ToDataTable() method. Thus, this code creates a data table named MyMatrixTable containing the values in a DoubleMatrix:

Code Example – C#

```csharp
using System.Data;
```
var A = new DoubleMatrix(8, 5, 3.1415);
DataTable table = A.ToDataTable("MyMatrixTable");

Code Example – VB
Imports System.Data

Dim A As New DoubleMatrix(8, 5, 3.1415)
Dim Table As DataTable = A.ToDataTable("MyMatrixTable")

This code illustrates creating paired data tables containing the real and imaginary parts a FloatComplexMatrix:

Code Example – C#
using System.Data;

string s =
   "2 x 2 [ (4.54,9.78) (3.2,-4.78) (-4.32,2.23) (4.3234,-1.0) ]";
var A = new FloatComplexMatrix(s);

DataTable reals = A.ToRealDataTable("RealParts");
DataTable imags = A.ToImagDataTable("ImaginaryParts");

Code Example – VB
Imports System.Data

Dim S As String =
   "2 x 2 [ (4.54,9.78) (3.2,-4.78) (-4.32,2.23) (4.3234,-1.0) ]"
Dim A As New FloatComplexMatrix(S)

Dim Reals As DataTable = A.ToRealDataTable("RealParts")
Dim Images As DataTable = A.ToImagDataTable("ImaginaryParts")

By default, the columns in a data table created from a vector or matrix are named column1, column2, and so on. If you wish to specify non-default column names, call Columns() on the returned DataTable object to obtain a DataColumnCollection, then iterate over the collection and set the ColumnName property on each DataColumn object to the desired name.

52.2 Creating Vector and Matrices from ADO.NET Objects

You can construct NMath vector and matrix classes from standard ADO.NET database objects. Real-value vector and matrix class constructors accept DataTable, DataRow, DataRowCollection, and DataView objects, typically
obtained from a database query. Complex number vector and matrix class constructors accept paired database objects containing the real and imaginary parts, respectively.

For example, assuming `table` is a `DataTable` instance:

**Code Example – C#**

```csharp
var A = new DoubleMatrix(table);
```

**Code Example – VB**

```vb
Dim A As New DoubleMatrix(Table)
```

The resulting matrix has the same number of rows and columns as the data table. Note that all values must be able to be converted to a double through a cast. If not, the constructor throws an `InvalidCastException`.

Similarly, assuming `view1` and `view2` are `DataView` objects, this code creates a `FloatComplexVector` instance whose real parts are derived from the first column of `view1`, and whose imaginary parts are derived from the first column of `view2`:

**Code Example – C#**

```csharp
var v = new FloatComplexVector(view1, view2);
```

**Code Example – VB**

```vb
Dim V As New FloatComplexVector(View1, View2)
```

In this case, all values must be able to be converted to a float through a cast.
All exceptions in \texttt{NMATH} inherit from the \texttt{NMATHException} class, enabling you to easily catch all \texttt{NMATH} exceptions. This chapter lists the exception classes and the conditions under which they are thrown.

### 53.1 Exception Types

The following exception classes inherit from \texttt{NMATHException}.

<table>
<thead>
<tr>
<th>Exception</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{FFTKernelException}</td>
<td>Thrown when MKL returns an error condition when computing an FFT.</td>
</tr>
<tr>
<td>\texttt{IndexOutOfRangeException}</td>
<td>Thrown when an out of range index is passed to an \texttt{NMATH} function.</td>
</tr>
<tr>
<td>\texttt{InvalidArgumentException}</td>
<td>Thrown when an invalid argument is passed to an \texttt{NMATH} function.</td>
</tr>
<tr>
<td>\texttt{InvalidBinBdryException}</td>
<td>Thrown when a histogram operation results in invalid bin boundaries.</td>
</tr>
<tr>
<td>\texttt{KernelLoadException}</td>
<td>Thrown when \texttt{NMATH} cannot load a kernel assembly.</td>
</tr>
<tr>
<td>\texttt{MatrixNotSquareException}</td>
<td>Thrown when a matrix operation requiring a square matrix is presented with a non-square one.</td>
</tr>
<tr>
<td>\texttt{MismatchedSizeException}</td>
<td>Exception thrown when an operation is performed with operands whose sizes are incompatible with the operation; for example, if you try to add two vectors with different lengths, or take the inner product of matrices \texttt{A} and \texttt{B} when the number of columns of \texttt{A} is not equal to the number of rows of \texttt{B}.</td>
</tr>
</tbody>
</table>

---

Chapter 53. Error Handling 235
For example, this code attempts to multiply two matrices with different dimensions, and catches a `MismatchedSizeException`:

**Code Example – C#**

```csharp
DoubleComplexMatrix A =
 new DoubleComplexMatrix(3, 3, new DoubleComplex(1,0));
DoubleComplexMatrix B =
 new DoubleComplexMatrix(2, 2, new DoubleComplex(1,0));

DoubleComplexMatrix C;
try
{
 C = A * B;
}
catch(MismatchedSizeException e)
{
 Console.WriteLine("Oops - " + e.Message);
}
```

**Code Example – VB**

```vbnet
Dim A As New DoubleComplexMatrix(3, 3, New DoubleComplex(1, 0))
Dim B As New DoubleComplexMatrix(2, 2, New DoubleComplex(1, 0))

Dim C As DoubleComplexMatrix
Try
 C = A * B
Catch E As MismatchedSizeException
 Console.WriteLine("Oops - " & E.Message)
End Try
```

Matrices must have the same dimensions to be combined using the element-wise operators.

---

### Table 28 – Exception classes

<table>
<thead>
<tr>
<th>Exception</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>NMathFormatException</strong></td>
<td>Thrown when a method encounters a faulty text representation; for example, if you try to create a vector from a string that has an invalid format.</td>
</tr>
<tr>
<td><strong>SingularMatrixException</strong></td>
<td>Thrown when a matrix operation requiring a non-singular matrix is presented with a singular one.</td>
</tr>
</tbody>
</table>
INDEX

Numerics
1-norm 185

A
absolute value 23, 49, 74, 187
abstract indexing 30
accessing underlying data 27, 28
ActiveSetLineSearchSQP 282
ActiveSetLineSearchSQP.Options 283
ActiveSetQPSolver 285
adjacency matrix 199
adjusted R2 293, 313, 215
ADO.NET 231
ADO.NET objects
  converting to data frames 14
  creating from data frames 46
alpha levels 91
ALS 194
Alternating Least Squares (ALS) 194
analysis of variance (ANOVA) 137
Anderson-Darling test 159
annealing 261
annealing history 265
annealing schedules 261
  custom 263
  linear 262
annealing temperature 261
AnnealingHistory 266
AnnealingHistory.Step 266
AnnealingMinimizer 261, 264, 265
AnnealingScheduleBase 262
ANOVA 137
ANOVA regression parameters 148
AnovaRegressionFactorParam 150
AnovaRegressionInteractionParam 150
AnovaRegressionParameter 150
Any CPU build configuration 7
appending to a vector 42
applying functions 50, 75, 188, 10
argument of a complex number 23
arithmetic mean 56
arithmetic operators 182, 193, 199
arrays, converting to 28
ASP.NET web applications 8
Assemblies 2
asymptotic function 309
autocorrelation 61

B
balancing 238
banded matrices 168
bandwidth 174, 179
Bessel functions 157
beta distribution 69
beta function 158, 66
BetaDistribution 67, 69
BiasType 58, 59, 60, 61
binary nonlinear programming 270, 279
binary serialization 47, 225
binomial coefficient 158, 65
binomial distribution 70
BinomialDistribution 67, 70
block-splitting 100
Boole’s rule 130
boolean columns 4
BoundedMultiVariableFunctionFitter 313
BoundedOneVariableFunctionFitter 305
Box-Cox power transformations 89
Bracket 250, 251, 253
bracketing minima 249
Brent’s Method 250
BrentMinimizer 250
Bunch-Kaufman factorization 203

C
calculus 125
categorical vectors  34
CDF  68
cell data  146, 147
cell means  148
CenterSpace.NMath.Stats namespace  2
central moments  60
central tendency  56
centroid linkage  184
chi-square distribution  71
ChiSquareDistribution  67, 71
Cholesky
  least squares  211
Cholesky factorization  203
choose function  65
city-block (Manhattan) distance  181
clamped cubic spline  142
clearing
  matrices  62
  vectors  41
cloning  38, 59, 178
CLRConfigFile  11
cluster analysis  180
ClusterAnalysis  180, 184, 202
clustering  196
ClusterSet  187, 191
coefficient of determination  293, 313, 215
column names  3, 4, 21
column sums  74
columns
  accessing  7
  adding data  6
  creating  4
  exporting to a string  12
  exporting to a vector  12
  exporting to an array  12
  properties  7
  removing data  6
  reordering  8
combinatorial functions  65
Common Language Specification  1
complete linkage  183
complete orthogonal decomposition 114
complex argument 188
complex conjugate 188
complex numbers 19
  absolute value function 23
  accessing values 21
  argument function 23
  comparing 22, 43, 63
  conjugate function 23
  creating 19
  creating from polar coordinates 20
  creating from strings 20
  modifying 21
  norm function 23
  trigonometric functions 24
component matrices 81
compressed row format 195
condition numbers 83, 208
confidence interval 220
conjugate gradient method 257
conjugate of a complex number 23
ConjugateGradientMinimizer 257
consensus matrix 200
constrained least squares 288
ConstraintType 270
contingency table 109
convergence check period 197
convolution 17, 103, 110
cophenetic distance 188
copying matrices 59, 178
copying vectors 38
CORegressionCalculation 114
correlated random inputs 85
correlation 61
counts 53
covariance 60
covariance matrix 61
Cox and Snell pseudo R-squared statistic 135
Cp 219, 220
Cpk 219, 220
Cpm 219, 220
creating matrices 173
critical values 141, 144, 167
Cronbach’s alpha 61
cross product 46
cross validation 210
cross-tabulation 40
cubic spline interpolation 142
cumulative distribution function 68
curve fitting 243, 295
CustomAnnealingSchedule 263

D
data block classes 27
data blocks 27
accessing 27, 28
properties 28
data frames
adding columns 16
adding rows 18
column properties 7
column types 4
creating 12
exporting to a matrix 44
exporting to a string 45
exporting to ADO.NET 46
permuting rows and columns 33
properties 21
removing columns 16
removing rows 18
sorting 32
database integration 231
DataFrame 3–??
DataTables 231
data-view pattern 27
datetime columns 4
DBrentMinimizer 252
deciles 54
decimal types 51
decomposition servers 223, 224
decompositions 223
deployment 12
descriptive statistics 49
design variables 130
determinants 82, 208
DFBoolColumn 4
DFColumn 4
DFDateTimeColumn 4
DFGenericColumn 4
DFIntColumn 4
DFNumericColumn 4
DFStringColumn 4
diagonally-scaled gradient descent 196
differential equations 329
differentiating polynomials 140
digamma function 158
DlGital Smoothing POlynomial 146
discrete wavelet transform 115
DISPO 146
Distance 180
distance functions 180
Distance.Function 180
distribution classes 67
Dormand-Prince method 332
dot product 46
DoubleBandFact 203
DoubleBandMatrix 169
DoubleBisquareWeightingFunction 221
DoubleCholeskyLeastSq 212
DoubleComplex 19
DoubleComplexBandFact 203
DoubleComplexBandMatrix 169
DoubleComplexCholeskyLeastSq 212
DoubleComplexDataBlock 27
DoubleComplexEigDecomp 234
DoubleComplexEigDecompServer 234
DoubleComplexLeastSquares 88
DoubleComplexLowerTriMatrix 166
DoubleComplexLUFact 79
DoubleComplexMatrix 53
DoubleComplexQRDecomp 223
DoubleComplexQRDecompServer 224
DoubleComplexQRLeastSq 213
DoubleComplexSVDecomp 228
DoubleComplexSVDecompServer 228
DoubleComplexSVDLeastSq 213
DoubleComplexTriDiagFact 203
DoubleComplexTriDiagMatrix 170
DoubleComplexUpperTriMatrix 167
DoubleComplexVector 33
DoubleCOWeightedLeastSq 215
DoubleDataBlock 27
DoubleDWT 117
DoubleEigDecomp 234
DoubleEigDecompServer 234
DoubleFairWeightingFunction 222
DoubleFunctional 273
DoubleFunctionalDelegate 273
DoubleHermitianBandMatrix 172
DoubleHermitianEigDecomp 234
DoubleHermitianEigDecompServer 234
DoubleHermitianFact 203
DoubleHermitianMatrix 168
DoubleHermitianPDBandFact 203
DoubleHermitianPDFact 203
DoubleHermPDTriDiagFact 203
DoubleIterativelyReweightedLeastSq 218
DoubleLeastSquares 87
DoubleLeastSqWeightingFunction 221
DoubleLowerTriMatrix 166
DoubleLUFact 79
DoubleMatrix 53
DoubleMultiVariableFunction 296
DoubleNonnegativeLeastSquares 88, 90
DoubleParameterizedDelegate 306
DoubleParameterizedFunction 306
DoubleParameterizedFunctional 314
DoubleQRDecomp 223
DoubleQRDecompServer 224
DoubleQRLeastSq 213
DoubleRandomBetaDistribution 96
DoubleRandomCauchyDistribution 96
DoubleRandomExponentialDistribution 97
DoubleRandomGammaDistribution 97
DoubleRandomGaussianDistribution 97
DoubleRandomGumbelDistribution 97
DoubleRandomLaplaceDistribution 97
DoubleRandomLogNormalDistribution 97
DoubleRandomRayleighDistribution 97
DoubleRandomUniformDistribution 97
DoubleRandomWeibullDistribution 97
DoubleSVDecomp 228
DoubleSVDecompServer 228
DoubleSVDEastSq 213
DoubleSymBandMatrix 171
DoubleSymEigDecomp 234
DoubleSymEigDecompServer 234
DoubleSymFact 203
DoubleSymmetricMatrix 168
DoubleSymPDBandFact 203
DoubleSymPDFact 203
DoubleSymPDTriDiagFact 203
DoubleTriDiagFact 203
DoubleTriDiagMatrix 170
DoubleUpperTriMatrix 167
DoubleVector 33
DoubleVectorParameterizedDelegate 314
DoubleWavelet 115
downhill simplex method 255
DownhillSimplexMinimizer 255
DualSimplexSolver 269, 271
DualSimplexSolverParams 271
dummy variable regression parameters in ANOVA 150
dummy variables 130
Durbin-Watson statistic 61
DWT 115

effective rank 89
effects encoding 149
eigenvalue classes 233
eigenvalue servers 233, 237
eigenvalue tolerance 238
eigenvalues 233, 234
eigenvectors 233
eLLlaic functions 158
eLlLaic integrals 158
encapsulating functions 125
enumeration 51, 77
equality operators 182, 193, 199
error tolerance 249
Euclidean distance 181
Euler gamma 158
Euler-Macheroni constant 158
evaluating functions 126, 246
evaluating polynomials 138
exception classes 235
exponential distribution 72
exponential function 309
exponential integral 158
ExponentialDistribution 67, 72
exponentially weighted moving average (EWMA) 146, 147

F
F distribution 73
F test 106
Factor 30, 34, 138, 164
Factor analysis 174
factor extraction 174
factor rotation 174
factor score 205
factor score coefficients 179
factor scores 179
factorial 159, 65
factorization 191, 200, 203
factorization classes 200, 203
factorizations 191, 200, 203
creating 201, 204
using 202, 206
factors 34
accessing 36
creating 34
grouping by 36
properties 36
Fast Fourier Transforms 103
FDistribution 67, 73
FFT 17, 103
FFTKernelException 235
filtering 145, 149
finding roots 321
FirstOrderInitialValueProblem 329
Fisher transformation 61
Fisher's Exact Test 110
FloatBandFact 203
FloatBandMatrix 169
FloatCholeskyLeastSq 212
FloatComplex 19
FloatComplexBandFact 203
FloatComplexBandMatrix 169
FloatComplexCholeskyLeastSq 212
FloatComplexDataBlock 27
FloatComplexEigDecomp 234
FloatComplexEigDecompServer 234
FloatComplexLeastSquares 88
FloatComplexLowerTriMatrix 166
FloatComplexLUFact 79
FloatComplexMatrix 53, 110
FloatComplexQRDecomp 223
FloatComplexQRDecompServer 224
FloatComplexQRLeastSq 213
FloatComplexSVDecomp 228
FloatComplexSVDecompServer 228
FloatComplexSVDLeastSq 213
FloatComplexTriDiagFact 203
FloatComplexTriDiagMatrix 170
FloatComplexUpperTriMatrix 167
FloatComplexVector 33
FloatDataBlock 27
FloatDWT 117
FloatEigDecomp 234
FloatEigDecompServer 234
FloatHermitianBandMatrix 172
FloatHermitianEigDecomp 234
FloatHermitianEigDecompServer 234
FloatHermitianFact 203
FloatHermitianMatrix 168
FloatHermitianPDBandFact 203
FloatHermitianPDFact 203
FloatHermPDTriDiagFact 203
FloatLeastSquares 87
FloatLowerTriMatrix 166
FloatLUFact 79
FloatMatrix 53
FloatNonnegativeLeastSquares 88, 90
FloatQRDecomp 223
FloatQRDecompServer 224
FloatQRLeastSq 213
FloatRandomBetaDistribution 96
FloatRandomExponentialDistribution 97
FloatRandomGammaDistribution 97
FloatRandomGaussianDistribution 97
FloatRandomGumbelDistribution 97
FloatRandomLaplaceDistribution 97
FloatRandomLogNormalDistribution 97
FloatRandomRayleighDistribution 97
FloatRandomUniformDistribution 97
FloatRandomWeibullDistribution 97
FloatSVDecomp 228
FloatSVDecompServer 228
FloatSVDFact 213
FloatSymBandMatrix 171
FloatSymEigDecomp 234
FloatSymEigDecompServer 234
FloatSymFact 203
FloatSymmetricMatrix 168
FloatSymPDBandFact 203
FloatSymPDFact 203
FloatSymPDTriDiagFact 203
FloatTriDiagFact 203
FloatTriDiagMatrix 170
FloatUpperTriMatrix 167
FloatVector 33
FloatWavelet 115
Frobenius matrix norm 193
Frobenius norm 68
function encapsulation 125
function evaluation 126, 246
function interpolation 141
functions of one variable 125
FZero 322
fzero 322

G
G statistic 132
GAC 3
gamma distribution 73
gamma function 159, 65
GammaDistribution 67, 73
gaussian distribution 80
Gauss-Kronrod integration 128, 132
GaussKronrodIntegrator 129, 133, 134, 325
gcAllowVeryLargeObjects 10
GDCLS 195
general sparse matrix 191, 195
general sparse matrix factorizations 200
generalized multivariable functions 313
generalized one variable functions 305
generating random numbers 93
generic columns 4
generic functions 50, 75, 188, 10
geometric distribution 75
geometric mean 57
GeometricDistribution 67, 75
global assembly cache 3
global minimum 261
golden section search 250
GoldenMinimizer 250
goodness of fit 293, 313, 131, 215
GoodnessOfFit 215
GoodnessOfFitParameter 215, 217
Gradient Descent - Constrained Least Squares (GDCLS) 195
grand mean 140, 144, 148
group means 140, 148
grouping by factors 30, 36
groupings 30, 36

H
half bandwidth 171, 172, 175, 179
harmonic mean 57
harmonic number 159
Hermitian banded matrices 172
Hermitian matrices 168
high-pass decimation filter 116
high-pass reconstruction filter 116
Histogram 121
histograms
  adding data 122
  creating 121
  displaying 124
  stem-leaf diagrams 124
hold out method 209
Hosmer Lemeshow statistic 132
hypergeometric functions 159
hypothesis tests 91
  creating 92
  properties 91, 93
HypothesisType 91

I
IBoundedNonlinearLeastSqMinimizer 295, 298, 299
IDFColumn 4
IDifferentiator 135
IDoubleLeastSqWeightingFunction 221
IIntegrator 129, 130, 325
I LogisticRegressionCalc 127
implicit conversion 178
  matrices 59
  vectors 38
IMultiVariableDMinimizer 255, 257
IMultiVariableMinimizer 255, 264
incomplete beta 66
incomplete beta function 159
incomplete gamma 65
incomplete gamma integral 159
independent streams 100
indexers 180, 193, 198
indexing objects 29
IndexOutOfRangeException 235
infinity-norm 67, 185
inner product 46
inner product of matrices 184
INonlinearLeastSqMinimizer 295, 299, 304
InputVariableCorrelator 85
integer columns 4
integer nonlinear programming 270, 279
integration 128
integration of polynomials 140
Intel Math Kernel Library 2, 3
intercept parameter 87, 88, 113
intercept parameters 115
InteriorPointQPSolver 285, 286
internally studentized residuals 116
interpolation 141
interquartile range 59, 220
IntRandomBernoulliDistribution 97
IntRandomBinomialDistribution 97
IntRandomGeometricDistribution 97
IntRandomHypergeometricDistribution 97
IntRandomNegativeBinomialDistribution 97
IntRandomPoissonDistribution 97
IntRandomPoissonVaryingMeanDistribution 98
IntRandomUniformBitsDistribution 98
IntRandomUniformDistribution 98
InvalidArgumentException 235
InvalidBinBdryException 235
inverse 69, 82, 208
inverse CDF 68
inverse cumulative distribution function 68
inverse Fisher transformation 61
IOneVariableDMinimizer 249, 252
IOneVariableDRootFinder 321, 323
IOneVariableMinimizer 249, 250
IOneVariableRootFinder 321
IRandomNumberDistribution 91
IRandomVariableMoments 68
IRegressionCalculation 114
ISerializable interface 47, 225
Iterative Power Method 207
iteratively reweighted least squares 218

J
jackknife estimates 210
jackknifing 210
Johnson system of distributions 75
JohnsonDistribution 75

K
KernelLoadException 235
k-fold cross validation 210
KMeansClustering 189, 190
Kolmogorov-Smirnov test 159, 161
Kruskal-Wallis rank sum test 159, 163
KruskalWallisTest 159, 163
kurtosis 60, 68

L
large objects 10
leapfrog method 100
LeapfrogRandomStreams 100
least squares
  Cholesky 211
  QR decomposition 212
  solving 214
  SVD 212
least squares minimization 114
least squares solutions 87, 211
left singular vectors 228
Levenberg-Marquardt method 243, 295, 303
LevenbergMarquardtMinimizer 299, 303
libiomp.dll 6
license key 3
likelihood function 135
linear bound constraints 301
linear constraints 269, 270
linear interpolation 142
linear programming 269
linear regressions 113
  creating 113
  modifying 118
  predictions 117, 134
  results 115
  significance of parameters 123
  significance of the overall model 125
linear spline interpolation 142
LinearAnnealingSchedule 262
LinearConstraint 275
LinearContraint 270
LinearProgrammingProblem 269
LinearRegression 113
LinearRegressionAnova 125
LinearRegressionParameter 123, 124, 150
Linkage 182
linkage functions 182
linkage tree 186
Linkage.Function 182
loading matrix 172
local minima 261
log binomial 65
log factorial 65
log file 5
log gamma 65
logical functions 53, 62
logistic function 309
logistic regression 127
LogisticDistribution 67, 77, 78
LogisticRegression 127
LogisticRegressionFitAnalysis 131
log-normal distribution 78
LognormalDistribution 67, 78
lower bandwidth 168, 174, 179
lower triangular matrices 165
lower triangular matrix 79, 81
low-pass decimation filter 116
low-pass reconstruction filter 116
LP problems 269
LU factorization 79, 125, 145, 157, 203
manipulating functions 246
matrices
  arithmetic operations 63, 182, 193, 199
  clearing 62
  converting to data frames 14
  copying 59
  creating from ADO.NET objects 58, 232
  creating from data frames 44
  creating from numeric values 54
  creating from strings 56
  equality testing 63, 182, 193, 199
  functions 67, 184, 194, 199
  implicit conversion 59
  modifying values 61, 180, 193, 198
  properties 60
  resizing 62, 181
matrix
  decompositions 223
  factorization 191, 200, 203
  functions 173
  norms 185
  properties 179
  shape parameters 174
  transposition 184, 194, 199
  types 165
matrix classes 53
matrix indexers 53
matrix norm 67
matrix transposition 67
matrix views 60
MatrixFunctions 173
MatrixNotSquareException 235
maximum (Chebychev) distance 181
maximum iterations 249
mean 47, 72, 56, 68
mean deviation 59
mean of the ranges method 219
median 47, 72, 56
median deviation from mean 59
median linkage 184
Mersenne Twister algorithm 92
Microsoft Solver Foundation 3
min/max functions 54
  vectors 47, 72
minimization 249, 255
MinimizerBase 249, 255
MismatchedSizeException 235
missing values 8, 51
MixedIntegerLinearProgrammingProblem 269, 270
MixedIntegerNonlinearProgrammingProblem 276
MKL 2, 3
mode 56
Modified Bessel functions 157
moving average 146
MovingWindowFilter 145
multiple linear regression 113
multiplicative update rule 195
MultiVariableFunction 245, 255, 257, 264
MultiVariableFunctionFitter 313
multivariate functions 245
multivariate techniques 171

N
Nagelkerke pseudo R-squared statistic 135
namespaces 2
NaN values 51
natural cubic spline 142
negative binomial distribution 79
NegativeBinomialDistribution 68, 79
Newton-Cotes formulas 130
NewtonRalphsonRootFinder 323
Newton-Raphson Method 323
NewtonRaphsonParameterCalc 127
NiederreiterQuasiRandomGenerator 102
NIPALS 208
NMath.dll 2
NMathConfiguration 4
NMathException 235
NMathFormatException 236
NMathKernelx64.dll 3
NMathKernelx86.dll 2
NMF 193
NMFClustering 196, 200, 201
Nonlinear Iterative Partial Least Squares (NIPALS) 208
nonlinear least squares 295
Nonlinear Programming (NLP) 273, 276
NonlinearConstraint 275
NonlinearProgrammingProblem 276
nonnegative least squares 87, 88
nonnegative least squares solutions 90
nonnegative matrix factorization (NMF) 193, 196
Non-parametric tests 159
norm of a complex number 23
normal distribution 80
NormalDistribution 68, 80
norms 185
Not-A-Number values 51
numeric columns 4
numerical integration 128
numerical rank 215

O
objective function 269
odds ratio 135
OMP threading library 6
one-norm 67
OneSampleAndersonDarlingTest 159
OneSampleKSTest 159
OneSampleTTest 98
OneSampleZTest 96
OneVariableFunction 125, 245
OneVariableFunctionFitter 305
one-way ANOVA 137
  accessing the ANOVA table 139, 166
one-way RANOVA 141
  accessing the RANOVA table 143
OneWayAnova 137
OneWayAnovaTable 139, 165
OneWayRanova 141
OneWayRanovaTable 143
operators 182, 193, 199
optimization 249, 255
order 174, 179
ordinary differential equations 329
outer product 46

P
parabolic interpolation 250
Partial Least Squares 205
Partial least squares Discriminant Analysis 211
parts per million defective 221
PDF 68
peak finding 145, 151
PeakFinderRuleBased 145, 153
PeakFinderSavitzkyGolay 145, 151
Pearson chi-square statistic 132
Pearson correlation 61
Pearson's chi-square test 108
PearsonsChiSquareTest 108
percent defective 221
percentiles 54
permutation matrices 223, 225
permutation matrix 79, 81
permuting columns 8
permuting data frames 33
phase 188
pivot indices 81
pivoting 223, 224
PLS-DA 211
pointers to underlying data 27, 28
poisson distribution 80
PoissonDistribution 68, 80
polar coordinates 20, 35
polylogarithm 159
Polynomial 137, 245
PolynomialLeastSquares 293, 294
polynomials 137
Position enumeration 30
positive definite matrices 201, 204
Powell's Method 256
PowellMinimizer 256
power distance 181
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pp</td>
<td>219, 220</td>
</tr>
<tr>
<td>Ppk</td>
<td>219, 220</td>
</tr>
<tr>
<td>predicted values</td>
<td>89</td>
</tr>
<tr>
<td>predictions</td>
<td>117, 134</td>
</tr>
<tr>
<td>predictor matrix</td>
<td>118</td>
</tr>
<tr>
<td>PrimalSimplexSolver</td>
<td>269, 271</td>
</tr>
<tr>
<td>PrimalSimplexSolverParam</td>
<td>271</td>
</tr>
<tr>
<td>principal component analysis</td>
<td>171</td>
</tr>
<tr>
<td>probability density function</td>
<td>68</td>
</tr>
<tr>
<td>probability distributions</td>
<td>67</td>
</tr>
<tr>
<td>ProbabilityDistribution</td>
<td>68</td>
</tr>
<tr>
<td>process capability</td>
<td>219, 220</td>
</tr>
<tr>
<td>process capability index</td>
<td>220</td>
</tr>
<tr>
<td>process performance</td>
<td>220</td>
</tr>
<tr>
<td>ProcessCapability</td>
<td>219</td>
</tr>
<tr>
<td>ProcessPerformance</td>
<td>220</td>
</tr>
<tr>
<td>product</td>
<td></td>
</tr>
<tr>
<td>features</td>
<td>1</td>
</tr>
<tr>
<td>overview</td>
<td>1</td>
</tr>
<tr>
<td>product of matrices</td>
<td>68</td>
</tr>
<tr>
<td>pseudo R-squared</td>
<td>135</td>
</tr>
<tr>
<td>pseudoinverse</td>
<td>70</td>
</tr>
</tbody>
</table>

**Q**

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QR decomposition</td>
<td>223, 114</td>
</tr>
<tr>
<td>classes</td>
<td>223</td>
</tr>
<tr>
<td>least squares</td>
<td>212</td>
</tr>
<tr>
<td>servers</td>
<td>224</td>
</tr>
<tr>
<td>QRRRegressionCalculation</td>
<td>114</td>
</tr>
<tr>
<td>quadratic mean</td>
<td>58</td>
</tr>
<tr>
<td>Quadratic Programming (QP)</td>
<td>273, 283</td>
</tr>
<tr>
<td>QuadraticProgrammingProblem</td>
<td>284</td>
</tr>
<tr>
<td>quadrature</td>
<td>128</td>
</tr>
<tr>
<td>quartiles</td>
<td>54</td>
</tr>
<tr>
<td>quasi-Newton method</td>
<td>257</td>
</tr>
<tr>
<td>quasirandom numbers</td>
<td>102</td>
</tr>
</tbody>
</table>

**R**

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>293, 313, 215</td>
</tr>
<tr>
<td>RandGenBeta</td>
<td>91</td>
</tr>
<tr>
<td>RandGenBinomial</td>
<td>91</td>
</tr>
</tbody>
</table>
RandGenExponential 91
RandGenGamma 91
RandGenGeometric 91
RandGenJohnson 92
RandGenLogNormal 92
RandGenMTwist 92
RandGenNormal 92
RandGenPareto 92
RandGenPoisson 92
RandGenUniform 91
RandGenWeibull 92

random number generators 91, 103, 115
   scalar 91
   vectorized 96
random samples 30
random seeds 95
RandomNumberGenerator 91, 94
RandomNumbers 99
RandomNumberStream 91, 98
Range 29
ranges 29, 39
rank 215
ranks 54
ReducedVarianceInputCorrelator 85
references 7
regression calculators 114
regression matrix 118
regularization 195
reordering columns 8
reordering data frames 33
replicating a matrix 56
RepMat() functions 56
residual standard error 293, 313, 215
residual sum of squares 89
residual vector 211
residuals 89, 295
resizing
   matrices 62
   vectors 41
resizing matrices 181
reversing a vector  50
Ridders’ Method  322
RiddersDifferentiator  135
RiddersRootFinder  322
Riemann zeta function  159
right singular vectors  228
RMS  58
Romberg integration  128
RombergIntegrator  129, 130, 325
root mean square  58
RootFinderBase  321
root-finding  321
rounding functions  45, 70
row keys  3, 18, 21
    modifying  20
Rule-based peak finding  153
Runge-Kutta method  329
RungeKutta45OdeSolver  332
RungeKutta5OdeSolver  332
RungeKuttaSolver  329, 330

S
sampling  30
Savitzky-Golay  146
SavitzkyGolayFilter  145, 149
secant method  321
SecantRootFinder  321
seeds for random number generators  95
SequentialQuadraticProgrammingSolver  282
serialization  47, 225
ShapiroWilkTest  159
signal processing  145
SIMPLS  208
Simpson’s rule  130
simulated annealing  261
sine function  309
single linkage  183
singular value decomposition  223, 228, 114
    classes  228
    servers  228
singular values 228
singular vectors 228
SingularMatrixException 236
skewness 59, 68
skip-ahead 100
SkipAheadRandomStreams 100
Slice 29
slices 29, 39
smooth splines 143
SmoothCubicSpline 143
SOAP serialization 47, 226
SobolQuasiRandomGenerator 102
solutions of linear systems 79, 125, 145, 157, 191, 200, 203
solver parameters 271
solving for right-hand sides 81, 206
sorting functions 49, 74
SortingType 32, 55, 62
sparse vector 191
SparseMatrixBuilder 197
sparsity 195
Spearman’s rank correlation coefficient 159
Spearman’s rho 61, 159
special functions 2, 3, 157, 65
spline interpolation 142
spread 58
square root 49, 74
squared Euclidean distance 181
SSE 58
standard deviation 58
standardized residuals 116
statistical functions 49
  data types 49
  missing values 51
statistical process control 219
StatsFunctions 49–??
StatsSettings 9
stiff differential equations 329
stiff equations 335
Stochastic Hill Climbing algorithm 280
StochasticHillClimbingSolver 280
stopping adjacency 197
Straightforward IMplementation of PLS (SIMPLS) 208
string columns 4
structured sparse matrices 165
Student’s t distribution 81
studentized residuals 116
subject means 144
Subset 25
subsets 25
  accessing elements 26
  arithmetic operations 27
  creating 25
  logical operations 27
  properties 26
sum of squared errors 58
sum of squares 47, 72
sums 53
surface fitting 295, 313
SVD 228
  convergence 214
  least squares 212
SVDRegressionCalculation 114
symmetric banded matrices 171
symmetric matrices 167

T
t test 98, 100, 103
tabulated functions 141
TabulatedFunction 245
tabulation 40
Taguchi capability index 220
TDistribution 68, 81
tiling a matrix 56
time series 61
transcendental functions 48, 73, 187
transpose product 68, 185
transposing matrices 67, 184, 194, 199
trapezoidal rule 130
treatment means 144
triangular distribution 82
triangular matrices 165, 166
TriangularDistribution 68, 82
tridiagonal matrices 170
trigonometric functions 24, 48, 73, 187
trimmed mean 57
trimming data 57
Trust-Region method 243, 295, 298, 299
TrustRegionMinimizer 298, 299
TrustRegionParameterCalc 128
TwoSampleFTest 106
TwoSampleKSTest 159, 161
TwoSamplePairedTTest 100
TwoSampleUnpairedTTest 103
TwoSampleUnpairedUnequalTTest 103
TwoVariableIntegrator 325, 326
two-way ANOVA 145
accessing the ANOVA table 146
two-way RANOVA 156
TwoWayAnova 145
TwoWayAnovaTable 146
TwoWayAnovaTypeI 154
TwoWayAnovaTypeII 154
TwoWayAnovaTypeIII 154
TwoWayAnovaUnbalanced 154
TwoWayRanova 156
TwoWayRanovaTable 157
TwoWayRanovaTwo 156
TwoWayRanovaTwoTable 158
typographic conventions 13

U
Unbalanced two-way ANOVA 154
unbalanced two-way ANOVA 154
uniform distribution 83
UniformDistribution 68, 83
unweighted average linkage 183
upper bandwidth 168, 174, 179
upper triangular matrices 166
upper triangular matrix 79, 81
variable bounds 269
variable metric method 257
VariableMetricMinimizer 257
VariableOrderOdeSolver 329, 335
variance 47, 72, 59, 68
variance inflation factor 116
varimax rotation 174
vector classes 33
vector indexers 33
vector views 39, 65
vectors
  arithmetic operations 43
  clearing 41
  copying 38
  creating from ADO.NET objects 37, 232
  creating from numeric values 34
  creating from strings 35
  equality testing 43
  functions 45
  implicit conversion 38
  modifying values 41
  properties 40
  resizing 41
Von Neumann ratio 61
Ward’s linkage 184
wavelet 115
wavelet threshold calculation 119
wavelet thresholding 119
Wavelet.Wavelets 115
web applications 8
web projects 8
Weibull distribution 84
WeibullDistribution 68, 84
weighted average linkage 183
weighted least squares 215
weighted mean 57
weighting functions 217, 221
Wilcoxon signed-rank test 159, 168
WilcoxonSignedRankTest 159, 168
XML serialization 228

Z Bench 221
Z bench 219, 221
z test 96
ZBench 221